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Abstract. In this paper, a numerical method based on the Chebyshev tau method is applied to analyze the effects of

rotation and magnetic fields on Rayleigh-Bénard convection. The rotation and magnetic fields are assumed to be parallel

to the vertical direction. The perturbation equations and boundary conditions are analyzed using normal mode analysis.

The equations are then converted into a non-dimensional form and transformed into a generalized eigenvalue problem

of the form AX = RBX, where R represents the eigenvalue corresponding to the Rayleigh number. The MATLAB

software package is utilized to determine the relationship between the Rayleigh number and the Taylor number (rate

of rotation), as well as the relationship between the Rayleigh number and the magnetic parameter (strength of the

magnetic field) for different boundary conditions (free-free, rigid-rigid, or one free and the other rigid). The numerical

and graphical results are presented and found to be in full agreement with the results obtained from previous analytical

and numerical studies of the problem.

1. Introduction

Rayleigh-Bénard convection is a classical problem in fluid mechanics, it is a type of natural

convection occurring in a planar horizontal layer of fluid heated from below. It has wide range of

application in physics and engineering sciences. There are many analytical and numerical studies

have been done for the problem. Lord Rayleigh (1916) [1] used the experimental results provided

by Benard (1900) and gave the first stability analysis for the problem, he found a dimensionless
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number R called Rayleigh number which measures the ratio of buoyancy and viscosity forces

multiplied by the ratio of momentum and thermal diffusivities given by

R =
gαβd4

κν

where α is coefficient of thermal expansion, g is gravity acceleration, β is temperature gradient, d
is the vertical distance between the plates, κ is thermal diffusivity, ν is kinematic viscosity. This

number increases as the temperature gradient β increased till exceed a certain critical value Rc, this

value determines the stability of the fluid flow, when R < Rc the flow is laminar, and it becomes

turbulent at the high values R > Rc. Chandrasekhar [2]- [5] studied analytically instability of a

layer of fluid heated from below and subject to simultaneous action of a magnetic field and rotation

for three cases of boundaries free-free, rigid-rigid and rigid-free, he found the relation between

the critical Rayleigh number and the critical wave number for various values of rotation and

magnetic parameters. Wang [7] studied Linear instability analysis of Rayleigh Benard convection

in a cylinder with traveling magnetic field, Yadav [8] gave a numerical investigation of the effect

of magnetic field on the onset of nanofluid convection, A.Abasher [9] study the effect of rotation

numerically by using Chebyshev tau method, Zimmermann [10] performed experimental and

numerical Investigation of a Rayleigh-Bénard Convection Affected by Coriolis Force.

In this paper we study the effect of rotation and magnetic field numerically by using Chebyshev

tau method [11]- [13]. The paper outlined as follows. In section 2 we introduced the perturbation

equations and the boundary conditions, in section 3 we used normal mode analysis to analyze the

system, in section 4 we obtained the non dimensional form of the equations, in section 5 we used

the numerical method to convert the system to generalized eigen value problem, in section 7 we

presented the graphical and numerical results and in the last section 7 we concluded the results.

2. The Perturbation Equations

Assume the fluid confined between two horizontal planes which are located at z = 0 and

z = d, also assume the direction of the rotation and magnetic field coincides with the vertical.

The perturbation equations and the boundary conditions were introduced by Chandrasekhar ( [2],

Page 199) as follows
∂θ
∂t

= κ∇2θ+ βw, (2.1)

∂hz

∂t
= η∇2hz + H

∂w
∂z

, (2.2)

∂ζ
∂t

= ν∇2ζ+ 2Ω
∂w
∂z

+
µH
4πρ

∂ξ
∂z

(2.3)

∂ξ
∂t

= η∇2ξ+ H
∂ζ
∂z

, (2.4)
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∂∇2w
∂t

= gα
(
∂2θ

∂x2 +
∂2θ

∂y2

)
+ ν∇4w− 2Ω

∂ζ
∂z

+
µH
4πρ

∂∇2hz

∂z
, (2.5)

subject to the boundary conditions


θ = 0, w = 0, ζ = 0 and

dw
dz

= 0 on rigid boundary,

θ = 0, w = 0,
dζ
dz

= 0 and
d2w
dz2 = 0 on free boundary.

(2.6a)

(2.6b)

where θ, w, hz, ζ and ξ are the perturbation of the velocity, magnetic field, vorticity and the

current density respectively in the z−direction, ρ is the density, β is the temperature gradient

where β =
∣∣∣dT

dz

∣∣∣, g is the gravitational acceleration, α the coefficient of volume expansion, ν the

kinematic viscosity, κ the thermal diffusivity.

3. NormalModes Analysis

We can write the perturbations w,θ, ζ, hz and ξ as a dependence on x, y, and t of the form

θ = Θ (z) exp
(
i
(
kxx + kyy

)
+ pt

)
ζ = Z (z) exp

(
i
(
kxx + kyy

)
+ pt

)
w = W (z) exp

(
i
(
kxx + kyy

)
+ pt

)
ξ = X (z) exp

(
i
(
kxx + kyy

)
+ pt

)
hz = K (z) exp

(
i
(
kxx + kyy

)
+ pt

)
(3.1)

where k =
√

k2
x + k2

y is the wave number of the disturbance and p is a constant. for functions with

this dependence on x, y, and t, we find

∂
∂t

= p,
∂2

∂x2 +
∂2

∂y2 = −k2 and ∇
2 =

d2

dz2 − k2 (3.2)

From (3.1), the system (2.1)-(2.5) become

pΘ = βw + κ

(
d2

dz2 − k2
)

Θ, (3.3)

pK = η

(
d2

dz2 − k2
)

K + H
dW
dz

, (3.4)

p

(
d2

dz2 − k2
)

W = −gαk2Θ + ν

(
d2

dz2 − k2
)2

W − 2Ω
dZ
dz

+
µH
4πρ

d
dz

(
d2

dz2 − k2
)

K, (3.5)

pX = η

(
d2

dz2 − k2
)

X + H
dZ
dz

, (3.6)

pZ = ν

(
d2

dz2 − k2
)

Z + 2Ω
dW
dz

+
µH
4πρ

dX
dz

, (3.7)
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and the boundary conditions (2.6) become

Θ = 0, W = 0 for z = 0 and z = d,

Z = 0,
dW
∂z

= 0 on rigid surface

dZ
dz

= 0
d2W
dz2 = 0 on free surface

(3.8)

4. Non-Dimensional Form of the Equations

To write the system (3.3)-(3.7) and the boundary conditions (3.8) in non-dimensional form, we

have the distance between the two surfaces is d. If we define the following non-dimensional

variables

a = kd, σ =
pd2

v
, z∗ =

z
d

, P1 =
v
κ

, and P2 =
v
η

,

the first and the second operators d
dz and d2

dz2 are given as

d
dz

=
d

dz∗
dz∗

dz
=

1
d

d
dz∗

=
1
d

D, and
d2

dz2 =
1
d2

d2

dz∗2
=

1
d2 D2

Then the system (3.3)-(3.7) in non-dimensional form given as(
D2
− a2
− P1σ

)
Θ = −

(
βd2

κ

)
W, (4.1)

(
D2
− a2
− P2σ

)
K = −

(
Hd
η

)
DW, (4.2)

(
D2
− a2
− P2σ

)
X = −

(
Hd
η

)
DZ, (4.3)

(
D− a2

− σ
)

Z = −

(
2Ωd

v

)
DW −

(
µHd
4πρν

)
DX, (4.4)

(
D2
− a2

) (
D2
− a2
− σ

)
W +

(
µHd
4πρν

)
D

(
D2
− a2

)
K −

(
2Ωd3

ν

)
DZ =

(
gαd2

ν

)
a2Θ, (4.5)

and the boundary conditions

Θ = 0, W = 0 for z = 0 and z = 1,

Z = 0, DW = 0 on a rigid surface,

DZ = 0, D2W = 0 on a free surface.

(4.6)

at the stationary convection (σ = 0), the system become(
D2
− a2

)
Θ = −

(
βd2

κ

)
W, (4.7)

(
D2
− a2

)
K = −

(
Hd
η

)
DW, (4.8)
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(
D2
− a2

)
X = −

(
Hd
η

)
DZ, (4.9)

(
D− a2

)
Z = −

(
2Ωd
ν

)
DW −

(
µHd
4πρν

)
DX, (4.10)

(
D2
− a2

)2
W +

(
µHd
4πρν

)
D

(
D2
− a2

)
K −

(
2Ωd3

ν

)
DZ =

(
gαd2

ν

)
a2Θ. (4.11)

Eliminate X between equations (4.9) and (4.10), we get[(
D2
− a2

)2
−QD2

]
Z = −

(
2Ωd
ν

)
D

(
D2
− a2

)
W. (4.12)

Also, eliminate K between (4.8) and (4.11) we obtain[(
D2
− a2

)2
−QD2

]
W −

(
2Ωd3

ν

)
DZ =

(
gαd2

ν

)
a2Θ. (4.13)

Eliminate Θ between (4.7) and (4.13), we get(
D2
− a2

) {[(
D2
− a2

)2
−QD2

]
W − d

√

TDZ
}
= −Ra2W, (4.14)

where,

R =
gαβd4

κν
and T =

4Ω2d4

ν2 , (4.15)

are the Rayleigh number and Taylor number respectively. (assume d = 2). Also (4.12) written as[(
D2
− a2

)2
−QD2

]
Z +

√

TD
(
D2
− a2

)
W = 0. (4.16)

The equations (4.14) and (4.16) must be solved subject to the boundary conditions (4.6).

5. Numerical Solution

Chebyshev Tau methods is a numerical method used to solve differential equations, It is based

on Chebyshev polynomials to find approximate solution of the differential equation. Returning to

(4.14) and (4.16) and the boundary conditions (4.6)(
D2
− a2

) {[(
D2
− a2

)2
−QD2

]
W − 2

√

TDZ
}
= −Ra2W, (5.1)

[(
D2
− a2

)2
−QD2

]
Z +

√

TD
(
D2
− a2

)
W = 0, (5.2)

subject to

W = 0, for z = 0 and z = 1,

Z = 0, DW = 0 on a rigid surface

DZ = 0, D2W = 0 on a free surface.

(5.3)
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First convert the domain [0, 1] to domain of Chebyshev polynomials [−1, 1], use the relation

x = 2z − 1, when z = 0 ⇒ x = −1 and when z = 1 ⇒ x = 1, also the derivatives Dz = 2Dx and

D2
z = 4D2

x, the system (5.1)-(5.3) become(
4D2
− a2

) {[(
4D2
− a2

)2
− 4QD2

]
W − 4

√

TDZ
}
= −Ra2W, (5.4)

[(
4D2
− a2

)2
− 4QD2

]
Z +

√

TD
(
4D2
− a2

)
W = 0, (5.5)

W = 0, f or x = −1 and x = 1

DZ = 0, DW = 0, (on a rigid surface)

Z = 0, D2W = 0, (on a free surface)

(5.6)

let A =
[(

4D2
− a2

)2
− 4QD2

]
W − 4

√
TDZ then we can write (5.4) - (5.6) as[(

4D2
− a2

)2
− 4QD2

]
W − 4

√

TDZ−A = 0, (5.7)

(
4D2
− a2

)
A = −Ra2W, (5.8)

[(
4D2
− a2

)2
− 4QD2

]
Z +

√

TD
(
4D2
− a2

)
W = 0 (5.9)

subject to
W = A = 0, f or x = −1 and x = 1

DW = 0, (on a rigid surface)

D2W = 0, (on a free surface)

(5.10)

Now expand W, A and Z as Chebyshev polynomials

W (x) =
N∑

n=0

wnTn (x), A (x) =
N∑

n=0

anTn (x) and Z (x) =
N∑

n=0

znTn (x) (5.11)

where −1 ≤ x ≤ 1, the derivative D, D2 and D4 are given by

[]DW =
N∑

n=0

w(1)
n Tn, D2W =

N∑
n=0

w(2)
n Tn, D3W =

N∑
n=0

w(3)
n Tn, and D4W =

N∑
n=0

w(4)
n Tn, (5.12)

D2Z =
N∑

n=0

z(2)n Tn, D4Z =
N∑

n=0

z(4)n Tn, and D2A =
N∑

n=0

a(2)n Tn, (5.13)

where,

for all n = 0, .., N − 1

w(1)
n ,= D [wn]

T
n=0,1...,N−1 , w(1)

N = 0,

for all n = 0, .., N − 2
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w(2)
n = D2 [wn]

T
n=0,1...,N−2 , w(2)

N−1 = w(2)
N = 0,

a(2)n = D2 [an]
T
n=0,1...,N−2 , a(2)N−1 = a(2)N = 0,

Z(2)
n = D2 [zn]

T
n=0,1...,N−2 , z(2)N−1 = z(2)N = 0

for all n = 0, .., N − 3

w(3)
n = D3 [wn]

T
n=0,1...,N−3 , w(3)

N−2 = w(3)
N−1 = w(2)

N = 0,

for all n = 0, .., N − 4

w(4)
n = D4 [wn]

T
n=0,1...,N−4 , w(4)

N−3 = w(4)
N−2 = w(4)

N−1 = w(4)
N = 0,

Z(4)
n = D4 [zn]

T
n=0,1...,N−4 , z(4)N−3 = z(4)N−2 = z(4)N−1 = z(4)N = 0,

Where D, D2, D3 and D4 are chebyshev derivative matrices given as

D =



0 0 0 0 0 · · · 0

1 0 0 0 0 · · · 0

0 4 0 0 0 · · · 0

3 0 6 0 0 · · · 0

0 8 0 8 0 · · · 0
...

...
...

...
...

. . . 0

N 0 2N 0 2N · · · 0


, (5.14)

D2 =



0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 · · · 0

4 0 0 0 0 0 · · · 0

0 24 0 0 0 0 · · · 0

32 0 48 0 0 0 · · · 0

0 120 0 80 0 0 · · · 0
...

...
...

...
...

...
. . . 0

0 N(N2
− 1) 0 N(N2

− 9) 0 N(N2
− 25) · · · 0



, (5.15)

D3 = (D)3 = DD2 and D4 = (D)4 = D2D2.

Substitute (5.11), (5.12) into the system (5.7)-(5.10), we get

N∑
0

[
16w(4)

n −
(
8a2 + 4Q

)
wn + a4wn

]
Tn −

N∑
0

anTn − 4
√

T
N∑
0

z(1)n Tn = 0, (5.16)

N∑
0

(
4a(2)n − a2an

)
Tn = −Ra2

N∑
0

wnTn, (5.17)

N∑
0

[
16z(4)n −

(
8a2 + 4Q

)
zn + a4zn

]
Tn + 4

√

T
N∑
0

(
w(3)

n − a2w(1)
n

)
Tn = 0, (5.18)
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By taking the inner product with Tn for n = 0, . . . , N for (5.16)-(5.18) we get 3(N + 1) equations for

each n = 0, 1, . . . , N as follows[
16w(4)

n −
(
8a2 + 4Q

)
wn + a4wn

]
− an−4

√

Tz
(1)
n = 0 (5.19)

4a(2)n − a2an = −Ra2wn (5.20)

16z(4)n −
(
8a2 + 4Q

)
zn + a4zn + 4

√

T
(
w(3)

n − a2w(1)
n

)
= 0 (5.21)

By substituting w(1)
n , w(2)

n , a(2)n , z2
n, w(4)

n and z(4)n we can write (5.19)-(5.21) as[
16D4

−

(
8a2 + 4Q

)
D2 + a4I

]
[wn]

T
− I [an]

T
− 4
√

TD [zn]
T = 0, (5.22)

(
4D2
− a2I

)
[an]

T = −Ra2I [wn]
T , (5.23)

[
16D4

−

(
8a2 + 4Q

)
D2 + a4I

]
[zn]

T + 4
√

T
(
D3
− a2D

)
[wn]

T = 0 (5.24)

These equations (5.22)-(5.24) represent a generalized eigenvalue problem in the form

AX = RBX, (5.25)

where,

A =


[
16D4

−

(
8a2 + 4Q

)
D2 + a4I

]
−I −4

√
TD

0
(
4D2
− a2I

)
0

4
√

T
(
D3
− a2D

)
0

[
16D4

−

(
8a2 + 4Q

)
D2 + a4I

]
,

 ,

B =


0 0 0
−a2I 0 0

0 0 0


and,

X = (w0, . . . , wN, a0, . . . , aN, z0, . . . , zn)
T .

The boundary conditions (5.10), use the formula of calculating the n−derivatives of Chebyshev

polynomial which is

dpTn

dxp

∣∣∣∣∣
x=±1

= (±1)n+p
p−1∏
k=0

n2
− k2

2k + 1
, Tn (±1) = (±1)n (5.26)

From this formula we can formulate the conditions of W as

W (±1) =
N∑

n=0

wnTn (±1) =
N∑

n=0

(±1)n+1 wn =
N∑

n=0

(±1)n wn (5.27)

DW (±1) =
N∑

n=0

wnT
′

n (±1) =
N∑

n=0

(±1)n n2wn (5.28)
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D2W (±1) =
N∑

n=0

wnT
′′

n (±1) =
N∑

n=0

(±1)n+2
(

n2(n2
− 1)

3

)
wn (5.29)

The conditions for A as

A (±1) =
N∑

n=0

anTn |x=±1 =
N∑

n=0

(±1)n+1 an =
N∑

n=0

(±1)n an (5.30)

The conditions for Z,

Z (±1) =
N∑

n=0

znTn (±1) =
N∑

n=0

(±1)n+1 zn =
N∑

n=0

(±1)n zn (5.31)

DZ (±1) =
N∑

n=0

znT
′

n (±1) =
N∑

n=0

(±1)n n2wn (5.32)

For Free-Free boundaries we have eight boundary conditions

W (±1) = 0, D2W (±1) = 0, A (±1) = 0 and DZ (±1) = 0

BC1 up to BC8 as follows

BC1 : W (−1) = 0 ⇒
[
1,−1, 1,−1, . . . , (−1)N

]
[wn]

T = 0,

BC2 : W (1) = 0 ⇒ [1, 1, 1, 1, . . . , 1] [wn]
T = 0,

BC3 :

D2W (−1) = 0⇒
[
0, 0, 4, −24, 80,−200, . . . , (−1)N+2 N2(N2

−1)
3

]
[wn]

T = 0,

BC4 : D2W (1) = 0⇒
[
0, 0, 4, 24, 80, 200, . . . ,

N2(N2
−1)

3

]
[wn]

T = 0,

BC5 : A (−1) = 0⇒
[
1,−1, 1, . . . , (−1)N

]
[an]

T = 0,

BC6 : A (1) = 0⇒ [1, 1, 1, . . . , 1] [an]
T = 0,

BC7 : DZ(−1) = 0 ⇒
[
0, 1, −4, 9,−16, 25, . . . , (−1)N N2

]
[zn]

T = 0,

BC8 : DZ (1) = 0 ⇒
[
0, 1, 4, 9, 16, 25, . . . , N2

]
[zn]

T = 0,

For Rigid-Rigid boundaries we have eight boundary conditions

W (±1) = 0, DW (±1) = 0, A (±1) = 0 and Z (±1) = 0

BC1 up to BC8 as follows

BC1 : W (−1) = 0⇒
[
1,−1, 1,−1, . . . , (−1)N

]
[wn]

T = 0

BC2 : W (1) = 0 ⇒ [1, 1, 1, 1, . . . , 1] [wn]
T = 0

BC3 : DW (−1) = 0⇒
[
0, 1, −4, 9,−16, 25, . . . , (−1)N N2

]
[wn]

T = 0

BC4 : DW (1) = 0 ⇒
[
0, 1, −4, 9,−16, 25, . . . , (−1)N N2

]
[wn]

T = 0

BC5 : A (−1) = 0⇒
[
1,−1, 1, . . . , (−1)N

]
[an]

T = 0

BC6 : A (1) = 0⇒ [1, 1, 1, . . . , 1] [an]
T = 0

BC7 : Z(−1) = 0 ⇒
[
1,−11, 1, . . . , (−1)N

]
[zn]

T = 0

BC8 : Z (1) = 0 ⇒ [1, 1, 1, . . . , 1] [zn]
T = 0
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For Rigid-Free boundaries we have eight boundary conditions, the lower boundary is rigid and

the upper boundary is free, so the conditions are

W (±1) = 0, A (±1) = 0,

DW (−1) = 0 and Z (−1) = 0 (Rigid at x = −1)

D2W(1) = 0 and DZ(1) = 0 (Free at x = 1)

then BC1 up to BC8 written as
BC1 : W (−1) = 0⇒

[
1,−1, 1,−1, . . . , (−1)N

]
[wn]

T = 0,

BC2 : W (1) = 0 ⇒ [1, 1, 1, 1, . . . , 1] [wn]
T = 0,

BC3 : DW (−1) = 0⇒
[
0, 1, −4, 9,−16, 25, . . . , (−1)N N2

]
[wn]

T = 0,

BC4 : D2W (1) = 0 ⇒
[
0, 0, 4, 24, 80, 200, . . . ,

N2(N2
−1)

3

]
[wn]

T = 0,

BC5 : A (−1) =
[
1,−1, 1, . . . , (−1)N

]
[an]

T = 0,

BC6 : A (1) = [1, 1, 1, . . . , 1] [an]
T = 0,

BC7 : Z(−1) = 0 ⇒
[
1,−11, 1, . . . , (−1)N

]
[zn]

T = 0,

BC8 : DZ (1) = 0 ⇒
[
0, 1, 4, 9, 16, 25, . . . , N2

]
[zn]

T = 0.
For each case of the boundary conditions free-free , rigid-rigid and rigid-free, insert the boundary
conditions BC1 up to BC4 into the matrix A in the system (5.25), the corresponding rows in the
matrix B are zeros. The matrices A and B can written as

A =



[
16D4

−

(
8a2 + 4Q

)
D2 + a4I

]
−I −4

√
TD

BC1 0 . . . 0 0 . . . 0

BC2 0 . . . 0 0 . . . 0

BC3 0 . . . 0 0 . . . 0

BC4 0 . . . 0 0 . . . 0

0 4D
2
− a2I 0

0 . . . 0 BC5 0 . . . 0

0 . . . 0 BC6 0 . . . 0

4
√

T
(
D3
−a2D

)
0

[
16D4

−

(
8a2 + 4Q

)
D2 + a4I

]
0 . . . 0 0 . . . 0 BC7

0 . . . 0 0 . . . 0 BC8



B =



0 0 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

−a2I 0 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0

0 0 0

0 . . . 0 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0 0 . . . 0
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By using MATLAB, we can calculate the set of all eigenvalues R for each value of the wave number

a for the system (5.25), and we can find the minimum eigenvalue Rc and the corresponding value

ac, The table (1) shows the critical Rayleigh number and the critical wave number in the absence

of rotation and magnetic field ( T = 0 and Q = 0) for the three cases of the boundaries free-free,

rigid-rigid and rigid-free.

Free-Free Rigid-Rigid Rigid-Free

ac Rc ac Rc ac Rc

2.2 657 3.17 1707 2.68 1100

Table 1. The critical Rayleigh number Rc and critical wave number ac, for the three

cases of the boundaries in the absence of rotation and magnetic field T = 0, Q = 0

6. MATLAB Code Implementation

Listing 1. Formulation of Chebyshev Matrix D.

function D=ChebD(N)

D=zeros (N+1 ) ;

for i =1:N+1

for j = 1 : 1 :N+1

i f mod( j ,2)==0

D( 1 , j )= j −1;

end

i f i +2* j −1<=(N+1) D( i , i +2* j −1)=2*( i +2* j −1)−2;

end

end

end

Listing 2. Formulation of Free-Free Boundary Conditions.

function [ BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8]= Bcs_FF (N)

for m=1:N+1

n=m−1;

BC1 (m)=(−1)^n ; BC2 (m)=1 ;

BC3 (m)=4*( −1)^(n+2)*n^2*(n^2 −1) /3 ; BC4 (m)=4*n^2*(n^2 −1) /3 ;

BC5 (m)=(−1)^n ; BC6 (m)=1 ;

BC7 (m)= ( −1)^(n+1)*n^2; BC8 (m)=n^2;

end
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Listing 3. Formulation of Rigid-Rigid Boundary Conditions.

function [ BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8]=Bcs_RR (N)

for m=1:N+1

n=m−1;

BC1 (m)=(−1)^n ; BC2 (m)=1 ;

BC3 (m)= ( −1)^(n+1)*n^2; BC4 (m)=n^2;

BC5 (m)=(−1)^n ; BC6 (m)=1 ;

BC7 (m)=(−1)^n ; BC8 (m)=1 ;

end

Listing 4. Formulation of Rigid-Free Boundary Conditions.

function [ BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8]=Bcs_RF (N)

for m=1:N+1

n=m−1;

BC1 (m)=(−1)^n ; BC2 (m)=1 ;

BC3 (m)= ( −1)^(n+1)*n^2; BC4 (m)=4*n^2*(n^2 −1) /3 ;

BC5 (m)=(−1)^n ; BC6 (m)=1 ;

BC7 (m)=(−1)^n ; BC8 (m)=n^2;

end

Listing 5. Rayleigh-Bénard Convection (Effect of Rotation and Magnetic Field).

% Benard prob l em with e f f e c t o f r o t a t i o n and magne t i c f i e l d

% f o r Free−F r e e Boundar i e s , Rig id−R i g i d b o u n d a r i e s and Rigid−F r e e

% b o u n d a r i e s

c l e a r a l l

N=30;

%f o r m u l a t i o n boundary c o n d i t i o n s

f p r i n t f ( [ ’ Enter � the � type � of � the � boundaries : �1� f o r � f ree −f ree ,

2� f o r �Rigid−Rigid , �3� f o r �Rigid−Free * * \ n ’ ] ) ;

Type_of_boundaries=input ( ’ the � type � of � the � boundaries �=\n� ’ ) ;

switch Type_of_boundaries

case 1

[ BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 ] = Bcs_FF (N) ;

case 2

[ BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 ] = Bcs_RR (N) ;

case 3
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[ BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 ] = Bcs_RF (N) ;

otherwise

f p r i n t f ( ’Wrong� s e l e c t i o n , � s e l e c t � 1 ,2 � or � 3 \ n ’ ) ;

end

%T1_va lue s = [ 1 0 , 1 0 0 , 2 0 0 , 5 0 0 , 1 0 0 0 ] ;

T1_values =700; % T a y l o r number

for T1=T1_values

Q1=[200 300 400 500 600 7 0 0 ] ;

Q=Q1* pi ^2; T=T1 * pi ^4; a = 0 . 1 : 0 . 0 1 : 2 0 ;

format long

D=ChebD(N) ; D2=D*D; D3=D2*D; D4=D2*D2 ; % f o r m u l a t i o n o f D, D2 , D4

I=eye (N+1 ) ; O=zeros (N+1 ) ;

for kk=1: length ( T )

f p r i n t f ( ’ f o r �T=%d� \ n ’ , T1 ( kk ) ) ;

for j j =1: length (Q)

for i i =1: length ( a )

A= [ ( 4 *D2−a ( i i )^2* I )^2−4*Q( j j ) * D2 − I −4* sqr t ( T ( kk ) ) *D ; . . .

O ( 4 * D2−a ( i i )^2* I ) O ; . . .

4* sqr t ( T ( kk ) ) * D3−sqr t ( T ( kk ) ) * a ( i i )^2*D

O ( 4 * D2−a ( i i )^2* I )^2−4*Q( j j ) * D2 ] ;

A(N+1 ,1 :N+1)=BC4 ; A(N, 1 :N+1)=BC3 ;

A(N−1 ,1 :N+1)=BC2 ; A(N−2 ,1 :N+1)=BC1 ;

A( 2 *N+1 ,N+2 :2*N+2)=BC5 ; A( 2 *N+2 ,N+2 :2*N+2)=BC6 ;

A( 3 *N+2 ,2*N+3 :3*N+3)=BC7 ; A( 3 *N+3 ,2*N+3 :3*N+3)=BC8 ;

B=[O O O;−a ( i i )^2* I O O;O O O] ;

lambdas=eig (A, B ) ; R( i i )=min ( lambdas ) ;

end

% f i n d e i g e n v a l u e lambda

[ Rc a c l o c ]=min (R ) ; ac=a ( a c l o c ) ;

f p r i n t f ( ’Q1=%d� \ t \ t \ t � ac=%2.2 f � \ t \ t \ t �Rc=%5.2 f \ n ’ ,Q1( j j ) , ac , Rc ) ;

hold on

myPlot=plot ( a , R ) ;%p l o t ( ac , Rc , ’ b . ’ , ’ MarkerSize ’ , 7 ) ;

end

end

t i t l e ( ’ Free−Free , �T1=700 ’ ) ; xlabel ( ’wave�number�a ’ ) ;

ylabel ( ’ Rayliegh �number�R ’ ) ;
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xlim ( [ 0 2 0 ] ) ; ylim ( [ 0 2 0 0 0 0 0 ] ) ;

hold o f f

end

lgd=legend ( ’Q1=200 ’ , ’Q1=300 ’ , ’Q1=400 ’ , ’Q1=500 ’ , ’Q1=600 ’ , ’Q1=700 ’ ,

’ Locat ion ’ , ’ north ’ ) ;

lgd . FontSize = 8 ;

7. Numerical Results

The following table and graphs show the critical Rayleigh number Rc and the critical wave

number ac for free-free boundaries for various values of Q1 = Q
π2 and T1 = T

π4 .

Free-Free Boundaries

Q1

T1 = 10 T1 = 100 T1 = 200 T1 = 500 T1 = 1000

ac Rc ac Rc ac Rc ac Rc ac Rc

200 6.43 27409 6.41 27657 6.38 27931 6.29 28749 6.15 30090

300 6.93 39289 6.91 39474 6.89 39679 6.82 40291 6.72 41298

400 7.29 50924 7.28 51075 7.26 51241 7.22 51740 7.14 52562

500 7.59 62396 7.58 62524 7.57 62667 7.53 63092 7.46 63795

600 7.84 73748 7.83 73861 7.82 73986 7.79 74360 7.74 74979

700 8.06 85007 8.05 85108 8.04 85220 8.01 85556 7.97 86111

Table 2. Critical Rayleigh number Rc and critical wave number ac for various

values of T1 = 10, 100, 200, 500, 1000 and Q1 = 200, 300, 400, 500, 600, 700 when

both boundaries are free.
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T1 = 10 T1 = 100 T1 = 200

T1 = 500 T1 = 1000

Figure 1. The variation of Rayleigh number R with wave number a for different

values T1 = 10, 100, 200, 500, 1000 and Q1 = 200, 300, 400, 500, 600, 700 when both

boundaries are free
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The following table and graphs show the critical Rayleigh number Rc and the critical wave

number ac for rigid-rigid boundaries for various values of Q1 = Q
π2 and T1 = T

π4 .

Rigid-Rigid Boundaries

Q1

T1 = 10 T1 = 100 T1 = 200 T1 = 500 T1 = 1000

ac Rc ac Rc ac Rc ac Rc ac Rc

200 6.54 29838 6.56 30251 6.58 30749 6.69 32593 7.09 37994

300 7.02 42114 7.02 42353 7.03 42626 7.05 43496 7.10 45155

400 7.38 54087 7.38 54217 7.38 54362 7.38 54804 7.39 55562

500 7.67 65859 7.66 65845 7.66 65828 7.65 65769 7.64 65650

600 7.91 77491 7.90 77226 7.89 76933 7.86 76070 7.82 74688

700 8.11 89033 8.09 88343 8.07 87595 8.02 85476 7.94 82367

Table 3. Critical Rayleigh number Rc and critical wave number ac for various

values of T1 = 10, 100, 200, 500, 1000 and Q1 = 200, 300, 400, 500, 600, 700 when

both boundaries are rigid.
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T1 = 10 T1 = 100 T1 = 200

T1 = 500 T1 = 1000

Figure 2. The variation of Rayleigh number R with wave number a for different

values T1 = 10, 100, 200, 500, 1000 and Q1 = 200, 300, 400, 500, 600, 700 when both

boundaries are rigid
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The following table and graphs show the critical Rayleigh number Rc and the critical wave

number ac for rigid-free boundaries for various values of Q1 = Q
π2 and T1 = T

π4 .

Rigid-Free Boundaries

Q1

T1 = 10 T1 = 100 T1 = 200 T1 = 500 T1 = 1000

ac Rc ac Rc ac Rc ac Rc ac Rc

200 6.49 28600 6.49 29043 6.49 29592 6.59 31762 7.50 39117

300 6.97 40679 6.97 40995 6.96 41360 6.96 42546 7.00 44929

400 7.34 52484 7.33 52757 7.33 53068 7.32 54034 7.31 55783

500 7.63 64105 7.63 64398 7.62 64727 7.61 65742 7.60 67527

600 7.88 75588 7.88 75971 7.87 76402 7.86 77729 7.85 80066

700 8.10 86953 8.10 87514 8.10 88149 8.09 90122 8.08 93668

Table 4. Critical Rayleigh number Rc and critical wave number ac for various values

of T1 = 10, 100, 200, 500, 1000 and Q1 = 200, 300, 400, 500, 600, 700 when the lower

boundary is rigid and the upper is free.
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T1 = 10 T1 = 100 T1 = 200

T1 = 500 T1 = 1000

Figure 3. The variation of Rayleigh number R with wave number a for different

values T1 = 10, 100, 200, 500, 1000 and Q1 = 200, 300, 400, 500, 600, 700 when the

lower boundary is rigid and the upper is free
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8. Conclusion

The numerical results for the three cases of the boundary conditions are in full agreement with

the results obtained by Chandrasekhar [2], we can conclude the following

• As the temperature gradient increases, the Rayleigh number R also increases. The con-

vection motion begins at the critical Rayleigh number Rc, which represents the minimum

value of R. For R < Rc, the flow is stable, while it becomes unstable for R > Rc.

• From the tables 2, 3 and 4, it is observed that for the three cases of the boundaries (free-free,

rigid-rigid and rigid-free), an increase in the Taylor number T is associated with an increase

in the critical Rayleigh number Rc. Additionally, an increase in the magnetic parameter

Q is also linked to an increase in the critical Rayleigh number Rc. This implies that both

rotation and the presence of a magnetic field tend to suppress convective motion due to

the Coriolis force resulting from rotation and the Lorentz force resulting from the magnetic

field. These forces act to reduce the vertical motion of the fluid.

• From the tables 2, 3, and 4, it can be observed that the critical Rayleigh number varies

depending on the type of boundary conditions. For example, if we consider the values

(T = 10, Q = 200), we find Rc = 27409 for the free-free boundary case, Rc = 28600 for the

rigid-free boundary case, and Rc = 29838 for the rigid-rigid boundary case. This difference

in critical Rayleigh numbers can be attributed to the constraints imposed by the boundary

conditions. In the case of free boundaries, there are no constraints on vertical motion,

allowing for faster convection compared to the cases with rigid boundaries. On the other

hand, the presence of constraints in the rigid boundary cases limits the convective motion,

resulting in a higher critical Rayleigh number.
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