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ABSTRACT. In this paper, the notions of interior bases of ordered semigroups are introduced, and some examples are 

also presented. We describe a characterization when a non-empty subset of an ordered semigroup is an interior base 

of an ordered semigroup. Finally, a characterization when an interior base of an ordered semigroup is a subsemigroup 

of an ordered semigroup will be given. 

 

1. Introduction 

A semigroup is one of algebraic structures which was widely studied. There are many 

generalizations, for example, LA-semigroup, Γ-semigroup, ordered semigroups, etc. The study of 

ordered semigroups began about 1950 by several authors, for example, Alimov [1], and Chehata 

[2]. The notion of one-sided bases of a semigroup was introduced by Tamura [3]. In 1972, Fabrici 

studied the structure of semigroups containing one-sided bases and he introduced the concept of 

two-sided bases of semigroups in 1975 [4,5]. Later, Changphas and Summaprab introduced the 

concept of two-sided bases of an ordered semigroup [6]. In 2017, Kummoon and Changphas 

introduced the concept of bi-bases of a semigroup and bi-bases of Γ-semigroups [7,8]. 

In this paper, the concepts of interior bases of ordered semigroups will be introduced. 

Moreover, we describe a characterization when a non-empty subset of an ordered semigroup is 
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an interior base of an ordered semigroup and a characterization when an interior base of an 

ordered semigroup is a subsemigroup of an ordered semigroup. 

An ordered semigroup (some authors called po-semigroup) ( , , )S    is a poset ( , )S   at the 

same time a semigroup ( , )S   such that, for any , , ,x y z S  

x y  implies xz yz  and .zx zy    

Throughout this paper, unless stated otherwise, we write S  instead of ( , , )S    and S  

stands for an ordered semigroup. 

A non-empty subset A  of an ordered semigroup S  is called a subsemigroup of S  if 

.AA A  

Let S  be an ordered semigroup. For A  and B  are non-empty subsets of ,S  we denote 

{ | , }AB ab a A b B=    and ( ] { |A b S b a=    for some }.a A   

For ,a S  we write Ba  for { },B a  similarly aB  for { } ,a B  and ( ]a  for ({ }].a  

Definition 1.1. [9] A subsemigroup A  of an ordered semigroup S  is called an interior ideal of S  

if it satisfies the following condition: 

 (1) ;SAS A  

(2) if a A  and b S  such that ,b a  then .b A  

Lemma 1.2. [10,11] Let S  be an ordered semigroup. Then the following statements hold.  

 (1) ( ],A A  ( ( ])S S=  for any .A S    

 (2) (( ]] ( ]A A=  for any .A S    

 (3) If ,A B S   then ( ] ( ].A B   

 (4) ( ]( ] ( ]A B AB  for any , .A B S  

 (5) (( ]( ]] ( ]A B AB=  for any , .A B S  

 (6) If A  is an interior ideal of ,S  then ( ].A A=  

 (7) ( ] ( ] ( ]A B A B =    for any , .A B S  

(8) ( )A B C AB AC =   and ( )B C A BA CA =   for any , , .A B C S  

Lemma 1.3. [11] Let S  be an ordered semigroup and iA  be a subsemigroup of S  for all .i I  If 

,i

i I

A


   then i

i I

A


 is a subsemigroup of .S  

Lemma 1.4.  Let S  be an ordered semigroup and iA  be an interior ideal of S  for all .i I  If 

,i

i I

A


   then i

i I

A


 is an interior ideal of .S  

Proof. Assume that .i

i I

A


   By Lemma 1.3, i

i I

A


 is a subsemigroup of .S  Let ( ) .i

i I

x S A S


  Then 

1 2x s as=  for some 1 2,s s S  and .i
i I

a A


  Since ,i

i I

a A


  we have ia A  for all ,i I  where iA  is an 
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interior ideal of S  for all .i I  So we have 1 2 ( )i ix s as S A S A=    for all .i I  Thus .i
i I

x A


  Next, 

let i

i I

y A


  and z S  be such that .z y  Since ,i

i I

y A


  then iy A  for all ,i I  where iA  is an 

interior ideal of S  for all .i I  Since z y  and iy A  for all ,i I  we have  iz A  for all .i I  So 

.i
i I

z A


  Therefore, i

i I

A


 is an interior ideal of S . 

Definition 1.5. Let S  be an ordered semigroup and let A  be a non-empty subset of .S  Then the 

intersection of all interior ideals of S  containing A  is the smallest interior ideal of S  generated 

by ,A  denoted by ( ) .IA  

Lemma 1.6. Let S  be an ordered semigroup and let A  be a non-empty subset of .S  Then 

( ) ( ].IA A AA SAS=    

Proof. Let ( ].B A AA SAS=    Consider, 

( ]( ]

(( )( )]

( ]

( ] .

BB A AA SAS A AA SAS

A AA SAS A AA SAS

AA AAA ASAS AAA AAAA AASAS SASA SASAA SASSAS

AA SAS B

=    

    

=        

  

 

Thus B  is a subsemigroup of .S  Next, consider 

( ]

( ]( )( ]

(( )( )]( ]

( ]( ]

(( )( )]

( ]

( ]

.

SBS S A AA SAS S

S A AA SAS S

S A AA SAS S

SA SAA SSAS S

SA SAA SSAS S

SAS SAAS SSASS

SAS

B

=  

=  

  

=  

  

=  





 

 Thus .SBS B  Clearly, if ( ]x B A AA SAS =    and y S  such that ,y x  then (( ]]y A AA SAS  

( ] .A AA SAS B=   =  Hence, B  is an interior ideal of S  containing .A  Finally, let C  be an interior 

ideal of S  containing .A  Clearly, .A C  Since C  is a subsemigroup of ,S  we have .AA CC C   

Since C  is an interior ideal of ,S  we have .SAS SCS C   Thus ,A AA SAS C    and so 

( ] ( ] .B A AA SAS C C=    =  Hence, B  is the smallest interior ideal of S  containing .A  Therefore, 

( ].B A AA SAS=    

 

2. Main Results 

We begin this section with the following definition of interior bases of an ordered 

semigroup. 

Definition 2.1. Let S  be an ordered semigroup. A non-empty subset A  of S  is called an interior 

base of S  if it satisfies the following two conditions: 
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 (1) ( ]S A AA SAS=   , i.e., ( )IS A= ; 

(2) if B  is a subset of A  such that ( ) ,IS B=  then .B A=  

Example 2.2. [12] Let { , , , , }S a b c d e=  be an ordered semigroup such that the multiplication and the 

order relation are defined by: 

  a  b  c  d  e  

a  a  a  c  a  c  

b  a  a  c  a  c  

c  a  a  c  a  c  

d  d  d  e  d  e  

e  d  d  e  d  e  

{( , ),( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )}.a a a b a c a d a e b b b c b d b e c c c e d d d e e e=  

The interior bases of S  are { },a { },b { },c { }d , and { }.e  

Example 2.3. [13] Let { , , , , }S a b c d f=  be an ordered semigroup such that the multiplication and 

the order relation are defined by: 

  a  b  c  d  f  

a  b  b  d  d  d  

b  b  b  d  d  d  

c  d  d  c  d  c  

d  d  d  d  d  d  

f  d  d  c  d  c  

{( , ),( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )}.a a a b b b c c d b d c d d f c f f=  

The interior bases of S  are { , },a c { , },a f { , }b c , and { , }.b f  

Lemma 2.4.  Let A  be an interior base of an ordered semigroup ,S  and let , .a b A  If ( ],a bb SbS   

then .a b=  

Proof. Assume that ( ],a bb SbS   and suppose that .a b  Setting \{ }.B A a=  Then .B A  Since 

,a b  we have .b B  We will show that ( ) ( ) .I IA B  Let ( ) .Ix A  Since ( ) ( ],Ix A A AA SAS =    we 

have x y  for some .y A AA SAS    We can consider the three following cases. 

Case 1: .y A  There are two subcases to consider. 

 Subcase 1.1: .y a   

So ( ].y B B BB SBS     Since x y  and ( ],y B BB SBS    we obtain  

(( ]] ( ] ( ) .Ix B BB SBS B BB SBS B   =   =  

 Subcase 1.2: .y a=  

By assumption, we have  
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( ] ( ] ( ) .Iy a bb SbS BB SBS B=       

Since x y  and ( ) ,Iy B  so we obtain (( ) ] ( ) .I Ix B B =  

Case 2: .y AA  Then 1 2y a a=  for some 1 2, .a a A  There are four subcases to consider.  

 Subcase 2.1: 1a a  and 2 .a a   

We have 1 2, .a a B  So 1 2 ( ) .Iy a a BB B=    Since x y  and ( ) ,Iy B  we obtain (( ) ] ( ) .I Ix B B =   

 Subcase 2.2: 1a a=  and 2 .a a   

Then by assumption and 2 ,a B  we have  

1 2 ( ] ( ]( ]

(( )( )]

( ]

( ]

( ) .I

y a a bb SbS B BB SBS B

BB SBS B

BBB SBSB

SBS

B

=    

 

= 





 

Since x y  and ( ) ,Iy B  so (( ) ] ( ) .I Ix B B =   

 Subcase 2.3: 1a a  and 2 .a a=   

Then by assumption and 1 ,a B  we have  

1 2 ( ] ( ]( ]

(( )( )]

( ]

( ]

( ) .I

y a a B bb SbS B BB SBS

B BB SBS

BBB BSBS

SBS

B

=    

 

= 





 

Since x y  and ( ) ,Iy B  so (( ) ] ( ) .I Ix B B =  

 Subcase 2.4: 1a a=  and 2 .a a=   

By assumption, we have  

1 2 ( ]( ] (( )( )]

( ]

( ]

( ]

( ) .I

y a a bb SbS bb SbS bb SbS bb SbS

bbbb bbSbS SbSbb SbSSbS

BBBB BBSBS SBSBB SBSSBS

SBS

B

=      

=   

   





 

Since x y  and ( ) ,Iy B  so (( ) ] ( ) .I Ix B B =  

Case 3: .y SAS  Then 1 3 2y s a s=  for some 1 2,s s S  and 3 .a A  There are two subcases to consider.  

 Subcase 3.1: 3 .a a   

We have 3 .a B  So 1 3 2 ( ) .Iy s a s SBS B=    Since x y  and ( ) ,Iy B  we have (( ) ] ( ) .I Ix B B =    

 Subcase 3.2: 3 .a a=   

By assumption, we have 
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1 3 2 ( ] ( ]( ]( ]

(( )( )]( ]

( ]( ]

(( )( )]

( ]

( ]

( ) .I

y s a s S bb SbS S S BB SBS S

S BB SBS S

SBB SSBS S

SBB SSBS S

SBBS SSBSS

SBS

B

=    

 

= 

 

= 





 

Since x y  and ( ) ,Iy B  we have (( ) ] ( ) .I Ix B B =  

From both cases, we obtain ( ) ( ) .I IA B  Since A  is an interior base of ,S  we have 

( ) ( ) .I IS A B S=    

Thus ( ) .IS B=  This is a contradiction. Therefore, .a b=  

 

Lemma 2.5. Let A  be an interior base of an ordered semigroup ,S  and let , , .a b c A  If 

( ],a cb ScbS   then a b=  or a c= . 

Proof.  Assume that ( ].a cb ScbS   Suppose that a b  and .a c  We set \{ }.B A a=  Clearly, 

.B A  Since a b  and ,a c  so we have , .b c B  We will show that ( ) .IB S=  Obviously, ( ) .IB S  

Next, to show that ( ) .IS B  Let .x S  Since A  is an interior base of ,S  we have ( ) .IS A=  So 

( ) ( ].Ix A A AA SAS =    Since ( ],x A AA SAS    we have x y  for some .y A AA SAS    We can 

consider the three following cases. 

Case 1: .y A  There are two subcases to consider. 

 Subcase 1.1: .y a  So ( ) .Iy B B    

 Subcase 1.2: .y a=  By assumption, we have  

( ] ( ] ( ] ( ) .Iy a cb ScbS BB SBBS BB SBS B=         

Case 2: .y AA  Then 1 2y a a=  for some 1 2, .a a A  There are four subcases to consider. 

 Subcase 2.1: 1a a  and 2 .a a  We have 1 2, .a a B  So 1 2 ( ) .Iy a a BB B=    

 Subcase 2.2: 1a a=  and 2 .a a  By assumption and 2 ,a B  we have 

1 2 ( ] ( )( ]

(( )( )]

( ]

( ]

( ) .I

y a a cb ScbS B BB SBBS B

BB SBBS B

BBB SBBSB

SBS

B

=    

 

= 





 

 Subcase 2.3: 1a a  and 2 .a a=  By assumption and 1 ,a B  we have 

1 2 ( ] ( ]( ] (( )( )] ( ] ( ] ( ) .Iy a a B cb ScbS B BB SBBS B BB SBBS BBB BSBBS SBS B=       =     

 Subcase 2.4: 1a a=  and 2 .a a=  By assumption, we have 
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1 2 ( ]( ] (( )( )]

( ]

( ]

( ]

( ) .I

y a a cb ScbS cb ScbS cb ScbS cb ScbS

cbcb cbScbS ScbScb ScbSScbS

BBBB BBSBBS SBBSBB SBBSSBBS

SBS

B

=      

=   

   





 

Case 3: .y SAS  Then 
1 3 2y s a s=  for some 

1 2,s s S  and 
3 .a A  There are two subcases to consider.   

 Subcase 3.1: 
3 .a a  We have 

3 .a B  So 1 3 2 ( ) .Iy s a s SBS B=       

 Subcase 3.2: 3 .a a=  By assumption, we have 

1 3 2 ( ] ( ]( ]( ]

(( )( )]( ]

( ]( ]

(( )( )]

( ]

( ]

( ) .I

y s a s S cb ScbS S S BB SBBS S

S BB SBBS S

SBB SSBBS S

SBB SSBBS S

SBBS SSBBSS

SBS

B

=    

 

= 

 

= 





 

From both cases, we obtain ( ) .Iy B  Since x y  and ( ) ,Iy B  we have (( ) ] ( ) .I Ix B B =  Thus 

( )IS B  and hence ( ) .IS B=  This is a contradiction. Therefore, a b=  or .a c=  

Beside the partial order   on an ordered semigroup ,S  we define quasi-order I  on S  as 

follows: 

Definition 2.6. Let S  be an ordered semigroup. We define a quasi-order on S  by for any , ,a b S  

( ) ( ) .I I Ia b a b    

The following example shows that I  defined above is not, in general, a partial order. 

Example 2.7. From Example 2.2, we have that ( ) ( )I Ia b (i.e., Ia b ) and ( ) ( )I Ib a  (i.e., Ib a ), 

but .a b  Thus I  is not a partial order on .S  

Lemma 2.8. Let S  be an ordered semigroup. For any , ,x y S  if ,x y  then .Ix y  

Proof. For any , ,x y S  let .x y  We will show that ( ) ( ) .I Ix y  Since x y  and ( ) ,Iy y  we have 

(( ) ] ( ) .I Ix y y =  Since { } ( ) ( ],Ix y y yy SyS =    then  

x xx SxS   

( ] ( ]( ] ( ]y yy SyS y yy SyS y yy SyS S y yy SyS S            

( ] (( )( )] ( ]( ]( ]y yy SyS y yy SyS y yy SyS S y yy SyS S            

( ] ( ]

(( )( )]( ]

y yy SyS yy yyy ySyS yyy yyyy yySyS SySy SySyy SySSyS

S y yy SyS S

           

  
 

( ] ( ] ( ]( ]y yy SyS yy SyS Sy Syy SSyS S         

( ] ( ] (( )( )]y yy SyS yy SyS Sy Syy SSyS S         

( ] ( ] ( ]y yy SyS yy SyS SyS SyyS SSySS=         

( ] ( ] ( ]y yy SyS yy SyS SyS       
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( ] ( ) .Iy yy SyS y=   =  

So ( ) ( ] (( ) ] ( ) .I I Ix x xx SxS y y=    =  Thus ( ) ( ) .I Ix y  Therefore, .Ix y  

Nevertheless, the converse of Lemma 2.8, is not valid in general. By Example 2.2, we have 

,Ib a  but b a  is false. 

Lemma 2.9. Let A  be an interior base of an ordered semigroup .S  If ,a b A  such that ,a b  then 

neither Ia b  nor .Ib a  

Proof. Assume that ,a b A  such that .a b  Suppose that .Ia b  Setting \{ }.B A a=  We have b B  

and .B A  First, we claim that, for any x S  there exists y A  such that ( ) ( ) .I Ix y  Since x S  

and ( ) ,IS A=  we have ( ) .Ix A  Since ( ) ,Ix A  we have ( )Ix y  for some .y A  Since ( ) ,Ix y  it 

follows that ( ) ( ) .I Ix y  So ( ) ( )I Ix y  for some .y A  Next, we will show that ( ) .IS B=  Let 1 .x S  

There exists 1y A  such that 1 1( ) ( ) .I Ix y  There are two cases to consider. If 1 ,y a  then 1 .y B  

We have 

1 1 1( ) ( ) ( ) .I I Ix x y B    

If 1 ,y a=  then 1 ,Iy b  i.e., 1( ) ( ) .I Iy b  We have  

1 1 1( ) ( ) ( ) ( ) .I I I Ix x y b B     

Thus ( ) ,IS B  and so ( ) .IS B=  This is a contradiction. Hence, Ia b  is false. The case Ib a  can 

be proved similarly. 

Lemma 2.10. Let A  be an interior base of an ordered semigroup .S  Let , ,a b c A  and .s S  

(1) If ( ],a bc bcbc SbcS    then a b=  or a c= . 

(2) If ( ],a sbcs sbcssbcs SsbcsS    then a b=  or .a c=  

Proof. (1) Assume that ( ].a bc bcbc SbcS    Suppose that a b  and .a c  We set \{ }.B A a=  

Clearly, .B A  Since a b  and ,a c  we have , .b c B  We will show that ( ) ( ) ,I IA B  it suffices to 

show that ( ) .IA B  Let .x A  If ,x a  then ( ) .Ix B B   If ,x a=  then by assumption, we have 

( ] ( ]

( ]

( ) .I

x a bc bcbc SbcS BB BBBB SBBS

BB SBS

B

=      

 



 

So ( ) .IA B  It follows that ( ) ( ) .I IA B  Since A  is an interior base of ,S  so we have 

( ) ( ) .I IS A B S=    

Thus ( ) .IS B=  This is a contradiction. Therefore, a b=  or .a c=   

(2) Assume that ( ].a sbcs sbcssbcs SsbcsS    Suppose that a b  and .a c  We set 

\{ }.B A a=  Then .B A  Since a b  and ,a c  we have , .b c B  We will show that ( ) ( ) ,I IA B  it 

suffices to show that ( ) .IA B  Let .x A  If ,x a  then ( ) .Ix B B   If ,x a=  then by assumption, 

we have 
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( ] ( ]

( ]

( ) .I

x a sbcs sbcssbcs SsbcsS SBBS SBBSSBBS SSBBSS

SBS

B

=      





  

So ( ) .IA B  This implies that ( ) ( ) .I IA B  Thus  

( ) ( ) .I IS A B S=    

Hence, ( ) .IS B=  This is a contradiction. Therefore, a b=  or .a c=  

Lemma 2.11. Let A  be an interior base of an ordered semigroup .S   

 (1) For any , , ,a b c A  if a b  and ,a c  then .Ia bc    

 (2) For any , ,a b c A  and ,s S  if a b  and ,a c  then .Ia sbcs  

Proof. (1) For any , , ,a b c A  let a b  and .a c  Suppose that ,Ia bc  i.e., ( ) ( ) .I Ia bc  We have  

( ) ( ) ( ].I Ia a bc bc bcbc SbcS  =    

By Lemma 2.10(1), we obtain a b=  or .a c=  This contradicts to assumption. Therefore, .Ia bc  

(2) For any , ,a b c A  and ,s S  let a b  and .a c  Suppose that .Ia sbcs  We have 

( ) ( ) ( ].I Ia a sbcs sbcs sbcssbcs SsbcsS  =    

By Lemma 2.10(2), a b=  or .a c=  This contradicts to assumption. Therefore, .Ia sbcs  

Lemma 2.12. Let A  be an interior base of an ordered semigroup .S  For any ,a b A  and 1 2, ,s s S  

if ,a b  then 
1 2 .Ia s bs  

Proof. For any ,a b A  and 1 2, ,s s S  let .a b  Suppose that 1 2 ,Ia s bs  i.e., 1 2( ) ( ) .I Ia s bs  We have  

1 2 1 2 1 2 1 2 1 2( ) ( ) ( ].I Ia a s bs s bs s bs s bs Ss bs S  =    

We set \{ }.B A a=  Then b B  and .B A  We will show that ( ) ( ) ,I IA B  it suffices to show that 

( ) .IA B  Let .x A  If ,x a  then ( ) .Ix B B   If ,x a=  then by assumption, we have 

1 2 1 2 1 2 1 2( ] ( ]

( ]

( ) .I

x a s bs s bs s bs Ss bs S SBS SBSSBS SSBSS

SBS

B

=      





 

So ( ) .Ix B  Thus ( ) .IA B  It follows that ( ) ( ) .I IA B  Since A  is an interior base of ,S  then  

( ) ( ) .I IS A B S=    

Hence, ( ) .IS B=  This is a contradiction. Therefore, 
1 2 .Ia s bs  

We now prove the main result of this paper. 

Theorem 2.13. A non-empty subset A  of an ordered semigroup S  is an interior base of S  if and 

only if A  satisfies the following conditions: 

(1) For any ,x S  

(1.1) there exists a A  such that ;Ix a  or 

 (1.2) there exist 1 2,a a A  such that 1 2 ;Ix a a  or 

 (1.3) there exist 3a A  and 1 2,s s S  such that 1 3 2 .Ix s a s  
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(2) For any , , ,a b c A  if a b  and ,a c  then .Ia bc    

(3) For any ,a b A  and 
1 2, ,s s S  if ,a b  then 

1 2 .Ia s bs  

Proof. Assume that A  is an interior base of .S  We have ( ) .IS A=  To show that (1) holds. Let .x S  

Then ( ) ( ].Ix A A AA SAS =    Since ( ],x A AA SAS    we have x y  for some .y A AA SAS    

We consider three cases:  

 Case 1: .y A  Then y a=  for some .a A  This implies ( ) ( ) ,I Iy a  and so .Iy a  Since ,x y  by 

Lemma 2.8, we have .Ix y  Thus ,I Ix y a   and hence .Ix a       

 Case 2: .y AA  Then 1 2y a a=  for some 1 2, .a a A  This implies 1 2( ) ( ) ,I Iy a a  and so 1 2 .Iy a a  Since 

,x y  by Lemma 2.8, we have .Ix y  Thus 1 2 ,I Ix y a a   and hence 1 2.Ix a a                       

 Case 3: .y SAS  Then 1 3 2y s a s=  for some 3 ,a A 1 2, .s s S  We obtain 1 3 2( ) ( ) .I Iy s a s  So 1 3 2.Iy s a s  

Since ,x y  by Lemma 2.8, we have .Ix y  Thus 1 3 2 ,I Ix y s a s   and hence 1 3 2.Ix s a s  

The validity of (2) and (3) follow, respectively, from Lemma 2.11(1), and Lemma 2.12. 

Conversely, assume that the conditions (1), (2) and (3) hold. We will show that A  is an 

interior base of .S  First, We will show that ( ) .IS A=  Clearly, ( ) .IA S  By (1.1), it follows that 

.S A  We have  

( ] ( ) .IS A AA SAS A AA SAS A      =  

Thus ( ) ,IS A  and so ( ) .IS A=  Next, it remains to show that A  is a minimal subset of S  with the 

property ( ) .IS A=  Suppose that ( )IS B=  for some .B A  Since ,B A  there exists x A  such that 

.x B  Since ( ) ( ] ( ],Ix A S B B BB SBS  = =    we have ( ]x B  or ( ].x B BB SBS    If ( ],x B  then 

x y  for some .y B  Since ,x y  by Lemma 2.8, we have Ix y  where , .x y A  This contradicts 

to Lemma 2.9. Thus ( ],x B  and so ( ].x BB SBS   Since ( ],x BB SBS   we have x z  for some 

.z BB SBS   We consider two cases:  

 Case 1: .z BB  Then 1 2z a a=  for some 1 2, .a a B  We have 1 2, .a a A  Since ,x B  then 1x a  and 

2.x a  Since 1 2 ,z a a=  we obtain 1 2( ) ( ) ,I Iz a a  i.e., 1 2.Iz a a  Since ,x z  by Lemma 2.8, we have 

.Ix z  So 1 2.I Ix z a a   Thus 1 2 .Ix a a  This contradicts to (2). 

 Case 2: .z SBS  Then 1 3 2z s a s=  for some 1 2,s s S  and 3 .a B  We have 3 .a A  Since ,x B  we have 

3.x a  Since 1 3 2 ,z s a s=  we obtain 1 3 2( ) ( ) ,I Iz s a s  i.e., 1 3 2.Iz s a s  Since ,x z  by Lemma 2.8, we 

have .Ix z  So 1 3 2.I Ix z s a s   Thus 1 3 2.Ix s a s  This contradicts to (3). 

Therefore, A  is an interior base of .S  

The following theorem characterization when an interior base of an ordered semigroup 

S  is a subsemigroup of .S  

Theorem 2.14. Let A  be an interior base of an ordered semigroup .S  Then A  is a subsemigroup 

of S  if and only if for any , ,a b A  ab a=  or .ab b=  
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Proof. Assume that A  is a subsemigroup of .S  Suppose that ab a  and .ab b  Let .c ab=  Then 

c a  and .c b  Since ( ],c ab ab SabS=    by Lemma 2.5, we have c a=  or .c b=  This is a 

contradiction. The converse statement is clear. 
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