On Interior Bases of Ordered Semigroups

Wichayaporn Jantanan ${ }^{1}$, Natee Raikham ${ }^{1}$, Ronnason Chinram ${ }^{2}$, Aiyared Iampan ${ }^{3}$,*
${ }^{1}$ Department of Mathematics, Faculty of Science, Buriram Rajabhat University, 31000, Buriram, Thailand
${ }^{2}$ Division of Computational Science, Faculty of Science, Prince of Songkla University, 90110, Songkhla, Thailand
${ }^{3}$ Department of Mathematics, School of Science, University of Phayao, 56000, Phayao, Thailand *Corresponding author: aiyared.ia@up.ac.th

Abstract

In this paper, the notions of interior bases of ordered semigroups are introduced, and some examples are also presented. We describe a characterization when a non-empty subset of an ordered semigroup is an interior base of an ordered semigroup. Finally, a characterization when an interior base of an ordered semigroup is a subsemigroup of an ordered semigroup will be given.

1. Introduction

A semigroup is one of algebraic structures which was widely studied. There are many generalizations, for example, LA-semigroup, Γ-semigroup, ordered semigroups, etc. The study of ordered semigroups began about 1950 by several authors, for example, Alimov [1], and Chehata [2]. The notion of one-sided bases of a semigroup was introduced by Tamura [3]. In 1972, Fabrici studied the structure of semigroups containing one-sided bases and he introduced the concept of two-sided bases of semigroups in 1975 [4,5]. Later, Changphas and Summaprab introduced the concept of two-sided bases of an ordered semigroup [6]. In 2017, Kummoon and Changphas introduced the concept of bi-bases of a semigroup and bi-bases of Γ-semigroups $[7,8]$.

In this paper, the concepts of interior bases of ordered semigroups will be introduced. Moreover, we describe a characterization when a non-empty subset of an ordered semigroup is

Received Oct. 20, 2023
2020 Mathematics Subject Classification. 20M10, 06F05.
Key words and phrases. ordered semigroup; subsemigroup; interior ideal; interior base; quasi order.
an interior base of an ordered semigroup and a characterization when an interior base of an ordered semigroup is a subsemigroup of an ordered semigroup.

An ordered semigroup (some authors called po-semigroup) ($S, \cdot,, \leq$) is a poset (S, \leq) at the same time a semigroup (S,) such that, for any $x, y, z \in S$,

$$
x \leq y \text { implies } x z \leq y z \text { and } z x \leq z y .
$$

Throughout this paper, unless stated otherwise, we write S instead of (S, \cdot, \leq) and S stands for an ordered semigroup.

A non-empty subset A of an ordered semigroup S is called a subsemigroup of S if $A A \subseteq A$.

Let S be an ordered semigroup. For A and B are non-empty subsets of S, we denote

$$
A B=\{a b \mid a \in A, b \in B\} \text { and }(A]=\{b \in S \mid b \leq a \text { for some } a \in A\} .
$$

For $a \in S$, we write $B a$ for $B\{a\}$, similarly $a B$ for $\{a\} B$, and ($a]$ for ($\{a\}]$.
Definition 1.1. [9] A subsemigroup A of an ordered semigroup S is called an interior ideal of S if it satisfies the following condition:
(1) $S A S \subseteq A$;
(2) if $a \in A$ and $b \in S$ such that $b \leq a$, then $b \in A$.

Lemma 1.2. $[10,11]$ Let S be an ordered semigroup. Then the following statements hold.
(1) $A \subseteq(A], \quad(S=(S])$ for any $A \subseteq S$.
(2) $((A]]=(A]$ for any $A \subseteq S$.
(3) If $A \subseteq B \subseteq S$, then $(A] \subseteq(B]$.
(4) $(A](B] \subseteq(A B]$ for any $A, B \subseteq S$.
(5) $((A])(B]]=(A B]$ for any $A, B \subseteq S$.
(6) If A is an interior ideal of S, then $A=(A]$.
(7) $(A \cup B]=(A] \cup(B]$ for any $A, B \subseteq S$.
(8) $A(B \cup C)=A B \cup A C$ and $(B \cup C) A=B A \cup C A$ for any $A, B, C \subseteq S$.

Lemma 1.3. [11] Let S be an ordered semigroup and A_{i} be a subsemigroup of S for all $i \in I$. If $\bigcap_{i \in I} A_{i} \neq \varnothing$, then $\bigcap_{i \in I} A_{i}$ is a subsemigroup of S.

Lemma 1.4. Let S be an ordered semigroup and A_{i} be an interior ideal of S for all $i \in I$. If $\bigcap_{i \in I} A_{i} \neq \varnothing$, then $\bigcap_{i \in I} A_{i}$ is an interior ideal of S.

Proof. Assume that $\bigcap_{i \in I} A_{i} \neq \varnothing$. By Lemma 1.3, $\bigcap_{i \in I} A_{i}$ is a subsemigroup of S. Let $x \in S\left(\bigcap_{i \in I} A_{i}\right) S$. Then $x=s_{1} a s_{2}$ for some $s_{1}, s_{2} \in S$ and $a \in \bigcap_{i \in I} A_{i}$. Since $a \in \bigcap_{i \in I} A_{i}$, we have $a \in A_{i}$ for all $i \in I$, where A_{i} is an
interior ideal of S for all $i \in I$. So we have $x=s_{1} a s_{2} \in S\left(A_{i}\right) S \subseteq A_{i}$ for all $i \in I$. Thus $x \in \bigcap_{i \in I} A_{i}$. Next, let $y \in \bigcap_{i \in I} A_{i}$ and $z \in S$ be such that $z \leq y$. Since $y \in \bigcap_{i \in I} A_{i}$, then $y \in A_{i}$ for all $i \in I$, where A_{i} is an interior ideal of S for all $i \in I$. Since $z \leq y$ and $y \in A_{i}$ for all $i \in I$, we have $z \in A_{i}$ for all $i \in I$. So $z \in \bigcap_{i \in I} A_{i}$. Therefore, $\bigcap_{i \in I} A_{i}$ is an interior ideal of S.
Definition 1.5. Let S be an ordered semigroup and let A be a non-empty subset of S. Then the intersection of all interior ideals of S containing A is the smallest interior ideal of S generated by A, denoted by $(A)_{I}$.
Lemma 1.6. Let S be an ordered semigroup and let A be a non-empty subset of S. Then $(A)_{I}=(A \cup A A \cup S A S]$.
Proof. Let $B=(A \cup A A \cup S A S]$. Consider,

$$
\begin{aligned}
B B & =(A \cup A A \cup S A S](A \cup A A \cup S A S] \\
& \subseteq((A \cup A A \cup S A S)(A \cup A A \cup S A S)] \\
& =(A A \cup A A A \cup A S A S \cup A A A \cup A A A A \cup A A S A S \cup S A S A \cup S A S A A \cup S A S S A S] \\
& \subseteq(A A \cup S A S] \subseteq B
\end{aligned}
$$

Thus B is a subsemigroup of S. Next, consider

$$
\begin{aligned}
S B S & =S(A \cup A A \cup S A S] S \\
& =(S](A \cup A A \cup S A S)(S] \\
& \subseteq((S)(A \cup A A \cup S A S)](S] \\
& =(S A \cup S A A \cup S S A S](S] \\
& \subseteq((S A \cup S A A \cup S S A S)(S)] \\
& =(S A S \cup S A A S \cup S S A S S] \\
& \subseteq(S A S] \\
& \subseteq B .
\end{aligned}
$$

Thus $S B S \subseteq B$. Clearly, if $x \in B=(A \cup A A \cup S A S]$ and $y \in S$ such that $y \leq x$, then $y \in((A \cup A A \cup S A S]]$ $=(A \cup A A \cup S A S]=B$. Hence, B is an interior ideal of S containing A. Finally, let C be an interior ideal of S containing A. Clearly, $A \subseteq C$. Since C is a subsemigroup of S, we have $A A \subseteq C C \subseteq C$. Since C is an interior ideal of S, we have $S A S \subseteq S C S \subseteq C$. Thus $A \cup A A \cup S A S \subseteq C$, and so $B=(A \cup A A \cup S A S] \subseteq(C]=C$. Hence, B is the smallest interior ideal of S containing A. Therefore, $B=(A \cup A A \cup S A S]$.

2. Main Results

We begin this section with the following definition of interior bases of an ordered semigroup.
Definition 2.1. Let S be an ordered semigroup. A non-empty subset A of S is called an interior base of S if it satisfies the following two conditions:
(1) $S=(A \cup A A \cup S A S]$, i.e., $S=(A)_{I}$;
(2) if B is a subset of A such that $S=(B)_{I}$, then $B=A$.

Example 2.2. [12] Let $S=\{a, b, c, d, e\}$ be an ordered semigroup such that the multiplication and the order relation are defined by:

$$
\begin{array}{r|lllll}
\cdot & a & b & c & d & e \\
\hline a & a & a & c & a & c \\
b & a & a & c & a & c \\
c & a & a & c & a & c \\
d & d & d & e & d & e \\
e & d & d & e & d & e \\
, d),(a, e),(b, b),(b, c),(b, d),(b, e),(c, c),(c, e),(d, d),(d, e),(e, e)\} .
\end{array}
$$

The interior bases of S are $\{a\},\{b\},\{c\},\{d\}$, and $\{e\}$.
Example 2.3. [13] Let $S=\{a, b, c, d, f\}$ be an ordered semigroup such that the multiplication and the order relation are defined by:
$\left.\begin{array}{c|lllll}\cdot & a & b & c & d & f \\ \hline a & b & b & d & d & d \\ b & b & b & d & d & d \\ c & d & d & c & d & c \\ d & d & d & d & d & d \\ f & d & d & c & d & c\end{array}\right]=\{(a, a),(a, b),(b, b),(c, c),(d, b),(d, c),(d, d),(f, c),(f, f)\}$.

The interior bases of S are $\{a, c\},\{a, f\},\{b, c\}$, and $\{b, f\}$.
Lemma 2.4. Let A be an interior base of an ordered semigroup S, and let $a, b \in A$. If $a \in(b b \cup S b S]$, then $a=b$.
Proof. Assume that $a \in(b b \cup S b S]$, and suppose that $a \neq b$. Setting $B=A \backslash\{a\}$. Then $B \subset A$. Since $a \neq b$, we have $b \in B$. We will show that $(A)_{I} \subseteq(B)_{I}$. Let $x \in(A)_{I}$. Since $x \in(A)_{I}=(A \cup A A \cup S A S]$, we have $x \leq y$ for some $y \in A \cup A A \cup S A S$. We can consider the three following cases.
Case 1: $y \in A$. There are two subcases to consider.
Subcase 1.1: $y \neq a$.
So $y \in B \subseteq(B \cup B B \cup S B S]$. Since $x \leq y$ and $y \in(B \cup B B \cup S B S]$, we obtain

$$
x \in((B \cup B B \cup S B S]]=(B \cup B B \cup S B S]=(B)_{I} .
$$

Subcase 1.2: $y=a$.
By assumption, we have

$$
y=a \in(b b \cup S b S] \subseteq(B B \cup S B S] \subseteq(B)_{I}
$$

Since $x \leq y$ and $y \in(B)_{I}$, so we obtain $x \in\left((B)_{I}\right]=(B)_{I}$.
Case 2: $y \in A A$. Then $y=a_{1} a_{2}$ for some $a_{1}, a_{2} \in A$. There are four subcases to consider.
Subcase 2.1: $a_{1} \neq a$ and $a_{2} \neq a$.
We have $a_{1}, a_{2} \in B$. So $y=a_{1} a_{2} \in B B \subseteq(B)_{I}$. Since $x \leq y$ and $y \in(B)_{I}$, we obtain $x \in\left((B)_{I}\right]=(B)_{I}$.
Subcase 2.2: $a_{1}=a$ and $a_{2} \neq a$.
Then by assumption and $a_{2} \in B$, we have

$$
\begin{aligned}
y=a_{1} a_{2} \in(b b \cup S b S] B & \subseteq(B B \cup S B S](B] \\
& \subseteq((B B \cup S B S)(B)] \\
& =(B B B \cup S B S B] \\
& \subseteq(S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

Since $x \leq y$ and $y \in(B)_{I}$, so $x \in\left((B)_{I}\right]=(B)_{I}$.
Subcase 2.3: $a_{1} \neq a$ and $a_{2}=a$.
Then by assumption and $a_{1} \in B$, we have

$$
\begin{aligned}
y=a_{1} a_{2} \in B(b b \cup S b S] & \subseteq(B](B B \cup S B S] \\
& \subseteq((B)(B B \cup S B S)] \\
& =(B B B \cup B S B S] \\
& \subseteq(S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

Since $x \leq y$ and $y \in(B)_{I}$, so $x \in\left((B)_{I}\right]=(B)_{I}$.
Subcase 2.4: $a_{1}=a$ and $a_{2}=a$.
By assumption, we have

$$
\begin{aligned}
y=a_{1} a_{2} \in(b b \cup S b S](b b \cup S b S] & \subseteq((b b \cup S b S)(b b \cup S b S)] \\
& =(b b b b \cup b b S b S \cup S b S b b \cup S b S S b S] \\
& \subseteq(B B B B \cup B B S B S \cup S B S B B \cup S B S S B S] \\
& \subseteq(S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

Since $x \leq y$ and $y \in(B)_{I}$, so $x \in\left((B)_{I}\right]=(B)_{I}$.
Case 3: $y \in S A S$. Then $y=s_{1} a_{3} s_{2}$ for some $s_{1}, s_{2} \in S$ and $a_{3} \in A$. There are two subcases to consider.
Subcase 3.1: $a_{3} \neq a$.
We have $a_{3} \in B$. So $y=s_{1} a_{3} s_{2} \in S B S \subseteq(B)_{I}$. Since $x \leq y$ and $y \in(B)_{I}$, we have $x \in\left((B)_{I}\right]=(B)_{I}$.
Subcase 3.2: $a_{3}=a$.
By assumption, we have

$$
\begin{aligned}
y=s_{1} a_{3} s_{2} \in S(b b \cup S b S] S & \subseteq(S](B B \cup S B S](S] \\
& \subseteq((S)(B B \cup S B S)](S] \\
& =(S B B \cup S S B S](S] \\
& \subseteq((S B B \cup S S B S)(S)] \\
& =(S B B S \cup S S B S S] \\
& \subseteq(S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

Since $x \leq y$ and $y \in(B)_{I}$, we have $x \in\left((B)_{I}\right]=(B)_{I}$.
From both cases, we obtain $(A)_{I} \subseteq(B)_{I}$. Since A is an interior base of S, we have

$$
S=(A)_{I} \subseteq(B)_{I} \subseteq S
$$

Thus $S=(B)_{I}$. This is a contradiction. Therefore, $a=b$.

Lemma 2.5. Let A be an interior base of an ordered semigroup S, and let $a, b, c \in A$. If $a \in(c b \cup S c b S]$, then $a=b$ or $a=c$.

Proof. Assume that $a \in(c b \cup S c b S]$. Suppose that $a \neq b$ and $a \neq c$. We set $B=A \backslash\{a\}$. Clearly, $B \subset A$. Since $a \neq b$ and $a \neq c$, so we have $b, c \in B$. We will show that $(B)_{I}=S$. Obviously, $(B)_{I} \subseteq S$.

Next, to show that $S \subseteq(B)_{I}$. Let $x \in S$. Since A is an interior base of S, we have $S=(A)_{I}$. So $x \in(A)_{I}=(A \cup A A \cup S A S]$. Since $x \in(A \cup A A \cup S A S]$, we have $x \leq y$ for some $y \in A \cup A A \cup S A S$. We can consider the three following cases.
Case 1: $y \in A$. There are two subcases to consider.
Subcase 1.1: $y \neq a$. So $y \in B \subseteq(B)_{I}$.
Subcase 1.2: $y=a$. By assumption, we have

$$
y=a \in(c b \cup S c b S] \subseteq(B B \cup S B B S] \subseteq(B B \cup S B S] \subseteq(B)_{I} .
$$

Case 2: $y \in A A$. Then $y=a_{1} a_{2}$ for some $a_{1}, a_{2} \in A$. There are four subcases to consider.
Subcase 2.1: $a_{1} \neq a$ and $a_{2} \neq a$. We have $a_{1}, a_{2} \in B$. So $y=a_{1} a_{2} \in B B \subseteq(B)_{I}$.
Subcase 2.2: $a_{1}=a$ and $a_{2} \neq a$. By assumption and $a_{2} \in B$, we have

$$
\begin{aligned}
y=a_{1} a_{2} \in(c b \cup S c b S] B & \subseteq(B B \cup S B B S)(B] \\
& \subseteq((B B \cup S B B S)(B)] \\
& =(B B B \cup S B B S B] \\
& \subseteq(S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

Subcase 2.3: $a_{1} \neq a$ and $a_{2}=a$. By assumption and $a_{1} \in B$, we have

$$
y=a_{1} a_{2} \in B(c b \cup S c b S] \subseteq(B](B B \cup S B B S] \subseteq((B)(B B \cup S B B S)]=(B B B \cup B S B B S] \subseteq(S B S] \subseteq(B)_{I}
$$

Subcase 2.4: $a_{1}=a$ and $a_{2}=a$. By assumption, we have

$$
\begin{aligned}
y=a_{1} a_{2} \in(c b \cup S c b S](c b \cup S c b S] & \subseteq((c b \cup S c b S)(c b \cup S c b S)] \\
& =(c b c b \cup c b S c b S \cup S c b S c b \cup S c b S S c b S] \\
& \subseteq(B B B B \cup B B S B B S \cup S B B S B B \cup S B B S S B B S] \\
& \subseteq(S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

Case 3: $y \in S A S$. Then $y=s_{1} a_{3} s_{2}$ for some $s_{1}, s_{2} \in S$ and $a_{3} \in A$. There are two subcases to consider.
Subcase 3.1: $a_{3} \neq a$. We have $a_{3} \in B$. So $y=s_{1} a_{3} s_{2} \in S B S \subseteq(B)_{I}$.
Subcase 3.2: $a_{3}=a$. By assumption, we have

$$
\begin{aligned}
y=s_{1} a_{3} s_{2} \in S(c b \cup S c b S] S & \subseteq(S](B B \cup S B B S](S] \\
& \subseteq((S)(B B \cup S B B S)](S] \\
& =(S B B \cup S S B B S](S] \\
& \subseteq((S B B \cup S S B B S)(S)] \\
& =(S B B S \cup S S B B S S] \\
& \subseteq(S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

From both cases, we obtain $y \in(B)_{I}$. Since $x \leq y$ and $y \in(B)_{I}$, we have $x \in\left((B)_{I}\right]=(B)_{I}$. Thus $S \subseteq(B)_{I}$ and hence $S=(B)_{I}$. This is a contradiction. Therefore, $a=b$ or $a=c$.

Beside the partial order \leq on an ordered semigroup S, we define quasi-order \leq_{I} on S as follows:

Definition 2.6. Let S be an ordered semigroup. We define a quasi-order on S by for any $a, b \in S$,

$$
a \leq_{I} b \Leftrightarrow(a)_{I} \subseteq(b)_{I} .
$$

The following example shows that \leq_{I} defined above is not, in general, a partial order.
Example 2.7. From Example 2.2, we have that $(a)_{I} \subseteq(b)_{I}$ (i.e., $\left.a \leq_{I} b\right)$ and $(b)_{I} \subseteq(a)_{I}$ (i.e., $\left.b \leq_{I} a\right)$, but $a \neq b$. Thus \leq_{I} is not a partial order on S.
Lemma 2.8. Let S be an ordered semigroup. For any $x, y \in S$, if $x \leq y$, then $x \leq_{I} y$.
Proof. For any $x, y \in S$, let $x \leq y$. We will show that $(x)_{I} \subseteq(y)_{I}$. Since $x \leq y$ and $y \in(y)_{I}$, we have

```
x\in((y)\mp@subsup{)}{I}{}]=(y\mp@subsup{)}{I}{}.\mathrm{ Since }{x}\subseteq(y\mp@subsup{)}{I}{}=(y\cupyy\cupSyS], then
x\cupxx\cupSxS
\subseteq ( ~ \subseteq y \cup y y \cup S y S ] \cup ( y \cup y y \cup S y S ] ( y \cup y y \cup S y S ] \cup S ( y \cup y y \cup S y S ] S
\subseteq(y\cupyy\cupSyS]\cup((y\cupyy\cupSyS) (y\cupyy\cupSyS)]\cup(S](y\cupyy\cupSyS](S]
\subseteq(y\cupyy\cupSyS]\cup(yy\cupyyy\cupySyS\cupyyy\cupyyyy\cupyySyS\cupSySy\cupSySyy\cupSySSyS]
    \cup((S)(y\cupyy\cupSyS)](S]
\subseteq(y\cupyy\cupSyS]\cup(yy\cupSyS]\cup(Sy\cupSyy\cupSSyS](S]
\subseteq ( ( y \cup y y \cup S y S ] \cup ( y y \cup S y S ] \cup ( ( S y \cup S y y \cup S S y S ) ( S ) ]
=( y\cupyy\cupSyS]\cup(yy\cupSyS]\cup(SyS\cupSyyS\cupSSySS]
\subseteq(y\cupyy\cupSyS]\cup(yy\cupSyS]\cup(SyS]
```

$=(y \cup y y \cup S y S]=(y)_{I}$.
So $(x)_{I}=(x \cup x x \cup S x S] \subseteq\left((y)_{I}\right]=(y)_{I}$. Thus $(x)_{I} \subseteq(y)_{I}$. Therefore, $x \leq_{I} y$.
Nevertheless, the converse of Lemma 2.8, is not valid in general. By Example 2.2, we have $b \leq_{I} a$, but $b \leq a$ is false.

Lemma 2.9. Let A be an interior base of an ordered semigroup S. If $a, b \in A$ such that $a \neq b$, then neither $a \leq_{I} b$ nor $b \leq_{I} a$.

Proof. Assume that $a, b \in A$ such that $a \neq b$. Suppose that $a \leq_{I} b$. Setting $B=A \backslash\{a\}$. We have $b \in B$ and $B \subset A$. First, we claim that, for any $x \in S$ there exists $y \in A$ such that $(x)_{I} \subseteq(y)_{I}$. Since $x \in S$ and $S=(A)_{I}$, we have $x \in(A)_{I}$. Since $x \in(A)_{I}$, we have $x \in(y)_{I}$ for some $y \in A$. Since $x \in(y)_{I}$, it follows that $(x)_{I} \subseteq(y)_{I}$. So $(x)_{I} \subseteq(y)_{I}$ for some $y \in A$. Next, we will show that $S=(B)_{I}$. Let $x_{1} \in S$. There exists $y_{1} \in A$ such that $\left(x_{1}\right)_{I} \subseteq\left(y_{1}\right)_{I}$. There are two cases to consider. If $y_{1} \neq a$, then $y_{1} \in B$. We have

$$
x_{1} \in\left(x_{1}\right)_{I} \subseteq\left(y_{1}\right)_{I} \subseteq(B)_{I} .
$$

If $y_{1}=a$, then $y_{1} \leq_{I} b$, i.e., $\left(y_{1}\right)_{I} \subseteq(b)_{I}$. We have

$$
x_{1} \in\left(x_{1}\right)_{I} \subseteq\left(y_{1}\right)_{I} \subseteq(b)_{I} \subseteq(B)_{I}
$$

Thus $S \subseteq(B)_{I}$, and so $S=(B)_{I}$. This is a contradiction. Hence, $a \leq_{I} b$ is false. The case $b \leq_{I} a$ can be proved similarly.
Lemma 2.10. Let A be an interior base of an ordered semigroup S. Let $a, b, c \in A$ and $s \in S$.
(1) If $a \in(b c \cup b c b c \cup S b c S]$, then $a=b$ or $a=c$.
(2) If $a \in(s b c s \cup s b c s s b c s \cup S s b c s S]$, then $a=b$ or $a=c$.

Proof. (1) Assume that $a \in(b c \cup b c b c \cup S b c S]$. Suppose that $a \neq b$ and $a \neq c$. We set $B=A \backslash\{a\}$.
Clearly, $B \subset A$. Since $a \neq b$ and $a \neq c$, we have $b, c \in B$. We will show that $(A)_{I} \subseteq(B)_{I}$, it suffices to show that $A \subseteq(B)_{I}$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq(B)_{I}$. If $x=a$, then by assumption, we have

$$
\begin{aligned}
x=a \in(b c \cup b c b c \cup S b c S] & \subseteq(B B \cup B B B B \cup S B B S] \\
& \subseteq(B B \cup S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

So $A \subseteq(B)_{I}$. It follows that $(A)_{I} \subseteq(B)_{I}$. Since A is an interior base of S, so we have

$$
S=(A)_{I} \subseteq(B)_{I} \subseteq S
$$

Thus $S=(B)_{I}$. This is a contradiction. Therefore, $a=b$ or $a=c$.
(2) Assume that $a \in(s b c s \cup s b c s s b c s \cup S s b c s S]$. Suppose that $a \neq b$ and $a \neq c$. We set $B=A \backslash\{a\}$. Then $B \subset A$. Since $a \neq b$ and $a \neq c$, we have $b, c \in B$. We will show that $(A)_{I} \subseteq(B)_{I}$, it suffices to show that $A \subseteq(B)_{I}$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq(B)_{I}$. If $x=a$, then by assumption, we have

$$
\begin{aligned}
x=a \in(s b c s \cup s b c s s b c s \cup S s b c s S] & \subseteq(S B B S \cup S B B S S B B S \cup S S B B S S] \\
& \subseteq(S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

So $A \subseteq(B)_{I}$. This implies that $(A)_{I} \subseteq(B)_{I}$. Thus

$$
S=(A)_{I} \subseteq(B)_{I} \subseteq S
$$

Hence, $S=(B)_{I}$. This is a contradiction. Therefore, $a=b$ or $a=c$.
Lemma 2.11. Let A be an interior base of an ordered semigroup S.
(1) For any $a, b, c \in A$, if $a \neq b$ and $a \neq c$, then $a \not \leq_{I} b c$.
(2) For any $a, b, c \in A$ and $s \in S$, if $a \neq b$ and $a \neq c$, then $a \not \leq_{I} s b c s$.

Proof. (1) For any $a, b, c \in A$, let $a \neq b$ and $a \neq c$. Suppose that $a \leq_{I} b c$, i.e., $(a)_{I} \subseteq(b c)_{I}$. We have

$$
a \in(a)_{I} \subseteq(b c)_{I}=(b c \cup b c b c \cup S b c S]
$$

By Lemma 2.10(1), we obtain $a=b$ or $a=c$. This contradicts to assumption. Therefore, $a \not \mathbb{Z}_{I} b c$.
(2) For any $a, b, c \in A$ and $s \in S$, let $a \neq b$ and $a \neq c$. Suppose that $a \leq_{I} s b c s$. We have

$$
a \in(a)_{I} \subseteq(s b c s)_{I}=(s b c s \cup s b c s s b c s \cup S s b c s S] .
$$

By Lemma 2.10(2), $a=b$ or $a=c$. This contradicts to assumption. Therefore, $a \not \mathbb{Z}_{I}$ sbcs.
Lemma 2.12. Let A be an interior base of an ordered semigroup S. For any $a, b \in A$ and $s_{1}, s_{2} \in S$, if $a \neq b$, then $a \not ¥_{I} s_{1} b s_{2}$.

Proof. For any $a, b \in A$ and $s_{1}, s_{2} \in S$, let $a \neq b$. Suppose that $a \leq_{I} s_{1} b s_{2}$, i.e., $(a)_{I} \subseteq\left(s_{1} b s_{2}\right)_{I}$. We have

$$
a \in(a)_{I} \subseteq\left(s_{1} b s_{2}\right)_{I}=\left(s_{1} b s_{2} \cup s_{1} b s_{2} s_{1} b s_{2} \cup S s_{1} b s_{2} S\right]
$$

We set $B=A \backslash\{a\}$. Then $b \in B$ and $B \subset A$. We will show that $(A)_{I} \subseteq(B)_{I}$, it suffices to show that $A \subseteq(B)_{I}$. Let $x \in A$. If $x \neq a$, then $x \in B \subseteq(B)_{I}$. If $x=a$, then by assumption, we have

$$
\begin{aligned}
x=a \in\left(s_{1} b s_{2} \cup s_{1} b s_{2} s_{1} b s_{2} \cup S s_{1} b s_{2} S\right] & \subseteq(S B S \cup S B S S B S \cup S S B S S] \\
& \subseteq(S B S] \\
& \subseteq(B)_{I} .
\end{aligned}
$$

So $x \in(B)_{I}$. Thus $A \subseteq(B)_{I}$. It follows that $(A)_{I} \subseteq(B)_{I}$. Since A is an interior base of S, then

$$
S=(A)_{I} \subseteq(B)_{I} \subseteq S
$$

Hence, $S=(B)_{I}$. This is a contradiction. Therefore, $a \not \not_{I} s_{1} b s_{2}$.
We now prove the main result of this paper.
Theorem 2.13. A non-empty subset A of an ordered semigroup S is an interior base of S if and only if A satisfies the following conditions:
(1) For any $x \in S$,
(1.1) there exists $a \in A$ such that $x \leq_{I} a$; or
(1.2) there exist $a_{1}, a_{2} \in A$ such that $x \leq_{I} a_{1} a_{2}$; or
(1.3) there exist $a_{3} \in A$ and $s_{1}, s_{2} \in S$ such that $x \leq_{I} s_{1} a_{3} s_{2}$.
(2) For any $a, b, c \in A$, if $a \neq b$ and $a \neq c$, then $a \not \chi_{I} b c$.
(3) For any $a, b \in A$ and $s_{1}, s_{2} \in S$, if $a \neq b$, then $a \not \Varangle_{1} s_{1} b s_{2}$.

Proof. Assume that A is an interior base of S. We have $S=(A)_{I}$. To show that (1) holds. Let $x \in S$. Then $x \in(A)_{I}=(A \cup A A \cup S A S]$. Since $x \in(A \cup A A \cup S A S]$, we have $x \leq y$ for some $y \in A \cup A A \cup S A S$. We consider three cases:
Case 1: $y \in A$. Then $y=a$ for some $a \in A$. This implies $(y)_{I} \subseteq(a)_{I}$, and so $y \leq_{I} a$. Since $x \leq y$, by Lemma 2.8, we have $x \leq_{I} y$. Thus $x \leq_{I} y \leq_{I} a$, and hence $x \leq_{I} a$.
Case 2: $y \in A A$. Then $y=a_{1} a_{2}$ for some $a_{1}, a_{2} \in A$. This implies $(y)_{I} \subseteq\left(a_{1} a_{2}\right)_{I}$, and so $y \leq_{I} a_{1} a_{2}$. Since $x \leq y$, by Lemma 2.8, we have $x \leq_{I} y$. Thus $x \leq_{I} y \leq_{I} a_{1} a_{2}$, and hence $x \leq_{I} a_{1} a_{2}$.

Case 3: $y \in$ SAS. Then $y=s_{1} a_{3} s_{2}$ for some $a_{3} \in A, s_{1}, s_{2} \in S$. We obtain $(y)_{I} \subseteq\left(s_{1} a_{3} s_{2}\right)_{I}$. So $y \leq_{I} s_{1} a_{3} s_{2}$. Since $x \leq y$, by Lemma 2.8, we have $x \leq_{I} y$. Thus $x \leq_{I} y \leq_{I} s_{1} a_{3} s_{2}$, and hence $x \leq_{I} s_{1} a_{3} s_{2}$.

The validity of (2) and (3) follow, respectively, from Lemma 2.11(1), and Lemma 2.12.
Conversely, assume that the conditions (1), (2) and (3) hold. We will show that A is an interior base of S. First, We will show that $S=(A)_{I}$. Clearly, $(A)_{I} \subseteq S$. By (1.1), it follows that $S \subseteq A$. We have

$$
S \subseteq A \cup A A \cup S A S \subseteq(A \cup A A \cup S A S]=(A)_{I} .
$$

Thus $S \subseteq(A)_{I}$, and so $S=(A)_{I}$. Next, it remains to show that A is a minimal subset of S with the property $S=(A)_{I}$. Suppose that $S=(B)_{I}$ for some $B \subset A$. Since $B \subset A$, there exists $x \in A$ such that $x \notin B$. Since $x \in A \subseteq S=(B)_{I}=(B] \cup(B B \cup S B S]$, we have $x \in(B]$ or $x \in(B \cup B B \cup S B S]$. If $x \in(B]$, then $x \leq y$ for some $y \in B$. Since $x \leq y$, by Lemma 2.8, we have $x \leq_{I} y$ where $x, y \in A$. This contradicts to Lemma 2.9. Thus $x \notin(B]$, and so $x \in(B B \cup S B S]$. Since $x \in(B B \cup S B S]$, we have $x \leq z$ for some $z \in B B \cup S B S$. We consider two cases:

Case 1: $z \in B B$. Then $z=a_{1} a_{2}$ for some $a_{1}, a_{2} \in B$. We have $a_{1}, a_{2} \in A$. Since $x \notin B$, then $x \neq a_{1}$ and $x \neq a_{2}$. Since $z=a_{1} a_{2}$, we obtain $(z)_{I} \subseteq\left(a_{1} a_{2}\right)_{I}$, i.e., $z \leq_{I} a_{1} a_{2}$. Since $x \leq z$, by Lemma 2.8, we have $x \leq_{I} z$. So $x \leq_{I} z \leq_{I} a_{1} a_{2}$. Thus $x \leq_{I} a_{1} a_{2}$. This contradicts to (2).
Case 2: $z \in S B S$. Then $z=s_{1} a_{3} s_{2}$ for some $s_{1}, s_{2} \in S$ and $a_{3} \in B$. We have $a_{3} \in A$. Since $x \notin B$, we have $x \neq a_{3}$. Since $z=s_{1} a_{3} s_{2}$, we obtain $(z)_{I} \subseteq\left(s_{1} a_{3} s_{2}\right)_{I}$, i.e., $z \leq_{I} s_{1} a_{3} s_{2}$. Since $x \leq z$, by Lemma 2.8, we have $x \leq_{I} z$. So $x \leq_{I} z \leq_{I} s_{1} a_{3} s_{2}$. Thus $x \leq_{I} s_{1} a_{3} s_{2}$. This contradicts to (3).

Therefore, A is an interior base of S.
The following theorem characterization when an interior base of an ordered semigroup S is a subsemigroup of S.
Theorem 2.14. Let A be an interior base of an ordered semigroup S. Then A is a subsemigroup of S if and only if for any $a, b \in A, a b=a$ or $a b=b$.

Proof. Assume that A is a subsemigroup of S. Suppose that $a b \neq a$ and $a b \neq b$. Let $c=a b$. Then $c \neq a$ and $c \neq b$. Since $c=a b \in(a b \cup S a b S]$, by Lemma 2.5, we have $c=a$ or $c=b$. This is a contradiction. The converse statement is clear.

Acknowledgements: This research was supported by University of Phayao and Thailand Science Research and Innovation Fund (Fundamental Fund 2024).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] N.G. Alimov, On ordered semigroups, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 569-576.
[2] C.G. Chehata, On an ordered semigroup, J. Lond. Math. Soc. s1-28 (1953), 353-356. https://doi.org/10.1112/jlms/s1-28.3.353.
[3] T. Tamura, One-sided bases and translations of a semigroup, Math. Japon. 3 (1955), 137-141.
[4] I. Fabrici, One-sided bases of semigroups, Mat. Casopis. 22 (1972), 286-290.
[5] I. Fabrici, Two-sided bases of semigroups, Mat. Casopis. 25 (1975), 173-178.
[6] T. Changphas, P. Sammaprab, On two-sided bases of an ordered semigroup, Quasigroups Related Syst. 22 (2014), 59-66.
[7] P. Kummoon, T. Changphas, On bi-bases of a semigroup, Quasigroups Related Syst. 25 (2017), 87-94.
[8] P. Kummoon, T. Changphas, On bi-bases of Γ-semigroups, Thai J. Math. (Spec. Iss. Ann. Meet. Math.) (2018), 75-86.
[9] N. Kehayopulu, Note on interior ideals, ideal elements in ordered semigroups, Sci. Math. 2 (1999), 407409.
[10] N. Kehayopulu, M. Tsingelis, On left regular ordered semigroups, Southeast Asian Bull. Math. 25 (2002), 609-615.
[11] S. Thongrak, A. Iampan, Characterizations of ordered semigroups by the properties of their ordered (m, n) quasi-ideals, Palestine J. Math. 7 (2018), 299-306.
[12] N. Kehayopulu, On completely regular ordered semigroups, Sci. Math. 1 (1998), 27-32.
[13] S.K. Lee, J.H. Jung, On left regular po-semigroups, Commun. Korean Math. Soc. 13 (1998), 1-6.

