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ABSTRACT. In this paper, the notions of interior bases of ordered semigroups are introduced, and some examples are
also presented. We describe a characterization when a non-empty subset of an ordered semigroup is an interior base
of an ordered semigroup. Finally, a characterization when an interior base of an ordered semigroup is a subsemigroup

of an ordered semigroup will be given.

1. Introduction

A semigroup is one of algebraic structures which was widely studied. There are many
generalizations, for example, LA-semigroup, I'-semigroup, ordered semigroups, etc. The study of
ordered semigroups began about 1950 by several authors, for example, Alimov [1], and Chehata
[2]. The notion of one-sided bases of a semigroup was introduced by Tamura [3]. In 1972, Fabrici
studied the structure of semigroups containing one-sided bases and he introduced the concept of
two-sided bases of semigroups in 1975 [4,5]. Later, Changphas and Summaprab introduced the
concept of two-sided bases of an ordered semigroup [6]. In 2017, Kummoon and Changphas
introduced the concept of bi-bases of a semigroup and bi-bases of I-semigroups [7,8].

In this paper, the concepts of interior bases of ordered semigroups will be introduced.

Moreover, we describe a characterization when a non-empty subset of an ordered semigroup is
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an interior base of an ordered semigroup and a characterization when an interior base of an
ordered semigroup is a subsemigroup of an ordered semigroup.

An ordered semigroup (some authors called po-semigroup) (S,-,<) is a poset (S,<) at the
same time a semigroup (S,-) such that, for any x,y,z €S,

x<y implies xz<yz and zx<zy.

Throughout this paper, unless stated otherwise, we write S instead of (S,-,<) and S

stands for an ordered semigroup.

A non-empty subset A of an ordered semigroup S is called a subsemigroup of S if
AAcC A.

Let S be an ordered semigroup. For A and B are non-empty subsets of S, we denote

AB={abjac A, beB} and (A]={beS|b<a for some ac A}.

For aeS, we write Ba for Bfa}, similarly aB for {a}B, and (a] for ({a}].
Definition 1.1. [9] A subsemigroup A of an ordered semigroup S is called an interior ideal of S
if it satisfies the following condition:
(1) SAS c A;
(2)if ac A and beS such that b<a, then be A.
Lemma 1.2. [10,11] Let S be an ordered semigroup. Then the following statements hold.
1) Ac(Al, (S=(S]) forany AcS.
2) ((Al]=(A] for any AcS.
3)If AcBcS, then (A] < (B].
4
5
6) If A is an interior ideal of S, then A=(Al.

)
)
) (Al(B]< (AB] forany ABcCS.
) ((Al(B]]=(AB] for any A BcS.
)
)

7) (AUB]=(A]u(B] forany A BcS.

(
(
(
(
(
(
(
(8) A(BuUC)=ABUAC and (BUC)A=BAUCA forany AB,CcS.

Lemma 1.3. [11] Let S be an ordered semigroup and A be a subsemigroup of S forall iel. If
(1A =, then (A is a subsemigroup of S.

iel iel

Lemma 1.4. Let S be an ordered semigroup and A be an interior ideal of S forall iel. If

(1A =9, then [)A is an interior ideal of S.

iel iel

Proof. Assume that [|A #@. By Lemma 1.3, [ A is a subsemigroup of S. Let xe S((")A)S. Then
iel iel iel

x =s.as, for some s;,s,€S and ae[)A. Since ae(|A, we have ac A forall iel, where A isan

iel iel
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interior ideal of S for all iel. So we have x=sas, € S(A)Sc A forall iel. Thus xe(")A. Next,

iel

let ye()A and zeS be such that z<y. Since ye()A, then yeA forall iel, where A is an

iel iel
interior ideal of S forall iel. Since z<y and ye A forall iel, wehave zeA forall iel. So

z¢()A. Therefore, (A is an interior ideal of S .

el el

Definition 1.5. Let S be an ordered semigroup and let A be a non-empty subset of S. Then the
intersection of all interior ideals of S containing A is the smallest interior ideal of S generated
by A, denoted by (A),.

Lemma 1.6. Let S be an ordered semigroup and let A be a non-empty subset of S. Then
(A), =(AUAAUSAS].

Proof. Let B=(AuAAUSAS]. Consider,

BB (AU AAUSAS](AU AAUSAS]

((AU AAUSAS) (AU AAUSAS)]

(AAU AAA U ASAS U AAAU AAAA U AASAS U SASA U SASAA U SASSAS]
< (AAUSAS]cB.

N

Thus B is a subsemigroup of S. Next, consider

SBS = S(AUAAUSASIS
(SI(AU AAU SAS)(S]
((S)(AU AAU SAS)](S]
(SAUSAAU SSAS](S]
((SAU SAAU SSAS)(S)]
(SAS U SAAS U SSASS]
(SAS]

B.

N

N

N N

Thus SBS ¢ B. Clearly, if xe B=(AUAAUSAS] and yeS such that y<x, then ye((AUAAUSAS]]
=(AUAAUSAS]=B. Hence, B is an interior ideal of S containing A. Finally, let C be an interior
ideal of S containing A. Clearly, AcC. Since C is a subsemigroup of S, we have AAcCC cC.
Since C is an interior ideal of S, we have SAScSCScC. Thus AUAAUSAS cC, and so

B=(AUAAUSAS]c (C]=C. Hence, B is the smallest interior ideal of S containing A. Therefore,
B = (AU AAUSAS].

2. Main Results
We begin this section with the following definition of interior bases of an ordered
semigroup.
Definition 2.1. Let S be an ordered semigroup. A non-empty subset A of S is called an interior

base of S if it satisfies the following two conditions:
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(1) S=(AUAAUSAS], ie., S=(A),;
(2) if B is a subset of A such that S=(B),, then B=A.
Example 2.2. [12] Let S ={a,b,c,d,e} be an ordered semigroup such that the multiplication and the

order relation are defined by:

d|{d d e d e
e|d d e d e
<={(a,a),(a,b),(a,c),(a,d),(a,e),(b,b),(b,c),(b,d),(b,e),(c,c),(c.e),(d,d),(d,e),(e,e)}.
The interior bases of S are {a}, {b}, {c}, {d}, and {e}.
Example 2.3. [13] Let S ={a,b,c,d, f} be an ordered semigroup such that the multiplication and

the order relation are defined by:

a b ¢ d f
alb b d d d
b|{b b d d d
c|d d ¢ d ¢
d|d d d d d
fld d ¢ d c

<={(a,a),(a,b),(b,b),(c,c),(d,b),(d,c),(d,d),(f,c),(f, )}
The interior bases of S are {a,c}, {a, f}, {b,c}, and {b, f}.
Lemma 2.4. Let A be an interior base of an ordered semigroup S, and let a,b e A. If a e (bbw SbS],

then a=h.
Proof. Assume that ae(bbuSbS], and suppose that a=b. Setting B=A\{a}. Then Bc A. Since

a=b, we have b e B. We will show that (A), = (B),. Let xe(A),. Since x € (A), =(AUAAUSAS], we
have x<y for some ye AUAAUSAS. We can consider the three following cases.
Case 1: y € A. There are two subcases to consider.
Subcase 1.1: y #a.
So yeB < (BuUBBWSBS]. Since x<y and ye(BuwBBuUSBS], we obtain
x e (BUBBUSBS]]= (BUBBUSBS] = (B),.
Subcase 1.2: y=a.

By assumption, we have
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y=ae (bbuSbS]c (BB USBS] c (B),.

Since x<y and y e (B),, so we obtain x e ((B),]=(B),.

Case 2: ye AA. Then y=aa, for some a,a, € A. There are four subcases to consider.
Subcase 2.1: a, #a and a, #a.

We have a,a, eB. So y=aa, eBB< (B),. Since X<y and y e (B),, we obtain x e ((B),]1=(B),.
Subcase 2.2: a, =a and a, #a.

Then by assumption and a, € B, we have

y=aa, e(bbuShS]B < (BBUSBS](B]
< ((BBUSBS)(B)]
- (BBBUSBSB]
< (SBS]
c (B).
Since x<y and ye(B),, so xe((B),]1=(B),.
Subcase 2.3: a, #a and a, =a.
Then by assumption and a, € B, we have
y=aa, eBbbuSbS] < (B](BBUSBS]
< ((B)(BBwSBS)]
= (BBBwWBSBS]
< (SBS]
c (B).
Since x<y and ye(B),, so xe((B),]=(B),.
Subcase 2.4: a, =a and a, =a.
By assumption, we have
y=aa, e (bbuShS](bbuShS] < ((bbu ShS)(bbu ShS)]
= (bbbbwbbShS L ShShbw ShSShS]
< (BBBBwWBBSBS U SBSBB L SBSSBS]
c (SBS]
- (B)|-

Since x<y and ye(B),, so xe((B),]=(B),.

Case 3: yeSAS. Then y=sa,s, for some s,s, €S and a, € A. There are two subcases to consider.
Subcase 3.1: a, = a.

We have a, € B. So y=sa;s, € SBS = (B),. Since x<y and ye(B),, we have xe((B),]=(B),.
Subcase 3.2: a, =a.

By assumption, we have
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y =sa,s, € S(bbuUSbS]S (S1(BBUSBS](S]
((S)(BB W SBS)](S]
(SBB U SSBS](S]
((SBB U SSBS)(S)]
(SBBS U SSBSS]
(SBS]

(B),-

N N

N

N N

Since x<y and ye(B),, we have xe((B),]1=(B),.
From both cases, we obtain (A), = (B),. Since A is an interior base of S, we have
S=(A), =(B), .

Thus S =(B),. This is a contradiction. Therefore, a=b.

Lemma 2.5. Let A be an interior base of an ordered semigroup S, and let ab,ceA. If
ae(cbhuSchS], then a=b or a=c.
Proof. Assume that ae(cbuSchbS]. Suppose that az=b and a=c. We set B=A\{a}. Clearly,
Bc A. Since a#b and a=c, so we have b,c e B. We will show that (B), =S. Obviously, (B), < S.
Next, to show that S<(B),. Let xeS. Since A is an interior base of S, we have S=(A),. So
x e (A), =(AUAAUSAS]. Since xe(AUAAUSAS], we have x<y for some ye AUAAUSAS. We can
consider the three following cases.
Case 1: y € A. There are two subcases to consider.
Subcase 1.1: y=a. So ye B c (B),.
Subcase 1.2: y =a. By assumption, we have

y=ae(cbuSchS] < (BBuUSBBS] < (BBUSBS] < (B),.
Case 2: ye AA. Then y=aa, for some a ,a, € A. There are four subcases to consider.
Subcase 2.1: 3, #a and a, #a. We have a,a, eB. So y=aa, e BB<(B),.
Subcase 2.2: a, =a and a, #a. By assumption and a, € B, we have

(BB U SBBS)(B]
((BB U SBBS)(B)]
(BBB U SBBSB]
(SBS]

(B),.

Subcase 2.3: a, #a and a, =a. By assumption and a, € B, we have

y =aa, € B(chu SchS] < (B](BB L SBBS] = ((B)(BB L SBBS)] = (BBB L BSBBS] = (SBS] = (B),.

y=aa, € (cbhuSchS]B

n N

n N

Subcase 2.4: a, =a and a, =a. By assumption, we have



Int. J. Anal. Appl. (2024), 22:54 7

y =aa, € (cbuw SchS](ch w ScbS]

N

((cbw SchS)(cbw SchS)]

(cbcbwchSchS U ScbSch w SchSSchS]
(BBBB ' BBSBBS  SBBSBB \ SBBSSBBS]
(SBS]

(B),.

Case 3: yeSAS. Then y=sa,s, for some s;,s, €S and a, € A. There are two subcases to consider.

n 1N in

Subcase 3.1: a, = a. We have a, € B. So y=sa,s, € SBS < (B),.
Subcase 3.2: a, =a. By assumption, we have

y =545, € S(cb U SchS]S (S1(BB U SBBS](S]
((S)(BB U SBBS)](S]
(SBB U SSBBS](S]
((SBB U SSBBS)(S)]
(SBBS U SSBBSS]
(SBS]

(8),.

From both cases, we obtain ye(B),. Since x<y and ye(B),, we have xe((B),]=(B),. Thus

n N

IN

N N

S < (B), and hence S =(B),. This is a contradiction. Therefore, a=b or a=c.

Beside the partial order < on an ordered semigroup S, we define quasi-order <, on S as
follows:

Definition 2.6. Let S be an ordered semigroup. We define a quasi-order on S by forany a,beS,
a< be(a), ),

The following example shows that <, defined above is not, in general, a partial order.
Example 2.7. From Example 2.2, we have that (a), = (b), (i.e., a<, b) and (b), = (a), (ie., b<, a),
but a=b. Thus <, is not a partial order on S.

Lemma 2.8. Let S be an ordered semigroup. For any x,ye€S, if x<y, then x<, y.

Proof. For any x,y €S, let x<y. We will show that (x), = (y),. Since x<y and ye(y),, we have
xe((y)1=(y),. Since {x}< (y), =(ywyywsys], then

XU XX SXS

c(YyuyyuSySJu(yuyyuSySl(yuwyy uSySJusS(yuyy U SyS]S

c(ywyyUSySJu((ywyy wSyS)(ywyy wSyS)lV (SI(y v yy wSyS](S]

c (YU yyuSySTu (yy L yyy LU YSYS U yyy U yyyy U yySyS L SySy U SySyy L SySSyS]
U ((S)(ywyywSyS)I(S]

c (yuyywSyS]u(yy uSyS]u(Sy w Syy wSSyS](S]
= (Yywyy uSySJu(yy w SySTu((Sy w Syy w SSyS)(S)]
=(ywyyuSyS]u(yywSyS]u (SyS L SyyS L SSySS]
c (YyuyyuSySJu(yy uSySJu(SyS]
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=(ywyywsyS]=(y),.
So (x), =(xuxxuSxS1< ((y),1=(y),. Thus (x), = (y),. Therefore, x<, y.

Nevertheless, the converse of Lemma 2.8, is not valid in general. By Example 2.2, we have
b<, a, but b<a is false.
Lemma 2.9. Let A be an interior base of an ordered semigroup S. If a,be A such that a=b, then
neither a<, b nor bg, a
Proof. Assume that a,b € A such that a=b. Suppose that a<, b. Setting B=A\{a}. We have beB
and B c A. First, we claim that, for any xeS there exists y € A such that (x), = (y),. Since xe$S
and S=(A),, we have xe(A),. Since xe(A),, we have xe(y), for some ye A. Since xe(y),, it
follows that (x), = (y),. So (x), = (y), for some ye A. Next, we will show that S =(B),. Let x €S.
There exists y, € A such that (x), =(y,),. There are two cases to consider. If y, #a, then y, e B.
We have

X €(%); =), =(B),.
If y,=a, then vy, < b, ie., (y,), =(b),. We have
X € (%), = (Y), =), =(B),.

Thus S < (B),, and so S=(B),. This is a contradiction. Hence, a <, b is false. The case b<, a can
be proved similarly.
Lemma 2.10. Let A be an interior base of an ordered semigroup S. Let a,b,ce A and seS.
(1) If ae(bcubcbcuShes], then a=b or a=c.
(2) If a e (shcsushessbes U SshesS], then a=b or a=c.
Proof. (1) Assume that ae(bcubcbcuSheS]. Suppose that a=b and a=c. We set B=A\{a}.
Clearly, Bc A. Since a=b and a=c, we have b,c e B. We will show that (A), = (B),, itsuffices to
show that Ac (B),. Let xe A. If x=a, then xeB < (B),. If x=a, then by assumption, we have

(BB L BBBB U SBBS]

(BB U SBS]

(B),.

So Ac (B),. It follows that (A), < (B),. Since A is an interior base of S, so we have

S=(A), c(B), cS.

X =a e (bcuwhbchc L ShcS]

n 1N N

Thus S =(B),. This is a contradiction. Therefore, a=b or a=c.

(2) Assume that ae(shcsushessbesiuSshesS]. Suppose that a=b and a=c. We set
B=A\{a}. Then Bc A. Since a=b and a=c, we have b,ceB. We will show that (A), < (B),, it
suffices to show that Ac (B),. Let xe A. If x=a, then xeBc (B),. If x=a, then by assumption,

we have
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X = a € (shcs w shesshes L SshesS | (SBBS w SBBSSBBS w SSBBSS |
(SBS]

(B),-

N N N

So Ac (B),. This implies that (A), = (B),. Thus
S=(A), <(B), .
Hence, S =(B),. This is a contradiction. Therefore, a=b or a=c.
Lemma 2.11. Let A be an interior base of an ordered semigroup S.
(1) For any a,b,ce A, if a=b and a=c, then a, bc.
(2) For any a,b,ce A and seS, if a=b and a=c, then a ¥, shcs.
Proof. (1) For any a,b,ce A, let a=b and a=c. Suppose that a<, b, i.e., (a), = (bc),. We have
ae(a), < (bc), = (bcubchcu ShcS].
By Lemma 2.10(1), we obtain a=b or a=c. This contradicts to assumption. Therefore, a £, bc.
(2) For any a,b,ce A and seS, let a=b and a=c. Suppose that a<, shcs. We have
ae(a), < (sbcs), = (sbcsshessbes L SsbesS].
By Lemma 2.10(2), a=b or a=c. This contradicts to assumption. Therefore, a &, shcs.
Lemma 2.12. Let A be an interior base of an ordered semigroup S. For any a,be A and s;,s, €S,
if a#b, then a ¥, spbs,.
Proof. For any a,be A and s,,s, €S, let a=b. Suppose that a<, sbs,, i.e., (a), =(sbs,),. We have
ae(a), <(sbs,), =(sbs, Usbs,sbs, USshs,S].
We set B=A\{a}. Then beB and Bc A. We will show that (A), = (B),, it suffices to show that
Ac (B),. Let xe A. If x=a, then xeBc(B),. If x=a, then by assumption, we have

X =a e (sbs, Usbs,s,bs, USsbs,S] < (SBSw SBSSBS L SSBSS]

(SBS]

(B),.

So xe(B),. Thus Ac (B),. It follows that (A), = (B),. Since A is an interior base of S, then
S=(A), c(B), cS.

o=
o=

Hence, S =(B),. This is a contradiction. Therefore, a %, s,bs,.
We now prove the main result of this paper.
Theorem 2.13. A non-empty subset A of an ordered semigroup S is an interior base of S if and
only if A satisfies the following conditions:
(1) For any xeS,
(1.1) there exists ae A such that x<, a; or
(1.2) there exist a,,a, € A such that x<, aa,; or
(1.3) there exist a, € A and s,s, €S such that x<, sa;s,.
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(2) For any a,b,ce A, if a=b and a=c, then a <, bc.

(3) Forany a,be A and s;,s, €S, if a#b, then a ¥, sbs,.

Proof. Assume that A is aninterior base of S. We have S =(A),. To show that (1) holds. Let x eS.
Then xe(A), =(AUAAUSAS]. Since xe(AUAAUSAS], we have x<y for some yeAuUAAUSAS.

We consider three cases:

Case 1: ye A. Then y=a for some ac A. This implies (y), =(a),, and so y<, a. Since x<Yy, by
Lemma 2.8, we have x<, y. Thus x<, y<, a, and hence x<, a.
Case 2: ye AA. Then y=aa, for some a,a, € A. This implies (y), = (aa,),, and so y<, aa,. Since
x<y, by Lemma 2.8, we have x<, y. Thus x<, y<, aa,, and hence x<, aa,.
Case 3: yeSAS. Then y=sa,s, for some a, € A, s,s, €S. We obtain (y), =(5a5,),- S0 Y <, s,a5,.
Since x <Yy, by Lemma 2.8, we have x<, y. Thus x<, y<, sa,;s,, and hence x<, s,a;s,.
The validity of (2) and (3) follow, respectively, from Lemma 2.11(1), and Lemma 2.12.

Conversely, assume that the conditions (1), (2) and (3) hold. We will show that A is an
interior base of S. First, We will show that S =(A),. Clearly, (A), cS. By (1.1), it follows that
S < A. We have

S < AUAAUSAS < (AUAAUSAS] = (A),.

Thus S < (A),, and so S =(A),. Next, it remains to show that A is a minimal subset of S with the
property S =(A),. Suppose that S =(B), for some Bc A. Since Bc A, there exists xe A such that
x ¢ B. Since xe Ac S =(B), =(B]u(BBUSBS], we have xe(B] or xe(BuBBUSBS]. If xe (B], then
x<y for some yeB. Since x<y, by Lemma 2.8, we have x<, y where X,y € A. This contradicts
to Lemma 2.9. Thus x¢ (B], and so xe(BBwWSBS]. Since x e (BBwWSBS], we have x<z for some

z e BBUSBS. We consider two cases:

Case 1: zeBB. Then z=aa, for some a,a, e B. We have a,a, € A. Since x¢B, then x=#a and
X #8a,. Since z=aa,, we obtain (z), c(aa,),, i.e, z<, aa, Since x<z, by Lemma 2.8, we have
x<, z. So x<, z<, aa,. Thus x <, aa,. This contradicts to (2).

Case 2: zeSBS. Then z=s4a,s, for some s;,s, S and a, e B. We have a, € A. Since x ¢ B, we have
X #a,. Since z=sa;s,, we obtain (z), c(sa;s,),, i.e, z<, a5, Since x<z, by Lemma 2.8, we
have x<, z. So x<, z<, sa;5,. Thus x<, sa;s,. This contradicts to (3).

Therefore, A is an interior base of S.
The following theorem characterization when an interior base of an ordered semigroup
S is a subsemigroup of S.
Theorem 2.14. Let A be an interior base of an ordered semigroup S. Then A is a subsemigroup

of S if and only if for any a,be A, ab=a or ab=bh.
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Proof. Assume that A is a subsemigroup of S. Suppose that ab=a and ab=b. Let c=ab. Then

cza and c=b. Since c=abe(abuSabS], by Lemma 2.5, we have c=a or c=b. This is a

contradiction. The converse statement is clear.
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