Global Stability of a Delayed Model for the Interaction of SARS-CoV-2/ACE2 and Adaptive Immunity

Main Article Content

A. M. Elaiw, A. S. Alsulami, A. D. Hobiny

Abstract

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the culprit behind the coronavirus disease 2019 (COVID-19), which has killed millions of people. SARS-CoV-2 binds its spike (S) protein to the angiotensin-converting enzyme 2 (ACE2) receptor to inter the epithelial cells in the respiratory tracts. ACE2 is a crucial mediator in the SARS-CoV-2 infection pathway. In this paper, we construct a mathematical model to describe the SARS-CoV-2/ACE2 interaction and the adaptive immunological response. The model predicts the effects of latently infected cells as well as immunological responses from cytotoxic T lymphocytes (CTLs) and antibodies. The model is incorporated with three distributed time delays: (i) delay in the formation of latently infected epithelial cells, (ii) delay in the activation of latently infected epithelial cells, (iii) delay in the maturation of new released SARS-CoV-2 virions. We show that the model is well-posed and it admits five equilibria. The stability and existence of the equilibria are precisely controlled by four threshold parameters Ri, i=0,1,2,3. By formulating suitable Lyapunov functions and applying LaSalle's invariance principle, we show the global asymptotic stability for all equilibria. To demonstrate the theoretical results, we conduct numerical simulations. We do sensitivity analysis and identify the most sensitive parameters. We look at how the latent phase, ACE2 receptors, antibody and CTL responses, time delays affect the dynamical behavior of SARS-CoV-2. Although the basic reproduction number R0 is unaffected by the parameters of antibody and CTL responses, it is shown that viral replication can be hampered by immunological activation of antibody and CTL responses. Further, our findings indicate that R0 is affected by the rates at which the ACE2 receptor grows and degrades. This could provide valuable guidance for the development of receptor-targeted vaccines and medications. Furthermore, it is shown that, increasing time delays can effectively decrease R0 and then inhibit the SARS-CoV-2 replication. Finally, we show that, excluding the latently infected cells in the model would result in an overestimation of R0.

Article Details

References

  1. C. Huang, Y. Wang, X. Li, et al. Clinical Features of Patients Infected With 2019 Novel Coronavirus in Wuhan, China, The Lancet. 395 (2020), 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5.
  2. M.Z. Tay, C.M. Poh, L. Renia, P.A. MacAry, L.F.P. Ng, The Trinity of COVID-19: Immunity, Inflammation and Intervention, Nat. Rev. Immunol. 20 (2020), 363–374. https://doi.org/10.1038/s41577-020-0311-8.
  3. P. Zhou, X.L. Yang, X.G. Wang, et al. A Pneumonia Outbreak Associated With a New Coronavirus of Probable Bat Origin, Nature. 579 (2020), 270–273. https://doi.org/10.1038/s41586-020-2012-7.
  4. Z. Varga, A.J. Flammer, P. Steiger, et al. Endothelial Cell Infection and Endotheliitis in COVID-19, The Lancet. 395 (2020), 1417–1418. https://doi.org/10.1016/s0140-6736(20)30937-5.
  5. S.Q. Du, W. Yuan, Mathematical Modeling of Interaction Between Innate and Adaptive Immune Responses in COVID-19 and Implications for Viral Pathogenesis, J. Med. Virol. 92 (2020), 1615–1628. https://doi.org/10.1002/jmv.25866.
  6. A.S. Perelson, R. Ke, Mechanistic Modeling of SARS-CoV-2 and Other Infectious Diseases and the Effects of Therapeutics, Clin. Pharma. Therapeutics. 109 (2021), 829–840. https://doi.org/10.1002/cpt.2160.
  7. F. Fatehi, R.J. Bingham, E.C. Dykeman, P.G. Stockley, R. Twarock, Comparing Antiviral Strategies Against COVID19 via Multiscale Within-Host Modelling, R. Soc. Open Sci. 8 (2021), 210082. https://doi.org/10.1098/rsos.210082.
  8. E.A. Hernandez-Vargas, J.X. Velasco-Hernandez, In-host Mathematical Modelling of COVID-19 in Humans, Ann. Rev. Control. 50 (2020), 448–456. https://doi.org/10.1016/j.arcontrol.2020.09.006.
  9. S. Wang, Y. Pan, Q. Wang, H. Miao, A.N. Brown, L. Rong, Modeling the Viral Dynamics of SARS-CoV-2 Infection, Math. Biosci. 328 (2020), 108438. https://doi.org/10.1016/j.mbs.2020.108438.
  10. R. Ke, C. Zitzmann, D.D. Ho, R.M. Ribeiro, A.S. Perelson, In Vivo Kinetics of SARS-CoV-2 Infection and Its Relationship With a Person’s Infectiousness, Proc. Natl. Acad. Sci. U.S.A. 118 (2021), e2111477118. https://doi.org/10.1073/pnas.2111477118.
  11. I. Al-Darabsah, K.L. Liao, S. Portet, A Simple In-Host Model for COVID-19 With Treatments: Model Prediction and Calibration, J. Math. Biol. 86 (2023), 20. https://doi.org/10.1007/s00285-022-01849-6.
  12. M. Sadria, A.T. Layton, Modeling Within-Host SARS-CoV-2 Infection Dynamics and Potential Treatments, Viruses. 13 (2021), 1141. https://doi.org/10.3390/v13061141.
  13. L. Pinky, H.M. Dobrovolny, SARS-CoV-2 Coinfections: Could Influenza and the Common Cold Be Beneficial?, J. Med. Virol. 92 (2020), 2623–2630. https://doi.org/10.1002/jmv.26098.
  14. N. Neant, G. Lingas, Q. Le Hingrat, et al. Modeling SARS-CoV-2 Viral Kinetics and Association With Mortality in Hospitalized Patients From the French COVID Cohort, Proc. Natl. Acad. Sci. U.S.A. 118 (2021), e2017962118. https://doi.org/10.1073/pnas.2017962118.
  15. A. Goncalves, J. Bertrand, R. Ke, et al. Timing of Antiviral Treatment Initiation is Critical to Reduce SARS-CoV-2 Viral Load, CPT Pharmacom. Syst. Pharma. 9 (2020), 509–514. https://doi.org/10.1002/psp4.12543.
  16. C. Li, J. Xu, J. Liu, Y. Zhou, The within-host viral kinetics of SARS-CoV-2, Math. Biosci. Eng. 17 (2020), 2853–2861. https://doi.org/10.3934/mbe.2020159.
  17. I. Ghosh, Within Host Dynamics of SARS-CoV-2 in Humans: Modeling Immune Responses and Antiviral Treatments, SN Comput. Sci. 2 (2021), 482. https://doi.org/10.1007/s42979-021-00919-8.
  18. J. Mondal, P. Samui, A.N. Chatterjee, Dynamical Demeanour of SARS-CoV-2 Virus Undergoing Immune Response Mechanism in COVID-19 Pandemic, Eur. Phys. J. Spec. Top. 231 (2022), 3357–3370. https://doi.org/10.1140/epjs/s11734-022-00437-5.
  19. K. Hattaf, N. Yousfi, Dynamics of SARS-CoV-2 Infection Model With Two Modes of Transmission and Immune Response, Math. Biosci. Eng. 17 (2020), 5326–5340. https://doi.org/10.3934/mbe.2020288.
  20. A.M. Elaiw, A.D. Al Agha, S.A. Azoz, E. Ramadan, Global Analysis of Within-Host SARS-CoV-2/HIV Coinfection Model With Latency, Eur. Phys. J. Plus. 137 (2022), 174. https://doi.org/10.1140/epjp/s13360-022-02387-2.
  21. A.E.S. Almocera, G. Quiroz, E.A. Hernandez-Vargas, Stability Analysis in COVID-19 Within-Host Model With Immune Response, Commun. Nonlinear Sci. Numer. Simul. 95 (2021), 105584. https://doi.org/10.1016/j.cnsns.2020.105584.
  22. A.M. Elaiw, A.J. Alsaedi, A.D. Hobiny, S. Aly, Stability of a Delayed SARS-CoV-2 Reactivation Model With Logistic Growth and Adaptive Immune Response, Physica A: Stat. Mech. Appl. 616 (2023), 128604. https://doi.org/10.1016/j.physa.2023.128604.
  23. C. Leon, A. Tokarev, A. Bouchnita, V. Volpert, Modelling of the Innate and Adaptive Immune Response to SARS Viral Infection, Cytokine Storm and Vaccination, Vaccines. 11 (2023), 127. https://doi.org/10.3390/vaccines11010127.
  24. H.M. Dobrovolny, Quantifying the Effect of Remdesivir in Rhesus Macaques Infected With SARS-CoV-2, Virology. 550 (2020), 61–69. https://doi.org/10.1016/j.virol.2020.07.015.
  25. P. Abuin, A. Anderson, A. Ferramosca, E.A. Hernandez-Vargas, A.H. Gonzalez, Characterization of SARS-CoV-2 Dynamics in the Host, Ann. Rev. Control. 50 (2020), 457–468. https://doi.org/10.1016/j.arcontrol.2020.09.008.
  26. B. Chhetri, V.M. Bhagat, D.K.K. Vamsi, et al. Within-Host Mathematical Modeling on Crucial Inflammatory Mediators and Drug Interventions in COVID-19 Identifies Combination Therapy to Be Most Effective and Optimal, Alexandria Eng. J. 60 (2021), 2491–2512. https://doi.org/10.1016/j.aej.2020.12.011.
  27. T. Song, Y. Wang, X. Gu, S. Qiao, Modeling the Within-Host Dynamics of SARS-CoV-2 Infection Based on Antiviral Treatment, Mathematics. 11 (2023), 3485. https://doi.org/10.3390/math11163485.
  28. A.L. Jenner, R.A. Aogo, S. Alfonso, et al. COVID-19 Virtual Patient Cohort Suggests Immune Mechanisms Driving Disease Outcomes, PLoS Pathog. 17 (2021), e1009753. https://doi.org/10.1371/journal.ppat.1009753.
  29. S. Tang, W. Ma, P. Bai, A Novel Dynamic Model Describing the Spread of the MERS-CoV and the Expression of Dipeptidyl Peptidase 4, Comput. Math. Methods Med. 2017 (2017), 5285810. https://doi.org/10.1155/2017/5285810.
  30. T. Keyoumu, W. Ma, K. Guo, Existence of Positive Periodic Solutions for a Class of In-Host MERS-CoV Infection Model With Periodic Coefficients, AIMS Math. 7 (2022), 3083–3096. https://doi.org/10.3934/math.2022171.
  31. T. Keyoumu, K. Guo, W. Ma, Periodic Oscillation for a Class of In-Host MERS-CoV Infection Model With CTL Immune Response, Math. Biosci. Eng. 19 (2022), 12247–12259. https://doi.org/10.3934/mbe.2022570.
  32. T. Keyoumu, W. Ma, K. Guo, Global Stability of a MERS-CoV Infection Model with CTL Immune Response and Intracellular Delay, Mathematics. 11 (2023), 1066. https://doi.org/10.3390/math11041066.
  33. A.N. Chatterjee, F. Al Basir, A Model for SARS-CoV-2 Infection with Treatment, Comput. Math. Methods Med. 2020 (2020), 1352982. https://doi.org/10.1155/2020/1352982.
  34. J. Lv, W. Ma, Global Asymptotic Stability of a Delay Differential Equation Model for SARS-CoV-2 Virus Infection Mediated by ACE2 Receptor Protein, Appl. Math. Lett. 142 (2023), 108631. https://doi.org/10.1016/j.aml.2023.108631.
  35. B.J. Nath, K. Dehingia, V.N. Mishra, Y.M. Chu, H.K. Sarmah, Mathematical Analysis of a Within-Host Model of SARS-CoV-2, Adv. Differ. Equ. 2021 (2021), 113. https://doi.org/10.1186/s13662-021-03276-1.
  36. A. Danchin, O. Pagani-Azizi, G. Turinici, G. Yahiaoui, COVID-19 Adaptive Humoral Immunity Models: Weakly Neutralizing Versus Antibody-Disease Enhancement Scenarios, Acta Biotheor. 70 (2022), 23. https://doi.org/10.1007/s10441-022-09447-1.
  37. N. Bairagi, D. Adak, Global Analysis of HIV-1 Dynamics With Hill Type Infection Rate and Intracellular Delay, Appl. Math. Model. 38 (2014), 5047–5066. https://doi.org/10.1016/j.apm.2014.03.010.
  38. Y. Kuang, Delay Differential Equations With Applications in Population Dynamics, Academic Press, Boston, 1993.
  39. P. van den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission, Math. Biosci. 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6.
  40. A. Korobeinikov, Global Properties of Basic Virus Dynamics Models, Bull. Math. Biol. 66 (2004), 879–883. https://doi.org/10.1016/j.bulm.2004.02.001.
  41. G. Huang, Y. Takeuchi, W. Ma, Lyapunov Functionals for Delay Differential Equations Model of Viral Infections, SIAM J. Appl. Math. 70 (2010), 2693–2708. https://doi.org/10.1137/090780821.
  42. J.K. Hale, S.M.V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
  43. H.K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River, 2002.
  44. S. Marino, I.B. Hogue, C.J. Ray, D.E. Kirschner, A Methodology for Performing Global Uncertainty and Sensitivity Analysis in Systems Biology, J. Theor. Biol. 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011.
  45. A. Khan, R. Zarin, G. Hussain, N.A. Ahmad, M.H. Mohd, A. Yusuf, Stability Analysis and Optimal Control of COVID-19 With Convex Incidence Rate in Khyber Pakhtunkhawa (Pakistan), Results Phys. 20 (2021), 103703. https://doi.org/10.1016/j.rinp.2020.103703.