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Abstract. The performance of a series-parallel system is improved by using the reliability equivalence factors technique.

The lifetimes of the components are assumed to be gamma distributed. The system reliability is improved by using three

different methods: (i) Reduction method, (ii) Hot duplication method, (iii) Cold duplication method. The reliability

function and mean time to failure for each method are derived. Finally, the numerical application is introduced.

1. Introduction

The concept of reliability equivalence factors (REF) is addressed to improve the system reliability,

[14]. Sarhan [17, 18] improved the system reliability by:

(1) Reducing the failure rates by a factor ξ, 0 < ξ < 1, is called reduction method (RM).

(2) Duplicating the system’s components by hot redundant identical standby components.

This method is named hot duplication method (HDM).

(3) The system’s components are connected with an identical component via a perfect switch,

so it is called the cold duplication method (CDM).

(4) Connecting some system’s components with standby redundant component via an imper-

fect switch. It is called the imperfect duplication method (IDM).

For more details, see [2, 4–13, 15–23].

The series-parallel system is one of the important systems in reliability theory and has many

applications in engineering sciences. This system has many special cases such as: serial, parallel

and radar system.
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Therefore, studying and improving the performance of this system includes improving all these

systems at the same time. The series-parallel system has been studied for several lifetime dis-

tributions, such as (i) exponential, (ii) linear exponential and (iii) modified Weibull distribution,

see [1, 3, 6, 13, 19, 21, 22, 24].

The gamma distribution (GD) with parameters β, ν, has the following probability density function.

ψ(t) =
νβ

Γ(β)
tβ−1e−νt, t ≥ 0, β, ν > 0. (1.1)

The parameters β, ν are called a shape and scale parameter, respectively. The GD has been employed

in engineering to study the system reliability.

The GD has some special distributions, for some values of β and ν, as follows.

(1) The exponential distribution with constant failure rate ν can be obtained if β = 1.

(2) The chi-square (χ2) distribution can be derived if β = n/2 and ν = 1/2 (n is an integer).

(3) The GD is called an Erlang distribution, when β is an integer.

Erlang distribution is used in queuing theory to model waiting times. χ2 distribution is used in

statistical inference.

Let h(t) be the hazard (failure) rate of GD, it is given by, [24],

h(t) =
1∫

∞

0

(
1 + s

t

)β−1
e−νsds

. (1.2)

The function h(t) has different shapes based on β, h(t) is: (i) increasing for β > 1, (ii) constant for

β = 1, (iii) decreasing when β < 1, see Figure 1.

Figure 1. The h(t) for some values of β.

The rest of the paper can be organized as follows.

A brief description of the original system is introduced in Section 2. The improved systems are

discussed in Section 3. The α-fractiles are obtained in Section 4. In Section 5, the reliability
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equivalence factors are derived. A numerical application is discussed in Section 6. The conclusion

of the paper is presented in Section 7.

2. The Original System

A series-parallel system has m subsystems connected in series. Each of them contains ni elements

connected in parallel, i = 1, 2, · · · , m, see Figure 2.

Figure 2. The original system diagram.

Form Figure 2, if m = 1, then we will get the parallel system, while if ni = 1, then the series system

will be obtained, but if m = 2 and ni = i, i = 1, 2, we will have the radar system.

Consider the lifetime of the system components is independent gamma distribution. The reliability

function (RF) for a component j( j = 1, · · · , ni) is given by

Ri j(t) = P[Ti j > t] =
∫
∞

νt

1
Γ(β)

uβ−1e−udu = 1−Ψ(νt, β), t ≥ 0, (2.1)

where

Ψ(νt, β) =
∫ νt

0

1
Γ(β)

uβ−1e−udu,

see [23].

The RF of the subsystem i, is given as,

Ri(t) = 1−Ψ(νt, β)ni . (2.2)

Therefore, the RF of the original system is derived as

Rs(t) =
m∏

i=1

[1−Ψ(νt, β)ni ] . (2.3)

The mean time to failure (MTTF) is

M =

∫
∞

0
Rs(t)dt =

∫
∞

0

m∏
i=1

[1−Ψ(νt, β)ni ] dt. (2.4)

Some numerical techniques can be used to calculate MTTF numerically, from Equation (2.4), for

given values of β, ν, ni and m.

3. The Improved Systems

Three different methods will be applied to improve the performance of the original system.
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3.1. The RM. The failure rate, h(t), of the components of setA are reduced to r(t)h(t), 0 < r(t) < 1,

where |A| = `, 0 ≤ ` ≤ M, and M =
∑m

i=1 ni. We shall reduce h(t) by reducing the scale parameter

only by the factor ξ.

SupposeA = A1∪A2∪ · · · ∪Am, whereAi denotes the set of components from subsystem i whose

failure rates are reduced and |Ai| = `i and ` =
∑m

i=1 `i. We denote such a set byA(|A1|,|A2|,··· ,|Am|)

|A|
.

After reducing the failure rate of component j, it has the following RF, Ri j,ξ(t),

Ri j,ξ(t) =
∫
∞

ξνt

uβ−1

Γ(β)
e−udu = 1−Ψ(ξνt, β). (3.1)

The RF, RAi,ξ(t), of the subsystem i after reducing the failure rates ofAi is given by

RAi,ξ(t) = 1−
[∫ ξνt

0

uβ−1

Γ(β)
e−udu

]`i [∫ νt

0

uβ−1

Γ(β)
e−udu

]ni−`i

= 1−Ψ(ξνt, β)`i Ψ(νt, β)ni−`i . (3.2)

The RF of the improved system by RM, RA,ξ(t), is

RA,ξ(t) =
m∏

i=1

RAi,ξ(t) =
m∏

i=1

[
1−Ψ(ξνt, β)`i Ψ(νt, β)ni−`i

]
. (3.3)

The MTTF of the reduction system, is calculated by

MA,ξ =

∫
∞

0

m∏
i=1

[
1−Ψ(ξνt, β)`i Ψ(νt, β)ni−`i

]
dt. (3.4)

3.2. The HDM. Suppose the components are in a set B, |B| = k and 0 ≤ k ≤ M will be improved

according to HDM. Each component in B is duplicated by a hot standby component. The k can be

distributed such that ki components from subsystem i, where k =
∑m

i=1 ki and 0 ≤ ki ≤ ni.

Let B(|B1|,|B2|,··· ,|Bm|)

|B|
denote the improved set, B = ∪m

i=1Bi. Where |Bi| = ki components from

subsystem i.
The RF of the improved subsystem, RH

Bi
(t) is

R
H
Bi
(t) = 1−

[∫ νt

0

uβ−1

Γ(β)
e−udu

]ni+ki

= 1−Ψ(νt, β)ni+ki , (3.5)

and the RF of the improved system according to HDM, RH
B
(t) is

R
H
B
(t) =

m∏
i=1

RH
Bi
(t) =

m∏
i=1

[
1−Ψ(νt, β)ni+ki

]
. (3.6)

The MTTF of the improved system by HDM, from Equation (3.6),MH
B

, is

M
H
B
=

∫
∞

0

m∏
i=1

[
1−Ψ(νt, β)ni+ki

]
dt. (3.7)
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3.3. The CDM. In this method, the set B of system components are duplicated each one with

an identical component by a perfect switch, |B| = r, 0 ≤ r ≤ M. The set B can be expressed as

B = B1 ∪B2 ∪ · · · ∪Bm, Bi consists ri components from the subsystem i, such that r =
∑m

i=1 ri. The

set B can be denoted by B(|B1|,|B2|,··· ,|Bm|)

|B|
.

The RF of the improved system by CDM, RC
B
(t), is

R
C
B
(t) =

m∏
i=1

R
C
Bi
(t), (3.8)

where RC
Bi
(t) is the RF of subsystem i after improving the set Bi of components. RC

Bi
(t) is given as

R
C
Bi
(t) = 1−

[∫ νt

0

u2β−1

Γ(2β)
e−udu

]ri [∫ νt

0

uβ−1

Γ(β)
e−udu

]ni−ri

= 1−Ψ(νt, 2β)ri Ψ(νt, β)ni−ri . (3.9)

Using (3.8) and (3.9), then

R
C
B
(t) =

m∏
i=1

[
1−Ψ(νt, 2β)ri Ψ(νt, β)ni−ri

]
. (3.10)

The MTTF,MC
B

, is calculated by

M
C
B
=

∫
∞

0

m∏
i=1

[
1−Ψ(νt, 2β)ri Ψ(νt, β)ni−ri

]
dt. (3.11)

4. The α-Fractiles

Let L(β,α), LD
B
(β,α), be the α-fractiles of the original and duplicated systems. Which can be

calculated by solving the following equations, respectively.

R

(
L(β,α)
ν

)
= α, R

D
B

(
L(β,α)
ν

)
= α, D = H, C. (4.1)

Substituting Equation (2.3) into (4.1), the L = L(β,α) satisfies te following equation.

m∑
i=1

ln
[
1−Ψ(L, β)ni

]
− ln(α) = 0. (4.2)

From Equations (3.6) and (4.1), L = LH
B
(β,α) satisfies the equation.

m∑
i=1

ln
[
1−Ψ(L, β)ni+ki

]
− ln(α) = 0. (4.3)

For D = C, and from Equations (3.10) and (4.1), L = LC
B
(β,α) is a solution of

m∑
i=1

ln
[
1−Ψ(L, 2β)ri Ψ(L, β)ni−ri

]
− ln(α) = 0. (4.4)

Equations (4.2)-(4.4) must be solved numerically, to obtain L.
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5. The Reliability Equivalence Factors

Since the failure rate of GD(β, ν) is non-constant, the REFs of GD will be a function of time t.

Definition [17]: The REF is defined as the factor that must be used to reduce the failure rates of the

set, A, of system components in order to obtain the reliability of the system, which is improved

by improving the set, B, of system components by the duplication method.

The failure rate, h(t), of GD will be reduced by r(t), only by reducing the scale parameter from ν

to ξν only.

r(t)h(t) =
1∫

∞

0

(
1 + s

t

)β−1
e−ξνsds

. (5.1)

We will discuss how ξ can be calculated, and r(t) can be obtained by taking ξ in Equation (5.1).

The factor ξ = ξD
A,B(α) is the solution of

RA,ξ(t) = α, R
D
B
(t) = α, α ∈ (0, 1), D = H, C. (5.2)

Substituting from Equations (3.3) and (3.6) into (5.2), the factor ξ = ξH
A,B(α) satisfies the following

system.
m∑

i=1

ln
[
1−Ψ(ξνt, β)`i Ψ(νt, β)ni−`i

]
− ln(α) = 0,

m∑
i=1

ln
[
1−ψ(νt, β)ni+ki

]
− ln(α) = 0


. (5.3)

The Hot REF:

rH
A,B(α, t) =

∫
∞

0

(
1 + s

t

)β−1
e−νsds∫

∞

0

(
1 + s

t

)β−1
e−ξνsds

, (5.4)

where ξ = ξH
A,B(α).

Using Equation (5.2) with Equations (3.3) and (3.10), ξ = ξC
A,B(α) satisfies the following equations.

m∑
i=1

ln
[
1−Ψ(ξνt, β)`i Ψ(νt, β)ni−`i

]
− ln(α) = 0,

m∑
i=1

ln [1−Ψ(νt, 2β)ri Ψ(νt, β)ni−ri ] − ln(α) = 0


. (5.5)

The Cold REF:

rC
A,B(α, t) =

∫
∞

0

(
1 + s

t

)β−1
e−νsds∫

∞

0

(
1 + s

t

)β−1
e−ξνsds

, (5.6)

where ξ = ξC
A,B(α).

The systems (5.3) and (5.5) have no closed form solutions, so ξ = ξD
A,B(α) can be obtained by using

some numerical techniques.
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6. Numerical Application

Under the following assumptions the REFs of a series-parallel system are calculated:

(1) There are two subsystems, m = 2.

(2) The lifetimes are assumed independent and identical with GD(β, ν).

(3) The number of components in the subsystems are n1 = 1 and n2 = 2 (Radar system), see

Figure 3.

(4) The parameters ν = 0.7 and β = 1, 3, 5 (β ≥ 1).

Figure 3. The radar system.

Table 1 views the values ofM andMD
B

for different B, D = H and C.

Table 1. TheM andMD
B

, for different values of |B|.

B
(1,0)
1 B

(0,1)
1 B

(1,1)
2 B

(0,2)
2 B

(1,2)
3

β M M
H
B

1 0.95238 1.30952 1.07143 1.50000 1.14286 1.61905

3 3.48839 4.26218 3.72022 4.62251 3.84873 4.83255

5 6.13475 7.19054 6.44083 7.66235 6.60657 7.93168

M
C
B

1 0.95238 1.50794 1.15079 1.95767 1.24339 2.19577

3 3.48839 5.052 4.03079 6.8354 4.1652 7.47507

5 6.13475 8.47595 6.94963 11.9289 7.07169 12.8969

Figures 4–6 compare the RF of the original and duplicated systems, when |B| = 1, 2 and 3,

respectively.

Figure 7 displays the RF of the original and duplicated systems for |B| = 1, 2, 3 and different

methods.

For the level α = 0.1, 0.2, · · · , 0.9 and β = 3, Mathematica Program System is used to calculate the

α-fractiles and the REFs.

Table 2 introduces the values of α-fractiles, L(β,α) and LD
B
(β,α), for D = H and C.

From the results shown in Tables 1, 2 and Figures 5–7, we can conclude that:

(1) R(t) < RH
B
(t) < RC

B
(t), ∀ |B| = 1, 2 and 3.

(2) M <MH
B
<MC

B
, for all |B| = 1, 2 and 3.
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Figure 4. The RF, of the original and duplicated systems, when |B| = 1.

Figure 5. The R(t),RD
B
(t), for |B| = 2.

Figure 6. The R(t),RD
B
(t), for |B| = 3.
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Figure 7. The R(t),RD
B
(t), for |B| = 1, 2, 3, D = H (left panel) and D = C (right panel).

Table 2. The α-fractiles.

B
(1,0)
1 B

(0,1)
1 B

(1,1)
1 B

(0,2)
1 B

(1,2)
1

α L L
H

L
C

L
H

L
C

L
H

L
C

L
H

L
C

L
H

L
C

0.1 3.999 4.5043 5.3855 4.2576 4.7988 4.7815 6.9603 4.4313 5.0724 4.9698 7.5293

0.2 3.3579 3.8782 4.6286 3.6006 3.9945 4.1552 6.0919 3.7574 4.1818 4.3391 6.6477

0.3 2.9333 3.4644 4.1255 3.1578 3.4507 3.7391 5.5091 3.2955 3.5753 3.9169 6.0462

0.4 2.5944 3.1345 3.7231 2.7978 3.011 3.4053 5.0387 2.9141 3.0892 3.5757 5.5531

0.5 2.2965 2.8449 3.3695 2.4756 2.6229 3.1104 4.6214 2.5681 2.6681 3.2717 5.1083

0.6 2.0165 2.5729 3.0371 2.1669 2.2601 2.8312 4.2249 2.2338 2.2832 2.9809 4.6782

0.7 1.7363 2.3007 2.7048 1.8532 1.9035 2.5489 3.8232 1.8941 1.9133 2.6837 4.2337

0.8 1.4341 2.0059 2.3458 1.5117 1.5319 2.2395 3.3815 1.5301 1.5349 2.3534 3.7339

0.9 1.0631 1.6381 1.9009 1.0977 1.1016 1.8462 2.8181 1.1016 1.1021 1.9277 3.0807

(3) L(β,α) < LH
B
(β,α) < LC

B
(β,α), ∀ |B|.

(4) The MTTF and LD
B
(β,α) are increasing, when β increases.

(5) A better design is obtained by improving B(1,0)
1 than improve B(0,1)

1 according to the same

method.

(6) Improving two components, B(1,1)
2 produces a better design than improving two compo-

nents B(0,2)
2 .

(7) The best design is obtained by improving all components, B(1,2)
3 .

(8) Cold duplication method gives the best improvement than other methods.

Table 3 displays the values of the REFs for differentA and B.

From the results presented in Tables 2 and 3, at β = 3:

(1) The L(3, 0.1) is increased from 3.9990/ν to 4.5043/ν when the set B(1,0)
1 improved by

HDM, see Table 2. We can get the same effect by reducing the failure rates of (i) A(1,0)
1 by

ξH = 0.7826, (ii)A(0,1)
1 by ξH = 0.6033, (iii)A(1,1)

2 by ξH = 0.8582, (iv)A(0,2)
2 by ξH = 0.7430,

(v)A(1,2)
3 by ξH = 0.8878, see Table 3.
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Table 3. The REF, ξD
A,B(α), D = H and C

B
(1,0)
1 B

(0,1)
1 B

(1,1)
1 B

(0,2)
1 B

(1,2)
1

α A ξH ξC ξH ξC ξH ξC ξH ξC ξH ξC

0.1 A
(1,0)
1 0.7826 0.4607 0.8845 0.6993 0.6758 – 0.8120 0.6701 0.6068 –

A
(0,1)
1 0.6033 – 0.7693 0.4364 0.4457 – 0.6490 0.2858 0.3438 –

A
(1,1)
2 0.8582 0.6888 0.9221 0.7926 0.7962 0.5147 0.8762 0.7404 0.7591 0.4731

A
(0,2)
2 0.7430 0.0111 0.8653 0.5979 0.6065 0.0857 0.7788 0.4481 0.5080 0.2996

A
(1,2)
3 0.8878 0.7426 0.9393 – 0.8364 0.5745 0.9025 0.7884 0.8047 0.5311

0.2 A
(1,0)
1 0.7464 0.4288 0.8763 0.6648 0.6256 – 0.8016 0.6144 0.5486 –

A
(0,1)
1 0.4899 – 0.7274 0.3980 0.2601 – 0.5879 0.2329 0.1319 –

A
(1,1)
2 0.8324 0.6689 0.9146 0.7802 0.7635 0.4867 0.8663 0.7374 0.7237 0.4424

A
(0,2)
2 0.6579 0.0086 0.8401 0.5754 0.4373 0.0489 0.7384 0.4075 0.5054 0.2065

A
(1,2)
3 0.8658 0.7255 0.9326 – 0.8081 0.5512 0.8937 0.7030 0.7739 0.5051

0.3 A
(1,0)
1 0.7172 0.4047 0.8742 0.5240 0.5861 – 0.8019 0.6035 0.5032 –

A
(0,1)
1 0.3520 – 0.6923 0.3679 0.1912 – 0.5375 0.1945 – –

A
(1,1)
2 0.8107 0.6532 0.9110 0.6147 0.7371 0.4655 0.8632 0.7294 0.6960 0.4199

A
(0,2)
2 0.5414 0.0031 0.8187 0.5565 0.1021 0.0049 0.7039 0.3752 0.2995 0.2058

A
(1,2)
3 0.8467 0.7110 0.9289 – 0.7845 0.5325 0.8901 0.0204 0.7489 0.4852

0.4 A
(1,0)
1 0.6903 0.3835 0.8763 0.4564 0.5502 – 0.8098 0.5714 0.4624 –

A
(0,1)
1 – – 0.6587 0.3406 – – 0.4897 0.1626 – –

A
(1,1)
2 0.7898 0.6387 0.9101 0.5304 0.7127 0.4467 0.8650 0.7043 0.6710 0.4005

A
(0,2)
2 0.5122 0.0016 0.7978 0.5382 0.0787 – 0.6702 0.3456 0.2047 0.1450

A
(1,2)
3 0.8277 0.6968 0.9273 – 0.7619 0.5149 0.8703 – 0.7255 0.4672

0.5 A
(1,0)
1 0.6634 0.3631 0.8824 0.4202 0.5151 – 0.8251 0.5653 0.4228 –

A
(0,1)
1 – – 0.6239 0.3137 – – 0.4409 0.1344 – –

A
(1,1)
2 0.7682 0.6239 – 0.5192 0.6882 0.4285 0.8717 0.6832 0.6468 0.3824

A
(0,2)
2 0.1037 – 0.7757 0.5190 0.0247 – 0.6344 0.3169 0.0275 0.0440

A
(1,2)
3 0.8072 0.6816 0.8766 – 0.7383 0.4969 0.7542 – 0.7019 0.4496

0.6 A
(1,0)
1 0.6350 0.3423 0.8930 0.3067 0.4785 – 0.8480 0.5156 0.3819 –

A
(0,1)
1 – – 0.5855 0.2857 – – 0.3885 0.1087 – –

A
(1,1)
2 0.7442 0.6077 – 0.4715 0.6621 0.4097 – 0.6081 0.6217 0.3644

A
(0,2)
2 0.0164 – 0.7508 0.4979 0.0136 – 0.5943 0.2876 0.0184 0.0409

A
(1,2)
3 0.7837 0.6639 0.8305 – 0.7122 0.4773 0.7027 – 0.6765 0.4310

0.7 A
(1,0)
1 0.6028 0.3196 0.9091 0.1923 0.4381 – 0.8788 0.4648 0.3373 –

A
(0,1)
1 – – 0.5401 0.2552 – – 0.3296 0.0843 – –

A
(1,1)
2 0.7156 0.5885 – 0.3976 0.6323 0.3889 – 0.5921 0.5941 0.3455

A
(0,2)
2 0.0067 – 0.7205 0.4731 0.0124 – 0.5464 0.2561 0.0038 0.0051

A
(1,2)
3 0.7547 0.6419 0.7369 – 0.6812 0.4541 0.6167 – 0.6470 0.4101

0.8 A
(1,0)
1 0.5630 0.2926 0.9320 0.0150 0.3894 – 0.7166 0.4125 0.2845 –

A
(0,1)
1 – – 0.4818 0.2193 – – 0.2605 0.0603 – –

A
(1,1)
2 0.6782 0.5629 – 0.2777 0.5950 0.3638 – 0.4257 0.5608 0.3239

A
(0,2)
2 0.0055 – 0.6800 0.4415 0.0052 – 0.4852 0.2196 – 0.0021

A
(1,2)
3 0.7149 0.6113 0.6486 – 0.6403 0.4241 0.5372 – 0.6093 0.3841

0.9 A
(1,0)
1 0.5046 0.2549 0.9629 0.0088 0.3209 – 0.6588 0.3058 0.2131 –

A
(0,1)
1 – – 0.3946 0.1714 – – 0.1728 0.0353 – –

A
(1,1)
2 0.6187 0.5210 – 0.0623 0.5390 0.3275 – 0.3619 0.5126 0.2949

A
(0,2)
2 0.0010 – 0.6152 0.3939 0.0036 – 0.3956 0.1715 – 0.0004

A
(1,2)
3 0.6490 0.5593 0.4685 – 0.5758 0.3772 0.5058 – 0.5515 0.3451
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(2) When the setB(1,0)
1 is improved by CDM, theL(3, 0.1) increases from 3.9990/ν to 5.3855/ν,

see Table 2. We have the same effect by reducing the failure rates of (i)A(1,0)
1 by ξC = 0.4607,

(ii)A(0,1)
1 by ξC = 0.6888, (iii)A(0,2)

2 by ξC = 0.0111, (iv)A(1,2)
3 by ξC = 0.7426, see Table 3.

(3) The results in Tables 2 and 3 can be interpreted by the same way.

(4) The symbol “–” means that there is no equivalence between both the reduction and dupli-

cation methods in this numerical study.

7. Conclusion

The reliability performance of a serial-parallel system based on a gamma distribution has been

improved. This system is one of the important systems in reliability because it can be reduced to

the series, parallel and radar systems. The system components have gamma lifetime distribution.

Lifetimes are assumed independent and identical. The gamma distribution is an important distri-

bution that is used in engineering to study system reliability. The gamma distribution has some

special distributions based on the values of its parameters. The original system was improved

using three different methods. Some reliability measures are derived for each method, such as RF

and MTTF. The REFs and α-fractiles were established. Numerical application was discussed to

interpret how the theoretical results can be applied. The cold duplication method gives the best

improvement than other methods.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the

publication of this paper.
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