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Abstract. We will construct few types of simple graphs (with no multiple edges or loops) based on the ideal annihilator,

right ideal annihilator, left ideal annihilator for JU-algebras. We will also study some graph invariants, such as

connectivity, regularity, and planarity for these graphs.

1. Introduction

The motivation of logical algebras arises from the work on BCI/BCK algebras by Imai and

Iseki [4] that is actually generalizations of the set theoretic difference and proportional calculi.

In algebraic combinatorics we employ the concepts and workings of modern algebra in many

directions of combinatorics. We can associate graphs with algebraic systems and it becomes a

research subject and it can be interesting for others attention. The research work in this direction

aims to expose the connections on either side of algebraic structures and graph theoretic concepts

that actually advancing the applications and uses of one to another. Algebraic graph theory with

a zero divisor in the commutative ring R with identity was introduced by Beck [1] in 1998. It was

mentioned there that Γ(R) is a graph subject to the condition that if two vertices are elements of

R so that they will be adjacent to each other if and only if pq = 0. Recently, graphs with the zero

divisor concept of partially ordered sets are introduced by Halas and Jukl in [3]. In this work, we

have considered graphs with zero divisor concepts in JU-algebras based on some of their ideals.

Whereas BCK-algebra was introduced by Imai and Iseki [4] in 1966 and parallely BCI-algebra was

introduced by Iseki [5] as a superclass of BCK-algebras. Idea and knowledge based on associated

graph of BCK-algebra was introdued by Jun and Lee [6] where some graph is defined and verified.

Chordality of the graph was studied by Tahmasbpour in [9] that was defined by Zahiri and

Borzooei. Initially it was introduced and constructed for four different graphs of BCK-algebras
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based on equivalence classes that was determined by I. Furthermore, Tahmasbpour [9] introduced

some graphs of BCK-algebras on fuzzy ideals µ1. Furthermore, Tahmasbpour [10] defined 12

different graphs of lattice implication algebras on filter and LI-ideal.

Another class of logical algebras, namely, KU-algebra is introduced by Prabpayak and Leerawat

[11]. Some of basic properties and homomorphic structural properties of KU-algebras is given

in [12]. Later on KU-algebra was widely studied by several authors and the contribution continued

to the study through different areas, e.g. in the direction of fuzzy algebras, neutrosophic and

intuitionistic algebras with softness and roughness.

Cubic KU-ideals of KU-algebras was introduced by Naveed et al. [13]. Mostafa et al. [14] defined

and studied fuzzy ideals of KU-algebras. Furthermore, interval-valued fuzzy KU-ideals in KU-

algebras was defined by Mostafa et al. [15]. Roughness in KU-algebras [18] was taken under

consideration by Moin and Ali. A pseudo-metric on KU-algebras was constructed and studied

some of its properties by Ali et al. [19].

In a consequence of works based on different logical algebras, Moin [16] studied rough set theory

on JU-algebras, whereas Moin et al. [17] introduced JU-algebras and p-closure ideals. Whereas

Usman et al. [20] introduced pseudo valuations and their metric on JU-algebras.

In this paper. few types of graphs based on the annihilator of ideals, right ideals and left ideals

for a JU-algebras is constructed and some graph invariants, such as; connectivity, regularity, and

planarity for these graphs.

There are 6 sections in this paper. Section 2, is based on some necessary definitions on the

concepts of JU-algebras and graph theory e.g. planar graphs, outer planar graphs, connected

graphs, Eulerian graphs and chromatic numbers, among others. Also this section contains simply

introductory part of JU-algebras in which we start with the discussion of the concepts of JU-algebras

and then investigate their elementary and fundamental properties. Some basic concepts, e.g. ideals

and ideal annihilators are given then after. Section 3, is graphs based on the ideal-annihilator of

a JU-algebra. Section 4 is study of graphs of JU-algebras based on left and right ideal-annihilator

that we denoted by φ1(P). Section 5 is related to graphs on the ideals of JU-algebras based on the

binary operations ∧ that we have associated with the graph Q(P) that is constructed from binary

operations ∧ and ∨. Lastly in Section 6, conclusion is given.

2. Preliminaries of JU-Algebras and Graph Theory

Basic definitions, notations and properties related to JU-algebras are considered in this section.

Definition 2.1. JU-algebra say (P, �, 1) is an algebra of type (2, 0) that contains a single binary operation
� and satisfy the following (for any p, q, r ∈ P),

(JU1) (q � r) � [(r � p) � (q � p)] = 1,

(JU2) 1 � p = p,

(JU3) p � q = q � p = 1 implies p = q.
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1 is called fixed element of P. We shall write P for (P, �, 1) just to show a JU-algebra. An ordered

relation ” ≤ ” in P is defined as q ≤ p⇔ p � q = 1. We have that a JU-algebra is generalization of a

KU-algebras.

Lemma 2.1. If P denotes a JU-algebra, then (P,≤) is POS i.e.,
(J4) p ≤ p,

(J5) p ≤ q, q ≤ p, imply p = q,

(J6) p ≤ r, r ≤ q, imply p ≤ q.

Proof. If q = r = 1 in (JU1) we get p � p = 1, i.e. p ≤ p which proves (J4). (J5) directly follows from

(JU3). For (J6) take p ≤ r and r ≤ q implies that r � p = 1 and q � r = 1. By (JU1) we have q � p = 1

implies that p ≤ q. �

Lemma 2.2. If P is a JU-algebra, then following inequalities holds for any p, q, r ∈ P:
(J7) p ≤ q implies q � r ≤ p � r,

(J8) p ≤ q implies r � p ≤ r � q,

(J9) (r � p) � (q � p) ≤ q � r,

(J10) (q � p) � p ≤ q,

Proof. (J7), (J8) and (J9) follows from (JU1) by adequate substitution of elements. (JU1) and (JU2)

implies (J10). �

Lemma 2.3. In a JU-algebra P for any p, q, r ∈ P, we have the following
(J11) p � p = 1,

(J12) r � (q � p) = q � (r � p),
(J13) If (p � q) � q = 1, then P is a KU-algebra,
(J14) (q � p) � 1 = (q � 1) � (p � 1).

Proof. Letting q = r = 1 in JU1, we have; p � p = 1 that proves (J11). For (J12) we have (r � p) � p ≤ r
by substituting q = 1 in (JU1) and now using (J7) we get

r � (q � p) ≤ ((r � p) � p) � (q � p). (2.1)

Replace r by r � p in (JU1) we get, [q � (r � p)] � [((r � p) � p) � (q � p)] = 1 that shows

((r � p) � p) � (q � p) ≤ q � (r � p). (2.2)

From (2.1), (2.2) and Lemma 2.1 (J6) we get,

r � (q � p) ≤ q � (r � p). (2.3)

Next to that we replace q→ r and r→ q− 1 in (2.3) we get

q � (r � p) ≤ r � (q � p). (2.4)

Now (2.3), (2.4) and (J5) yields, r � (q � p) = q � (r � p).
Now to prove (J13) we need to show that p � 1 = 1, ∀ p ∈ X. Replacing q → 1, p → 1, r → p in
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(JU1), we obtained, (1 � p) � [(p � 1) � (1 � 1)] = 1 ⇒ p � [(p � 1) � 1] = 1 ⇒ p � 1 = 1 (by using

q = 1 in the given condition of (J13)).

Using (J12) for any p, q ∈ P in the followings we see that,

(q � 1) � (p � 1) = (q � 1) � [p � [(q � p) � (q � p)] = (q � 1) � [(q � p) � (p � (q � p))]
= (q � p) � [(q � 1) � (q � (p � p))] = (q � p) � [(q � 1) � (q � 1)] = (q � p) � 1.

Hence (J14) holds. �

Example 2.1. [14] Consider P = {1, 2, 3, 4, 5} then we construct the following table

� 1 2 3 4 5

1 1 2 3 4 5

2 1 1 3 4 5

3 1 2 1 4 4

4 1 1 3 1 3

5 1 1 1 1 1

Clearly P is a JU-algebra.

An example for a JU algebra that may not be a KU-algebra is given here:

Example 2.2. [17] Let P = {1, 2, 3, 4}, we construct the following table

� 1 2 3 4

1 1 2 3 4

2 2 1 2 2

3 1 2 1 3

4 1 2 1 1

It is clear that P is a JU-algebra but not a KU-algebra. Construction of next table shows that at

the same time P is a KU-algebra and a JU-algebra both by using a different operation say �′.

Example 2.3. [17] With P = {1, 2, 3, 4} and � as binary operation we have the following table

�
′ 1 2 3 4

1 1 2 3 4

2 1 1 4 1

3 1 1 1 1

4 1 4 4 1

Definition 2.2. If q � p ∈ J∀p, q ∈ J so that J is non-void subset of P then it is called a JU subalgebra of P.

The set PX := {p ∈ X|(p � 1) � 1 = p} is known as p-semisimple. P is said to be a p-semisimple JU-algebra
if (p � 1) � 1 = p∀p ∈ X. If j is an elemen of P then we say it is the minimal element of P if p ≤ j returns
p = j for all p ∈ X. For such a j ∈ P, it is defined by K( j) := {p ∈ X|p ≥ j}. The set BP = {p ∈ X|p � 1 = 1}

is said to be the JU-part of P.
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Definition 2.3. A non empty subset J of P is called JU-ideal if
1. 1 ∈ J,
2. ∀p, q ∈ X, p, p � q imply q ∈ J.

Definition 2.4. Let J is a subset of a JU-Algebra P, then is said to be a p-ideal of P if 1 ∈ J; and
q, (r � q) � (r � p) ∈ J imply p ∈ J for any p, q, r ∈ X.

Definition 2.5. An ideal J of a JU-Algebra P is called strong if p ∈ J and q < J imply q � x < J for any
p, q ∈ X.

Example 2.4. [17] With P = {1, 2, 3, 4, 5, 6} we construct the following table:

� 1 2 3 4 5 6

1 1 2 3 4 5 6

2 1 1 3 3 5 6

3 1 1 1 2 5 6

4 1 1 1 1 5 6

5 5 5 5 5 1 1

6 1 1 2 1 1 1

It is clear that (P, �, 1) is a JU-algebra, A = {1, 2} and B = {1, 2, 3, 4, 5} are ideals of JU-algebra P.

For each ideal of a JU-algebra we can determine a congruence ∼ on X so that p ∼ q ⇐⇒ p � q
and q � p ∈ J for p, q ∈ P. we’ll use the symbol P/J in place of quotient algebra P/ ∼, that is actually

a JU-algebra.

Likewise as classical concept, in JU-algebras say P, an ideal may not be subalgebra of P. A

closed ideal of P is both a subalgebra and an ideal of P. Consider J to be a subset of P, then the

smallest ideal of P containing J is called the generated ideal of P by J. Generated ideal is indicated

by 〈J〉.
A mapping f : X → p′ is defined as homomorphism of a JU-algebras (P, �, 1) into a JU-algebra

(P′, �′, 1′) if f (p � q) = f (p) �′ f (q) for all p, q ∈ X. Clearly, f (1) = 1′. Every ideal A of P determines

a congruence ∼ on P in the sense that p ∼ q if and only if p � q and q � p ∈ J for some p, q ∈ X. P/A
stands for quotient algebra of P in stead of P/ ∼, which is a JU-algebra.

3. Graphs Based on the Ideal-Annihilator of a JU-Algebra

In this section we have mentioned few graphs that are based on JU-ideals and some properties

of those graphs are shown.

Definition 3.1. For a non-void subset A of a JU-algebra P and an ideal I of P. The set of all zero-divisors of
A by I is defined as:

AnnI(A) = {u ∈ X| a � u ∈ I or u � a ∈ I,∀a ∈ A}.
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Proposition 3.1. For any two nonempty subsets A and B of a JU-algebra P and an ideal I of P, the following
hold:

(1) {1} ⊆ AnnI(A).

(2) I ⊆ AnnI(A).

(3) If A ⊆ B, then AnnIB ⊆ AnnI(A).

(4) If 1 ∈ A, then AnnI(A) = Ann1(A− {1}).
(5) AnnI(I) = X.

(6) If I = {1}, then we have; AnnI(A) = {p| p is comparable to every element in A}.

Proof. (1) By (ku2) and Definition 2.2 (1), a � 1 = 1 ∈ I for all a ∈ A and hence {1} ⊆ AnnI(A).

(2) Let u ∈ I, then by Definition 2.1 we have a � u ∈ I, f oralla ∈ A. Also, 1 � u = 0, f orallu ∈ P, So

I ∪ {1} ⊆ AnnI(A).

(3) Suppose that u ∈ AnnIB, then b � u ∈ I or u � b ∈ I, f orallb ∈ B, but A ⊆ B, therefore b � u ∈ I or

u � b ∈ I, f orallb ∈ A. i.e u ∈ AnnI(A), hence AnnIB ⊆ AnnI(A).

(4) According to Definition 2.1 we have AnnI(A) = ∩a∈AAnnIa. Also, AnnI{1} = X. Then

AnnI(A) = AnnI(A− {1}).
(5) Let u ∈ P, we know by Definition 2.1, u � a ∈ I, f oralla ∈ I, then u ∈ AnnI(I), hence

AnnI(I) = X.

(6) Follows from the definitions.

�

Definition 3.2. Let I is an ideal of P and φI(P) is a simple graph, where P is vertex set. We have that two
different vertices p and q of P are adjacent if and only if AnnI{x, y} = I ∪ {1}.

Example 3.1. We construct the following table with consideration of P = {1, a, b, c} and the operation � :

� 1 a b c

1 1 a b c

a 1 1 b c

b 1 a 1 c

c 1 a b 1

1 1 1 1 1

It is clear that (P, �, 1) is a bounded JU-algebra and that E(φ{1}(P)) = {ab, bc, ac}.

Theorem 3.1. We consider I to be an ideal of P, then NG({1}) = φ, where G = φI(P).

Proof. We know AnnI{1} = P and for all p ∈ X, p , 1, we get, I ∪ {p, 1} ⊆ AnnI{p}. Then I ∪ {x, 1} ⊆

AnnI{p} and I ∪ {x, 1} ⊆ AnnI{x, 1}, for all p ∈ X, x , 1. So, by using Definition 2.1 of graph φI(P),
for all p ∈ X, x , 1, p is connected to element 1 if and only if p ∈ I, since p ∈ I, therefore by using

Proposition 3.1 AnnI{p} = X. So the element 1 are not connected to p, for all p ∈ X. �

Theorem 3.2. Let P = {1} ∪Atom(P), I = {1} be an ideal of P.
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Proof. We know Ann{1}{1} = P by Proposition 3.1 since P = Atom(P) ∪ {1}, we have, for all

P ∈ Atom(P), Ann{1}{p} = {1, x}. It is also clear that Ann{1}{x, y} = Ann{1}{p} ∩ Ann{1}{q}. Then

by Definition 3.2 of graph φ{1}(P), p and q are adjacent if and only if p, y ∈ Atom(P). �

Theorem 3.3. Let P = {1} ∪Atom(P). Then we have:
ω(φ{1}(P)) = |Atom(P)|.

Proof. Followed by Theorem 3.2. �

Theorem 3.4. Consider I = {1} is an ideal of P, then NG(p) = {y; y is uncomparable with x}, and
G = φI(P), x , 1.

Proof. For every p ∈ X, x , 1, we get Ann{1}{x} = {y; y is uncomparable with x}. Next to that, we know

Ann{1}{x, y} = Ann{1}{p} ∩Ann{1}{q}. Then by Definition 3.2 of graph φ{1}(P), p and q are adjacent⇔

p and q are uncomparable. �

Theorem 3.5. I being ideal of P. We get α(φI(P)) ≥ |I|.

Proof. Letting p, y ∈ I. Using Proposition 3.1(5) we get, AnnI{x} = P and AnnI{y} = X. Therefore,

by Definition 3.2 of graph φI(P), q � x < E(φI(p)). Therefore, we have α(φI(P)) ≥ |I|. �

Theorem 3.6. Let |X| > 2 and I to be a prime ideal, then φI(P) is a null graph.

Proof. On the contrary suppose that φI(P) is a nonempty graph. Then there ∃p, y ∈ P, such that

py ∈ E(φI(P)). Using 3.2 of graph φI(P), we get, AnnI{x, y} = I ∪ {1}. Also, since |X − I| > 1, we

can select r ∈ X, z < 1, z , 1. Since I is prime, so p � z ∈ I or r � x ∈ I, and q � z ∈ I or r � y ∈ I, hence

r ∈ AnnI{x, y} that contradict. �

4. Graphs of JU-Algebras Based on Left and Right Ideal-Annihilator

Definition 4.1. I being an ideal of P, the sets AnnR
I {x} = {y ∈ X; x � y ∈ I}, and AnnL

I {p} = {y ∈ X; y � x ∈ I}
are called annihilators of right ideals and left ideals of p, respectively.

Definition 4.2. I being ideal of P then, we get: ΣI(P) and ∆I(P) are two simple graphs, whose vertex set
is P whose two different vertices are p and q that are adjacent in ΣI(P) if and only if AnnR

I {p} ⊆ AnnR
I {q}

or AnnR
I {q} ⊆ AnnR

I {p}. Also, there is an edge between p and q in the graph ∆I(P) if and only if AnnL
I {p} ⊆

AnnL
I {q} or AnnL

I {q} ⊆ AnnL
I {p}.

Example 4.1. We construct the table with P = {1, a, b, c, d} and the operation � as below:

� 1 a b c d

1 1 a b c d

a 1 1 a c c

b 1 1 1 c c

c 1 1 a 1 a

d 1 1 1 1 1
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It is clear that (P, �, 1) is a bounded JU-algebra of P.

We can see the graphs Σ{1}(P) and ∆{1}(P)will represent the same graph that is shown in the following figure.

1

a b

c d

Figure 1: Graph of Σ{1}(P) and ∆{1}(P)

Proposition 4.1. I being an ideal of P. We have:

(1) ω(ΣI(P)) ≥ max{|A|; A is a chain in X}
(2) ω(∆I(P)) ≥ max{|A|; A is a chain in X}

Proof. (1) According to Definition 2.1 if p ≤ q then, r � x ≤ z � y. Next, let p ≤ q, z ∈ AnnR
I {q}.

Using Definition 4.1, r � y ∈ I. Thus, with Definition 2.2 of ideal, r � x ∈ I. So, r ∈ AnnR
I {p}, we

get, AnnR
I {q} ⊆ AnnR

I {p}, x � y ∈ E(ΣI(P)).
(2) Similar as part (1).

�

Theorem 4.1. I being ideal of P. We have:

(1) ΣI(P) is connected, diam(ΣI(P)) ≤ 2, gr(ΣI(P)) = 3.

(2) ∆I(P) is connected, diam(∆I(P)) ≤ 2, gr(∆I(P)) = 3.

Proof. (1) For every p ∈ X, x ≤ 1, then by Proposition 4.1, the element 1 is connected to

every element in P. Therefore, ΣI(P) is connected and hence diam(ΣI(P)) ≤ 2. Moreover,

gr(ΣI(P)) = 3.

(2) Similar as part (1).

�

Theorem 4.2. I being ideal of P. We have:

(1) ΣI(P) is regular if and only if it is complete.
(2) ∆I(P) is regular if and only if it is complete.

Proof. (1) Consider ΣI(P) to be a regular graph. But deg(1) = |X| − 1, therefore, for all p ∈
X, deg(p) = |X| − 1. Hence, ΣI(P) is a complete graph. As an indirect part, we can say a

complete graph is always regular.

(2) Similar as part (1).

�



Int. J. Anal. Appl. (2024), 22:1 9

Proposition 4.2. Let P be a chain, I be an ideal of P. Then the graphs ΣI(P) and ∆I(P) are planar if and
only if |X| ≤ 4.

Proof. Using Proposition 4.1, the graphs ΣI(P) and ∆I(P) are complete graphs K2 and K3 for |x| = 3

and |X| = 4, respectively and hence they are planar for |X| ≤ 4. Now if |X| ≥ 5, then ΣI(P) and

∆I(P) have a subgraph isomorphic to K5, consequently, by using Kuratowski’s Theorem the graphs

ΣI(P) and ΣI(P) are nonplanar. Indirectly, it is known that there are five vertices in K5, thus if any

graph ΣI(P) or ∆I(P), is not planar, and hence there are at least five vertices in the graphs ΣI(P)
and ΣI(P), (P), which is not true and hence |X| ≤ 4. �

Proposition 4.3. Let P be a chain, I be an ideal of P. Then the graphs ΣI(P) and ∆I(P) are outer planar if
and only if |X| ≤ 3.

Proof. According to Proposition 4.1, the graphs ΣI(P) and ∆I(P) are complete graphs, now if |X| ≥ 4,

then both graphs ΣI(P) and ∆I(P) have a subgraph that is isomorphic to K4 and hence by [8], the

graphs ΣI(P) and ∆I(P) are not outer planar. It is known that K4 has four vertices hence if any of

the graphs ΣI(P) or ∆I(P) are non outer planar, hence there are at least four vertices, in the graph

ΣI(P) and ∆I(P), that is actually contrary to the fact that |X| ≤ 3. �

Proposition 4.4. Let P be a chain, I be an ideal of P. Then the graphs ΣI(P) and ∆I(P) are toroidal graphs
if and only if |X| ≤ 7.

Proof. By using the Proposition 4.1, the graphs ΣI(P) and ∆I(P) are complete graphs. If |X| ≥ 8,

then the both graphs ΣI(P) and ∆I(P) have a subgraph that is isomorphic to K8. Now by [8], both

graphs ΣI(P) and ∆I(P) are not toroidal. Conversely, since K8 has eight vertices, therefore, both

the graphs ΣI(P) and ∆I(P) are not toroidal and hence both the graphs ΣI(P) and ∆I(P) has at least

eight vertices, that is contrary to the fact that |X| ≤ 7. �

5. Graphs on the Ideals of JU-Algebras Based on the Binary Operations ∧

For this section we assume that, the set P will represent a bounded and commutative JU-algebra.

Definition 5.1. Letting I to be an ideal of P, we can construct a simple graph ΥI(P) with vertex set P and
two distinct vertices p and q are adjacent if and only if p∧ y ∈ I.

Example 5.1. We construct a table with P = {1, a, b, c, d, e} and the operation � as follows:

� 1 a b c d e

1 1 a b c d e

a 1 1 b c b c

b 1 a 1 b a d

c 1 a 1 1 a a

d 1 1 1 b 1 b

e 1 1 1 1 1 1
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Thus, (P, �, 1) is both a bounded and commutative KU-algebra. We can simply check that I = {1, a} is an
ideal of P.

1 e

ba

c d

Figure 2: The graph of ΥI(P).

Lemma 5.1. Let I be an ideal of P. Then deg(p) = |X| − 1 for all p ∈ I in the graph ΥI(P).

Proof. Let p ∈ I and q be an arbitrary element of P. Then (p � q) � q ∈ I. Since (p � q) � q ≤ p, as I is an

ideal of P. So, q � x ∈ E(ΥI(P)). �

Theorem 5.1. Let I being an ideal of P, the graph ΥI(P) would be regular if and only if it is complete.

Proof. Consider ΥI(P) as a regular graph. By using Lemma 5.1, we shall get deg(1) = |X| − 1. It is

known here that ΥI(P) is regular, hence, for some p ∈ X, deg(p) = |X| − 1. That shows ΥI(P) is a

complete graph. Indirectly, if a graph is complete it is always regular. �

The following Proposition 5.1 and Theorem 5.2 are follows from Lemma 5.1.

Proposition 5.1. I being an ideal of P. We get that ω(QI(P)) ≥ |I|.

Theorem 5.2. I being an ideal of P. We get that ΥI(P) is connected and diam(ΥI(P)) ≤ 2.

Theorem 5.3. Let I be an ideal of P. Then gr(ΥI(P)) = 3.

Proof. Let a , 1 ∈ I and p be an arbitrary element in P. Then easily we have that 1 − a − x − 1 is a

cycle of length 3 in ΥI(P). �

Proposition 5.2. With an ideal I of P we have the below statements hold:

(1) In case of ΥI(P) to be a planar graph, |I| ≤ 4.

(2) In case of ΥI(P) to be an outer planar, |I| ≤ 3.

(3) In case of ΥI(P) to be a toroidal, |I| ≤ 7.

Proof. (1) From Lemma 5.1, the graph ΥI(P) is complete graph on I. Next, if we have |I| ≥ 5,

then ΥI(P) we get that there is a subgraph of it that is isomorphic to K5 that further by

Kuratowski’s theorem, is non planar.

(2) From Lemma 5.1, the graph ΥI(P) is complete graph on I. Next, if we have |I| ≥ 4, then

ΥI(P) we get that it has a subgraph isomorphic to K4 that is by [8], returns that the graph

ΥI(P) is not outer planar.
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(3) Again by uaing Lemma 5.1, we see that the graph ΥI(P) is a complete graph. Further if

|I| ≥ 7, then for ΥI(P) there is always a subgraph that is isomorphic to K8. Thus using [8],

the graph ΥI(P) is not toroidal.

�

Theorem 5.4. For an ideal I of P if ΥI(P) is an Euler graph, then |X| is odd.

Proof. From Lemma 5.1, for all p ∈ I, deg(p) = |X| − 1. If ΥI(P) is an Euler graph, and so degree of

every vertex in I is even. Implies, |X| is an odd number. �

Theorem 5.5. I being an ideal of P and I = ∩1≤i≤nPi. For every 1 ≤ j ≤ n, the ideals I , ∩1≤i≤n,i, jPi,

where Pi are prime ideals of P, then ω(QI(P)) = n = χ(QI(P)).

Proof. For every j having 1 ≤ j ≤ n, we suppose p j in (∩1≤i≤n,i, jPi) − P j. We have A = {p, ..., xn}

is a clique in ΥI(P). Thus ω(ΥI(P)) ≥ n. Next to show that, χ(ΥI(P)) ≤ n. Define a coloring f by

choosing f (p) = min{i; x < Pi}. Suppose f (p) = k, p and q are two adjacent vertices. Naturally,

p < Pk and p ∧ y ∈ I. Since we had let Pk prime, hence q ∈ Pk, and thus f (q) , k. Again, since

ω(Υ1(P)) ≤ χ(ΥI(P)), implies that the result hold. �

Theorem 5.6. Consider I is an ideal of P. If I = ∩ j∈JP j, where P j are prime ideals of P and J is an infinite
set for each i ∈ J, also I , ∩ j,iP j, then ω(ΥI(P)) = ∞ = χ(ΥI(P)).

Proof. For every i ∈ J, we have pi ∈ (∩ j,iP j − Pi). It is easy to see that the set of pi yields an infinite

clique in ΥI(P). Since ω(ΥI(P)) ≤ χ(ΥI(P)), it proves the required result. �

6. Conclusion

In this article we have studied and discussed annihilators based on right-ideals, left-ideals and

ideals for JU-algebras. Furthermore, construction of some main classes of graphs in a bounded

JU-algebra (P, �, 0) related to ideals that are denoted by Φ1(P), ∆1(P) and Σ1(P) are taken under

consideration. Then some graphical properties such as planarity, regularity, and connectivity on

the structure of these graphs are studied. We have constructed the graph QI(P) and have studied

their properties with these aspects. The dual of all the above concepts can be study in the future

work.
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