International Journal of Analysis and Applications

On Interior Bases of Ordered Semigroups

Wichayaporn Jantanan¹, Natee Raikham¹, Ronnason Chinram², Aiyared Iampan^{3,*}

¹Department of Mathematics, Faculty of Science, Buriram Rajabhat University, 31000, Buriram, Thailand

²Division of Computational Science, Faculty of Science, Prince of Songkla University, 90110, Songkhla, Thailand

³Department of Mathematics, School of Science, University of Phayao, 56000, Phayao, Thailand *Corresponding author: aiyared.ia@up.ac.th

ABSTRACT. In this paper, the notions of interior bases of ordered semigroups are introduced, and some examples are also presented. We describe a characterization when a non-empty subset of an ordered semigroup is an interior base of an ordered semigroup. Finally, a characterization when an interior base of an ordered semigroup is a subsemigroup of an ordered semigroup will be given.

1. Introduction

A semigroup is one of algebraic structures which was widely studied. There are many generalizations, for example, LA-semigroup, Γ -semigroup, ordered semigroups, etc. The study of ordered semigroups began about 1950 by several authors, for example, Alimov [1], and Chehata [2]. The notion of one-sided bases of a semigroup was introduced by Tamura [3]. In 1972, Fabrici studied the structure of semigroups containing one-sided bases and he introduced the concept of two-sided bases of semigroups in 1975 [4,5]. Later, Changphas and Summaprab introduced the concept of two-sided bases of an ordered semigroup [6]. In 2017, Kummoon and Changphas introduced the concept of bi-bases of a semigroup and bi-bases of Γ -semigroups [7,8].

In this paper, the concepts of interior bases of ordered semigroups will be introduced. Moreover, we describe a characterization when a non-empty subset of an ordered semigroup is

Received Oct. 20, 2023

²⁰²⁰ Mathematics Subject Classification. 20M10, 06F05.

Key words and phrases. ordered semigroup; subsemigroup; interior ideal; interior base; quasi order.

an interior base of an ordered semigroup and a characterization when an interior base of an ordered semigroup is a subsemigroup of an ordered semigroup.

An ordered semigroup (some authors called po-semigroup) (S, \cdot, \leq) is a poset (S, \leq) at the same time a semigroup (S, \cdot) such that, for any $x, y, z \in S$,

$$x \le y$$
 implies $xz \le yz$ and $zx \le zy$.

Throughout this paper, unless stated otherwise, we write *S* instead of (S, \cdot, \leq) and *S* stands for an ordered semigroup.

A non-empty subset *A* of an ordered semigroup *S* is called a subsemigroup of *S* if $AA \subseteq A$.

Let *S* be an ordered semigroup. For *A* and *B* are non-empty subsets of *S*, we denote

 $AB = \{ab \mid a \in A, b \in B\}$ and $(A] = \{b \in S \mid b \le a \text{ for some } a \in A\}.$

For $a \in S$, we write Ba for $B\{a\}$, similarly aB for $\{a\}B$, and (a] for $(\{a\}]$.

Definition 1.1. [9] A subsemigroup *A* of an ordered semigroup *S* is called an interior ideal of *S* if it satisfies the following condition:

(1) $SAS \subseteq A$;

(2) if $a \in A$ and $b \in S$ such that $b \leq a$, then $b \in A$.

Lemma 1.2. [10,11] Let *S* be an ordered semigroup. Then the following statements hold.

(1) $A \subseteq (A]$, (S = (S]) for any $A \subseteq S$.

(2) ((A]] = (A] for any $A \subseteq S$.

(3) If $A \subseteq B \subseteq S$, then $(A] \subseteq (B]$.

(4) $(A](B] \subseteq (AB]$ for any $A, B \subseteq S$.

(5) ((A](B]] = (AB] for any $A, B \subseteq S$.

(6) If *A* is an interior ideal of *S*, then A = (A].

(7) $(A \cup B] = (A] \cup (B]$ for any $A, B \subseteq S$.

(8) $A(B \cup C) = AB \cup AC$ and $(B \cup C)A = BA \cup CA$ for any $A, B, C \subseteq S$.

Lemma 1.3. [11] Let *S* be an ordered semigroup and A_i be a subsemigroup of *S* for all $i \in I$. If $\bigcap_{i \in I} A_i \neq \emptyset$, then $\bigcap_{i \in I} A_i$ is a subsemigroup of *S*.

Lemma 1.4. Let *S* be an ordered semigroup and A_i be an interior ideal of *S* for all $i \in I$. If $\bigcap_{i \in I} A_i \neq \emptyset$, then $\bigcap_{i \in I} A_i$ is an interior ideal of *S*.

Proof. Assume that $\bigcap_{i \in I} A_i \neq \emptyset$. By Lemma 1.3, $\bigcap_{i \in I} A_i$ is a subsemigroup of *S*. Let $x \in S(\bigcap_{i \in I} A_i)S$. Then $x = s_1 a s_2$ for some $s_1, s_2 \in S$ and $a \in \bigcap_{i \in I} A_i$. Since $a \in \bigcap_{i \in I} A_i$, we have $a \in A_i$ for all $i \in I$, where A_i is an

interior ideal of *S* for all $i \in I$. So we have $x = s_1 a s_2 \in S(A_i) S \subseteq A_i$ for all $i \in I$. Thus $x \in \bigcap_{i \in I} A_i$. Next, let $y \in \bigcap_{i \in I} A_i$ and $z \in S$ be such that $z \leq y$. Since $y \in \bigcap_{i \in I} A_i$, then $y \in A_i$ for all $i \in I$, where A_i is an interior ideal of *S* for all $i \in I$. Since $z \leq y$ and $y \in A_i$ for all $i \in I$, we have $z \in A_i$ for all $i \in I$. So $z \in \bigcap_{i \in I} A_i$. Therefore, $\bigcap_{i \in I} A_i$ is an interior ideal of *S*.

Definition 1.5. Let *S* be an ordered semigroup and let *A* be a non-empty subset of *S*. Then the intersection of all interior ideals of *S* containing *A* is the smallest interior ideal of *S* generated by *A*, denoted by $(A)_{I}$.

Lemma 1.6. Let *S* be an ordered semigroup and let *A* be a non-empty subset of *S*. Then $(A)_I = (A \cup AA \cup SAS].$

Proof. Let $B = (A \cup AA \cup SAS]$. Consider,

$$BB = (A \cup AA \cup SAS](A \cup AA \cup SAS]$$

$$\subseteq ((A \cup AA \cup SAS)(A \cup AA \cup SAS)]$$

$$= (AA \cup AAA \cup ASAS \cup AAA \cup AAAA \cup AASAS \cup SASA \cup SASAA \cup SASSAS]$$

$$\subseteq (AA \cup SAS] \subseteq B.$$

Thus *B* is a subsemigroup of *S*. Next, consider

$$SBS = S(A \cup AA \cup SAS]S$$

= $(S](A \cup AA \cup SAS)(S]$
 $\subseteq ((S)(A \cup AA \cup SAS)(S]$
= $(SA \cup SAA \cup SSAS](S]$
 $\subseteq ((SA \cup SAA \cup SSAS)(S)]$
= $(SAS \cup SAAS \cup SSASS]$
 $\subseteq (SAS]$
 $\subseteq B.$

Thus $SBS \subseteq B$. Clearly, if $x \in B = (A \cup AA \cup SAS]$ and $y \in S$ such that $y \leq x$, then $y \in ((A \cup AA \cup SAS]]$ = $(A \cup AA \cup SAS] = B$. Hence, *B* is an interior ideal of *S* containing *A*. Finally, let *C* be an interior ideal of *S* containing *A*. Clearly, $A \subseteq C$. Since *C* is a subsemigroup of *S*, we have $AA \subseteq CC \subseteq C$. Since *C* is an interior ideal of *S*, we have $SAS \subseteq SCS \subseteq C$. Thus $A \cup AA \cup SAS \subseteq C$, and so $B = (A \cup AA \cup SAS] \subseteq (C] = C$. Hence, *B* is the smallest interior ideal of *S* containing *A*. Therefore, $B = (A \cup AA \cup SAS]$.

2. Main Results

We begin this section with the following definition of interior bases of an ordered semigroup.

Definition 2.1. Let *S* be an ordered semigroup. A non-empty subset *A* of *S* is called an interior base of *S* if it satisfies the following two conditions:

(1) $S = (A \cup AA \cup SAS]$, i.e., $S = (A)_I$;

(2) if *B* is a subset of *A* such that $S = (B)_I$, then B = A.

Example 2.2. [12] Let $S = \{a, b, c, d, e\}$ be an ordered semigroup such that the multiplication and the order relation are defined by:

•	а	b	С	d	е
а	а	а	С	а	С
b	а	а	С	а	С
С	а	а	С	а	С
d	d	d	е	d	е
е	d	d	е	d	е

 $\leq = \{(a,a), (a,b), (a,c), (a,d), (a,e), (b,b), (b,c), (b,d), (b,e), (c,c), (c,e), (d,d), (d,e), (e,e)\}.$

The interior bases of S are $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, and $\{e\}$.

Example 2.3. [13] Let $S = \{a, b, c, d, f\}$ be an ordered semigroup such that the multiplication and the order relation are defined by:

•	а	b	С	d	f
а	b	b	d	d	d
b	b	b	d	d	d
С	d	d	С	d	С
d	d	d	d	d	d
f	d	d	с	d	С

 $\leq = \{(a,a), (a,b), (b,b), (c,c), (d,b), (d,c), (d,d), (f,c), (f,f)\}.$

The interior bases of *S* are $\{a,c\}$, $\{a,f\}$, $\{b,c\}$, and $\{b,f\}$.

Lemma 2.4. Let *A* be an interior base of an ordered semigroup *S*, and let $a, b \in A$. If $a \in (bb \cup SbS]$, then a = b.

Proof. Assume that $a \in (bb \cup SbS]$, and suppose that $a \neq b$. Setting $B = A \setminus \{a\}$. Then $B \subset A$. Since $a \neq b$, we have $b \in B$. We will show that $(A)_I \subseteq (B)_I$. Let $x \in (A)_I$. Since $x \in (A)_I = (A \cup AA \cup SAS]$, we have $x \leq y$ for some $y \in A \cup AA \cup SAS$. We can consider the three following cases.

Case 1: $y \in A$. There are two subcases to consider.

Subcase 1.1: $y \neq a$.

So $y \in B \subseteq (B \cup BB \cup SBS]$. Since $x \leq y$ and $y \in (B \cup BB \cup SBS]$, we obtain

$$x \in ((B \cup BB \cup SBS]] = (B \cup BB \cup SBS] = (B)_I.$$

Subcase 1.2: y = a.

By assumption, we have

 $y = a \in (bb \cup SbS] \subseteq (BB \cup SBS] \subseteq (B)_I$.

Since $x \le y$ and $y \in (B)_{I}$, so we obtain $x \in ((B)_{I}] = (B)_{I}$.

Case 2: $y \in AA$. Then $y = a_1a_2$ for some $a_1, a_2 \in A$. There are four subcases to consider.

Subcase 2.1: $a_1 \neq a$ and $a_2 \neq a$.

We have $a_1, a_2 \in B$. So $y = a_1a_2 \in BB \subseteq (B)_I$. Since $x \leq y$ and $y \in (B)_I$, we obtain $x \in ((B)_I] = (B)_I$.

Subcase 2.2: $a_1 = a$ and $a_2 \neq a$.

Then by assumption and $a_2 \in B$, we have

$$y = a_1 a_2 \in (bb \cup SbS]B \subseteq (BB \cup SBS](B]$$
$$\subseteq ((BB \cup SBS)(B)]$$
$$= (BBB \cup SBSB]$$
$$\subseteq (SBS]$$
$$\subseteq (B)_1.$$

Since $x \le y$ and $y \in (B)_I$, so $x \in ((B)_I] = (B)_I$.

Subcase 2.3: $a_1 \neq a$ and $a_2 = a$.

Then by assumption and $a_1 \in B$, we have

$$y = a_1 a_2 \in B(bb \cup SbS] \subseteq (B](BB \cup SBS]$$
$$\subseteq ((B)(BB \cup SBS)]$$
$$= (BBB \cup BSBS]$$
$$\subseteq (SBS]$$
$$\subseteq (B)_l.$$

Since $x \le y$ and $y \in (B)_I$, so $x \in ((B)_I] = (B)_I$.

Subcase 2.4: $a_1 = a$ and $a_2 = a$.

By assumption, we have

$$y = a_1 a_2 \in (bb \cup SbS](bb \cup SbS] \subseteq ((bb \cup SbS)(bb \cup SbS)]$$

$$= (bbbb \cup bbSbS \cup SbSbb \cup SbSSbS]$$

$$\subseteq (BBBB \cup BBSBS \cup SBSBB \cup SBSSBS]$$

$$\subseteq (SBS]$$

$$\subseteq (B)_I.$$

Since $x \le y$ and $y \in (B)_I$, so $x \in ((B)_I] = (B)_I$.

Case 3: $y \in SAS$. Then $y = s_1a_3s_2$ for some $s_1, s_2 \in S$ and $a_3 \in A$. There are two subcases to consider. **Subcase 3.1:** $a_3 \neq a$.

We have $a_3 \in B$. So $y = s_1 a_3 s_2 \in SBS \subseteq (B)_I$. Since $x \le y$ and $y \in (B)_I$, we have $x \in ((B)_I] = (B)_I$. Subcase 3.2: $a_3 = a$.

By assumption, we have

$$y = s_1 a_3 s_2 \in S(bb \cup SbS]S \subseteq (S](BB \cup SBS](S]$$

$$\subseteq ((S)(BB \cup SBS)](S]$$

$$= (SBB \cup SSBS](S]$$

$$\subseteq ((SBB \cup SSBS)(S)]$$

$$= (SBBS \cup SSBSS]$$

$$\subseteq (SBS]$$

$$\subseteq (B)_I.$$

Since $x \le y$ and $y \in (B)_I$, we have $x \in ((B)_I] = (B)_I$.

From both cases, we obtain $(A)_{I} \subseteq (B)_{I}$. Since A is an interior base of S, we have

$$S = (A)_I \subseteq (B)_I \subseteq S.$$

Thus $S = (B)_I$. This is a contradiction. Therefore, a = b.

Lemma 2.5. Let *A* be an interior base of an ordered semigroup *S*, and let $a,b,c \in A$. If $a \in (cb \cup ScbS]$, then a = b or a = c.

Proof. Assume that $a \in (cb \cup ScbS]$. Suppose that $a \neq b$ and $a \neq c$. We set $B = A \setminus \{a\}$. Clearly, $B \subset A$. Since $a \neq b$ and $a \neq c$, so we have $b, c \in B$. We will show that $(B)_I = S$. Obviously, $(B)_I \subseteq S$. Next, to show that $S \subseteq (B)_I$. Let $x \in S$. Since A is an interior base of S, we have $S = (A)_I$. So $x \in (A)_I = (A \cup AA \cup SAS]$. Since $x \in (A \cup AA \cup SAS]$, we have $x \leq y$ for some $y \in A \cup AA \cup SAS$. We can consider the three following cases.

Case 1: $y \in A$. There are two subcases to consider.

Subcase 1.1: $y \neq a$. So $y \in B \subseteq (B)_{I}$.

Subcase 1.2: y = a. By assumption, we have

 $y = a \in (cb \cup ScbS] \subseteq (BB \cup SBBS] \subseteq (BB \cup SBS] \subseteq (B)_{I}.$

Case 2: $y \in AA$. Then $y = a_1a_2$ for some $a_1, a_2 \in A$. There are four subcases to consider.

Subcase 2.1: $a_1 \neq a$ and $a_2 \neq a$. We have $a_1, a_2 \in B$. So $y = a_1 a_2 \in BB \subseteq (B)_1$.

Subcase 2.2: $a_1 = a$ and $a_2 \neq a$. By assumption and $a_2 \in B$, we have

$$y = a_1 a_2 \in (cb \cup ScbS]B \subseteq (BB \cup SBBS)(B]$$
$$\subseteq ((BB \cup SBBS)(B)]$$
$$= (BBB \cup SBBSB]$$
$$\subseteq (SBS]$$
$$\subseteq (B)_1.$$

Subcase 2.3: $a_1 \neq a$ and $a_2 = a$. By assumption and $a_1 \in B$, we have

 $y = a_1 a_2 \in B(cb \cup ScbS] \subseteq (B](BB \cup SBBS] \subseteq ((B)(BB \cup SBBS)] = (BBB \cup BSBBS] \subseteq (SBS] \subseteq (B)_1.$

Subcase 2.4: $a_1 = a$ and $a_2 = a$. By assumption, we have

$$y = a_1 a_2 \in (cb \cup ScbS](cb \cup ScbS] \subseteq ((cb \cup ScbS)(cb \cup ScbS)]$$

= $(cbcb \cup cbScbS \cup ScbScb \cup ScbSScbS]$
 $\subseteq (BBBB \cup BBSBBS \cup SBBSBB \cup SBBSSBBS]$
 $\subseteq (SBS]$
 $\subseteq (B)_I.$

Case 3: $y \in SAS$. Then $y = s_1a_3s_2$ for some $s_1, s_2 \in S$ and $a_3 \in A$. There are two subcases to consider. **Subcase 3.1:** $a_3 \neq a$. We have $a_3 \in B$. So $y = s_1a_3s_2 \in SBS \subseteq (B)_I$.

Subcase 3.2: $a_3 = a$. By assumption, we have

$$y = s_1 a_3 s_2 \in S(cb \cup ScbS]S \subseteq (S](BB \cup SBBS](S]$$
$$\subseteq ((S)(BB \cup SBBS)](S]$$
$$= (SBB \cup SSBBS](S]$$
$$\subseteq ((SBB \cup SSBBS)(S)]$$
$$= (SBBS \cup SSBBS)(S)]$$
$$\subseteq (SBS]$$
$$\subseteq (SBS]$$
$$\subseteq (B)_1.$$

From both cases, we obtain $y \in (B)_I$. Since $x \le y$ and $y \in (B)_I$, we have $x \in ((B)_I] = (B)_I$. Thus $S \subseteq (B)_I$ and hence $S = (B)_I$. This is a contradiction. Therefore, a = b or a = c.

Beside the partial order \leq on an ordered semigroup *S*, we define quasi-order \leq_{i} on *S* as follows:

Definition 2.6. Let *S* be an ordered semigroup. We define a quasi-order on *S* by for any $a, b \in S$,

$$a \leq_I b \Leftrightarrow (a)_I \subseteq (b)_I$$

The following example shows that \leq_i defined above is not, in general, a partial order.

Example 2.7. From Example 2.2, we have that $(a)_1 \subseteq (b)_1$ (i.e., $a \leq_I b$) and $(b)_1 \subseteq (a)_1$ (i.e., $b \leq_I a$), but $a \neq b$. Thus \leq_I is not a partial order on *S*.

Lemma 2.8. Let *S* be an ordered semigroup. For any $x, y \in S$, if $x \le y$, then $x \le_I y$.

Proof. For any $x, y \in S$, let $x \le y$. We will show that $(x)_I \subseteq (y)_I$. Since $x \le y$ and $y \in (y)_I$, we have

 $x \in ((y)_I] = (y)_I$. Since $\{x\} \subseteq (y)_I = (y \cup yy \cup SyS]$, then

 $x \cup xx \cup SxS$

 $\subseteq (y \cup yy \cup SyS] \cup (y \cup yy \cup SyS](y \cup yy \cup SyS] \cup S(y \cup yy \cup SyS]S$

 $\subseteq (y \cup yy \cup SyS] \cup ((y \cup yy \cup SyS)(y \cup yy \cup SyS)] \cup (S](y \cup yy \cup SyS](S]$

 $\subseteq (y \cup yy \cup SyS] \cup (yy \cup yyy \cup ySyS \cup yyy \cup yyyy \cup yySyS \cup SySy \cup SySyy \cup SySyS]$ $\cup ((S)(y \cup yy \cup SyS)](S]$

 $\subseteq (y \cup yy \cup SyS] \cup (yy \cup SyS] \cup (Sy \cup Syy \cup SSyS](S]$

 $\subseteq (y \cup yy \cup SyS] \cup (yy \cup SyS] \cup ((Sy \cup Syy \cup SSyS)(S)]$

 $= (y \cup yy \cup SyS] \cup (yy \cup SyS] \cup (SyS \cup SyyS \cup SSySS]$

 $\subseteq (y \cup yy \cup SyS] \cup (yy \cup SyS] \cup (SyS]$

 $= (y \cup yy \cup SyS] = (y)_I.$

So $(x)_I = (x \cup xx \cup SxS] \subseteq ((y)_I] = (y)_I$. Thus $(x)_I \subseteq (y)_I$. Therefore, $x \leq_I y$.

Nevertheless, the converse of Lemma 2.8, is not valid in general. By Example 2.2, we have $b \leq_{l} a$, but $b \leq a$ is false.

Lemma 2.9. Let *A* be an interior base of an ordered semigroup *S*. If $a, b \in A$ such that $a \neq b$, then neither $a \leq_i b$ nor $b \leq_i a$.

Proof. Assume that $a, b \in A$ such that $a \neq b$. Suppose that $a \leq_I b$. Setting $B = A \setminus \{a\}$. We have $b \in B$ and $B \subset A$. First, we claim that, for any $x \in S$ there exists $y \in A$ such that $(x)_I \subseteq (y)_I$. Since $x \in S$ and $S = (A)_I$, we have $x \in (A)_I$. Since $x \in (A)_I$, we have $x \in (y)_I$ for some $y \in A$. Since $x \in (y)_I$, it follows that $(x)_I \subseteq (y)_I$. So $(x)_I \subseteq (y)_I$ for some $y \in A$. Next, we will show that $S = (B)_I$. Let $x_1 \in S$. There exists $y_1 \in A$ such that $(x_1)_I \subseteq (y_I)_I$. There are two cases to consider. If $y_1 \neq a$, then $y_1 \in B$. We have

$$x_1 \in (x_1)_I \subseteq (y_1)_I \subseteq (B)_I$$

If $y_1 = a$, then $y_1 \leq_I b$, i.e., $(y_1)_I \subseteq (b)_I$. We have

$$x_1 \in (x_1)_I \subseteq (y_1)_I \subseteq (b)_I \subseteq (B)_I$$

Thus $S \subseteq (B)_i$, and so $S = (B)_i$. This is a contradiction. Hence, $a \leq_i b$ is false. The case $b \leq_i a$ can be proved similarly.

Lemma 2.10. Let *A* be an interior base of an ordered semigroup *S*. Let $a, b, c \in A$ and $s \in S$.

(1) If $a \in (bc \cup bcbc \cup SbcS]$, then a = b or a = c.

(2) If $a \in (sbcs \cup sbcssbcs \cup SsbcsS]$, then a = b or a = c.

Proof. (1) Assume that $a \in (bc \cup bcbc \cup SbcS]$. Suppose that $a \neq b$ and $a \neq c$. We set $B = A \setminus \{a\}$. Clearly, $B \subset A$. Since $a \neq b$ and $a \neq c$, we have $b, c \in B$. We will show that $(A)_I \subseteq (B)_I$, it suffices to show that $A \subseteq (B)_I$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq (B)_I$. If x = a, then by assumption, we have

$$x = a \in (bc \cup bcbc \cup SbcS] \subseteq (BB \cup BBBB \cup SBBS]$$
$$\subseteq (BB \cup SBS]$$
$$\subseteq (B)_{l}.$$

So $A \subseteq (B)_I$. It follows that $(A)_I \subseteq (B)_I$. Since A is an interior base of S, so we have

$$S = (A)_I \subseteq (B)_I \subseteq S.$$

Thus $S = (B)_i$. This is a contradiction. Therefore, a = b or a = c.

(2) Assume that $a \in (sbcs \cup sbcssbcs \cup SsbcsS]$. Suppose that $a \neq b$ and $a \neq c$. We set $B = A \setminus \{a\}$. Then $B \subset A$. Since $a \neq b$ and $a \neq c$, we have $b, c \in B$. We will show that $(A)_I \subseteq (B)_I$, it suffices to show that $A \subseteq (B)_I$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq (B)_I$. If x = a, then by assumption, we have

$$x = a \in (sbcs \cup sbcssbcs \cup SsbcsS] \subseteq (SBBS \cup SBBSSBBS \cup SSBBSS]$$
$$\subseteq (SBS]$$
$$\subseteq (B)_{I}.$$

So $A \subseteq (B)_I$. This implies that $(A)_I \subseteq (B)_I$. Thus

$$S = (A)_I \subseteq (B)_I \subseteq S.$$

Hence, $S = (B)_i$. This is a contradiction. Therefore, a = b or a = c.

Lemma 2.11. Let *A* be an interior base of an ordered semigroup *S*.

(1) For any $a,b,c \in A$, if $a \neq b$ and $a \neq c$, then $a \leq_I bc$.

(2) For any $a,b,c \in A$ and $s \in S$, if $a \neq b$ and $a \neq c$, then $a \leq_I sbcs$.

Proof. (1) For any $a,b,c \in A$, let $a \neq b$ and $a \neq c$. Suppose that $a \leq_I bc$, i.e., $(a)_I \subseteq (bc)_I$. We have $a \in (a)_I \subseteq (bc)_I = (bc \cup bcbc \cup SbcS]$.

By Lemma 2.10(1), we obtain a = b or a = c. This contradicts to assumption. Therefore, $a \leq_I bc$.

(2) For any $a,b,c \in A$ and $s \in S$, let $a \neq b$ and $a \neq c$. Suppose that $a \leq_i sbcs$. We have

 $a \in (a)_I \subseteq (sbcs)_I = (sbcs \cup sbcssbcs \cup SsbcsS].$

By Lemma 2.10(2), a = b or a = c. This contradicts to assumption. Therefore, $a \leq b cs$.

Lemma 2.12. Let *A* be an interior base of an ordered semigroup *S*. For any $a, b \in A$ and $s_1, s_2 \in S$, if $a \neq b$, then $a \not\leq_I s_1 b s_2$.

Proof. For any $a, b \in A$ and $s_1, s_2 \in S$, let $a \neq b$. Suppose that $a \leq_I s_1 b s_2$, i.e., $(a)_I \subseteq (s_1 b s_2)_I$. We have $a \in (a)_I \subseteq (s_1 b s_2)_I = (s_1 b s_2 \cup s_1 b s_2 s_1 b s_2 \cup S_1 b s_2 S]$.

We set $B = A \setminus \{a\}$. Then $b \in B$ and $B \subset A$. We will show that $(A)_I \subseteq (B)_I$, it suffices to show that $A \subseteq (B)_I$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq (B)_I$. If x = a, then by assumption, we have

$$x = a \in (s_1 b s_2 \cup s_1 b s_2 s_1 b s_2 \cup S s_1 b s_2 S] \subseteq (SBS \cup SBSSBS \cup SSBSS]$$
$$\subseteq (SBS]$$
$$\subseteq (B)_I.$$

So $x \in (B)_I$. Thus $A \subseteq (B)_I$. It follows that $(A)_I \subseteq (B)_I$. Since A is an interior base of S, then

$$S = (A)_I \subseteq (B)_I \subseteq S.$$

Hence, $S = (B)_1$. This is a contradiction. Therefore, $a \leq_I s_1 b s_2$.

We now prove the main result of this paper.

Theorem 2.13. A non-empty subset *A* of an ordered semigroup *S* is an interior base of *S* if and only if *A* satisfies the following conditions:

(1) For any $x \in S$,

(1.1) there exists $a \in A$ such that $x \leq_I a$; or

- (1.2) there exist $a_1, a_2 \in A$ such that $x \leq_I a_1 a_2$; or
- (1.3) there exist $a_3 \in A$ and $s_1, s_2 \in S$ such that $x \leq_I s_1 a_3 s_2$.

(2) For any $a,b,c \in A$, if $a \neq b$ and $a \neq c$, then $a \not\leq_l bc$.

(3) For any $a, b \in A$ and $s_1, s_2 \in S$, if $a \neq b$, then $a \leq s_1 b s_2$.

Proof. Assume that *A* is an interior base of *S*. We have $S = (A)_I$. To show that (1) holds. Let $x \in S$. Then $x \in (A)_I = (A \cup AA \cup SAS]$. Since $x \in (A \cup AA \cup SAS]$, we have $x \le y$ for some $y \in A \cup AA \cup SAS$. We consider three cases:

Case 1: $y \in A$. Then y = a for some $a \in A$. This implies $(y)_i \subseteq (a)_i$, and so $y \leq_i a$. Since $x \leq y$, by Lemma 2.8, we have $x \leq_i y$. Thus $x \leq_i y \leq_i a$, and hence $x \leq_i a$.

Case 2: $y \in AA$. Then $y = a_1a_2$ for some $a_1, a_2 \in A$. This implies $(y)_I \subseteq (a_1a_2)_I$, and so $y \leq_I a_1a_2$. Since $x \leq y$, by Lemma 2.8, we have $x \leq_I y$. Thus $x \leq_I y \leq_I a_1a_2$, and hence $x \leq_I a_1a_2$.

Case 3: $y \in SAS$. Then $y = s_1a_3s_2$ for some $a_3 \in A$, $s_1, s_2 \in S$. We obtain $(y)_I \subseteq (s_1a_3s_2)_I$. So $y \leq_I s_1a_3s_2$. Since $x \leq y$, by Lemma 2.8, we have $x \leq_I y$. Thus $x \leq_I y \leq_I s_1a_3s_2$, and hence $x \leq_I s_1a_3s_2$.

The validity of (2) and (3) follow, respectively, from Lemma 2.11(1), and Lemma 2.12.

Conversely, assume that the conditions (1), (2) and (3) hold. We will show that *A* is an interior base of *S*. First, We will show that $S = (A)_i$. Clearly, $(A)_i \subseteq S$. By (1.1), it follows that $S \subseteq A$. We have

$$S \subseteq A \cup AA \cup SAS \subseteq (A \cup AA \cup SAS] = (A)_{I}.$$

Thus $S \subseteq (A)_I$, and so $S = (A)_I$. Next, it remains to show that *A* is a minimal subset of *S* with the property $S = (A)_I$. Suppose that $S = (B)_I$ for some $B \subset A$. Since $B \subset A$, there exists $x \in A$ such that $x \notin B$. Since $x \in A \subseteq S = (B)_I = (B] \cup (BB \cup SBS]$, we have $x \in (B]$ or $x \in (B \cup BB \cup SBS]$. If $x \in (B]$, then $x \leq y$ for some $y \in B$. Since $x \leq y$, by Lemma 2.8, we have $x \leq_I y$ where $x, y \in A$. This contradicts to Lemma 2.9. Thus $x \notin (B]$, and so $x \in (BB \cup SBS]$. Since $x \in (BB \cup SBS]$, we have $x \leq_I g \cup SBS$, we have $x \leq_I g \cup SBS$. We consider two cases:

Case 1: $z \in BB$. Then $z = a_1a_2$ for some $a_1, a_2 \in B$. We have $a_1, a_2 \in A$. Since $x \notin B$, then $x \neq a_1$ and $x \neq a_2$. Since $z = a_1a_2$, we obtain $(z)_I \subseteq (a_1a_2)_I$, i.e., $z \leq_I a_1a_2$. Since $x \leq z$, by Lemma 2.8, we have $x \leq_I z$. So $x \leq_I z \leq_I a_1a_2$. Thus $x \leq_I a_1a_2$. This contradicts to (2).

Case 2: $z \in SBS$. Then $z = s_1a_3s_2$ for some $s_1, s_2 \in S$ and $a_3 \in B$. We have $a_3 \in A$. Since $x \notin B$, we have $x \neq a_3$. Since $z = s_1a_3s_2$, we obtain $(z)_I \subseteq (s_1a_3s_2)_I$, i.e., $z \leq_I s_1a_3s_2$. Since $x \leq z$, by Lemma 2.8, we have $x \leq_I z$. So $x \leq_I z \leq_I s_1a_3s_2$. Thus $x \leq_I s_1a_3s_2$. This contradicts to (3).

Therefore, *A* is an interior base of *S*.

The following theorem characterization when an interior base of an ordered semigroup *S* is a subsemigroup of *S*.

Theorem 2.14. Let *A* be an interior base of an ordered semigroup *S*. Then *A* is a subsemigroup of *S* if and only if for any $a, b \in A$, ab = a or ab = b.

Proof. Assume that *A* is a subsemigroup of *S*. Suppose that $ab \neq a$ and $ab \neq b$. Let c = ab. Then $c \neq a$ and $c \neq b$. Since $c = ab \in (ab \cup SabS]$, by Lemma 2.5, we have c = a or c = b. This is a contradiction. The converse statement is clear.

Acknowledgements: This research was supported by University of Phayao and Thailand Science Research and Innovation Fund (Fundamental Fund 2024).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] N.G. Alimov, On ordered semigroups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 569-576.
- [2] C.G. Chehata, On an ordered semigroup, J. Lond. Math. Soc. s1-28 (1953), 353-356. https://doi.org/10.1112/jlms/s1-28.3.353.
- [3] T. Tamura, One-sided bases and translations of a semigroup, Math. Japon. 3 (1955), 137-141.
- [4] I. Fabrici, One-sided bases of semigroups, Mat. Casopis. 22 (1972), 286-290.
- [5] I. Fabrici, Two-sided bases of semigroups, Mat. Casopis. 25 (1975), 173-178.
- [6] T. Changphas, P. Sammaprab, On two-sided bases of an ordered semigroup, Quasigroups Related Syst. 22 (2014), 59-66.
- [7] P. Kummoon, T. Changphas, On bi-bases of a semigroup, Quasigroups Related Syst. 25 (2017), 87-94.
- [8] P. Kummoon, T. Changphas, On bi-bases of Γ-semigroups, Thai J. Math. (Spec. Iss. Ann. Meet. Math.) (2018), 75-86.
- [9] N. Kehayopulu, Note on interior ideals, ideal elements in ordered semigroups, Sci. Math. 2 (1999), 407-409.
- [10] N. Kehayopulu, M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math. 25 (2002), 609-615.
- [11] S. Thongrak, A. Iampan, Characterizations of ordered semigroups by the properties of their ordered (*m*,*n*) quasi-ideals, Palestine J. Math. 7 (2018), 299-306.
- [12] N. Kehayopulu, On completely regular ordered semigroups, Sci. Math. 1 (1998), 27-32.
- [13] S.K. Lee, J.H. Jung, On left regular po-semigroups, Commun. Korean Math. Soc. 13 (1998), 1-6.