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Abstract. The Szegö curve is denoted by SRo = {z ∈ C : |ze1−z
| = Ro, |z| ≤ 1} and let HR be the class of functions analytic

in GR but not in GR′ if R < R′, GRo = int SRo , 0 < Ro < R < 1. In this paper we have studied growth parameters in terms
of weighted polynomial approximation errors on SRo for the functions f ∈ HR having rapidly increasing maximum
modulus so that the order of f (z) is infinite.

1. Introduction

The problem evolved from Lorentz’s approximation by incomplete polynomials on the real line
was discussed by G.G. Lorentz [12] and has been developed into the general theory of approx-
imation with varying weights. It is noted that the weighted approximation of functions in the
complex plane has not studied so extensively in comparison to study on real line in the current
approximation theory literature with the exception of the papers by Borwein and Chen [3], Pritsker
and Varga ( [15], [16]) and Kumar and Basu [10]. Therefore, in this paper, we tried to bridge this
gap and obtained some new results concerning the growth parameters of analytic functions in
terms of weighted polynomials {e−nzPn(z)}∞n=0 approximation errors.

The normalized partial sum sn(nz) introduced by Szegö [22] satisfies the following equation:

e−nzsn(nz) = 1−
√

n

τn
√

2π

∫ z

0

(
ζe1−ζ

)n
dζ, n ≥ 1, z ∈ C, (1.1)

where sn(z) =
∑n

k=0(z
k/k!) and from Sterling’s asymptotic series formula, see Henrici [4]

τn =
n!

nne−n
√

2πn
' 1 +

1
12n

+
1

288n2 −
139

51840n3 + · · · , n→∞
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so that τn → 1 as n→∞.
The curve {z ∈ C : |φ(z)| = 1},φ(z) = ze1−z introduced by Szegö divides the complex plane C into

three domains: One of them is the bounded domain G contained in the unit disc D = {z ∈ C : |z| < 1}
whose boundary consists of that part of the Szegö curve, i.e. ,

S = {z ∈ C : |ze1−z
| = 1, |z| ≤ 1}

which is contained in the closed unit disc. The Szegö curve S is a piecewise analytic Jordan
curve with one corner point at z = 1. It is proved in Szegö [22] that G, in the z-plane is mapped
conformally onto the unit disc D, in the w-plane, by the function w = φ(z), and that the unbounded
domains, also determined from the Szegö curve, are given by Ωo = {z : |φ(z)| < 1, |z| > 1} and
Ω∞ = {z : |φ(z)| > 1}.

For each Ro with 0 < Ro ≤ 1, the set

SRo = {z ∈ C : |φ(z)| = Ro, |z| ≤ 1, 0 < Ro ≤ 1}

is an associated level curve of the mapping φ. Clearly, SRo ⊂ G for any Ro with 0 < Ro < 1, and
S1 = S. Also, we have GRo = int SRo , where int SRo means the interior points of the curve SRo and
G1 = G.

Let

Ew
n

(
f , GRo

)
= inf

Pn∈πn

∥∥∥e−nzPn(z) − f (z)
∥∥∥

SRo
, (1.2)

be the error of the best weighted approximation on SRo , or equivalently, GRo for a function f analytic
in GR, where 0 < Ro < R < 1 and πn is the set of all polynomials of degree ≤ n.

For classifying analytic functions by their growth, the concept of order was introduced. If the
order is a (finite) positive number, then the concept of type permits a subclassification. For the
cases of order ρ = 0 and ρ = ∞ no subclassification is possible. For this particular subclassification
the type of f can be defined by using the concept of index-pair (p, q) introduced by Juneja et al. [6].
The concept of index q, the q-order and q-type were introduced by Bajpai et al. [1] in order to
obtain a measure of growth of the maximum modulus, when it is rapidly increasing.

Kasana and Kumar [9] have studied the growth parameters in terms of Chebyshev and inter-
polation errors for entire functions of index-pair (p, q). Rice [18] and Winiarski [25] have obtained
these results for (p, q) = (2, 1). Also, Bernstein [2], Juneja [5], Reddy [17], Shah [21] and Varga [23]
have studied the rate of decay of these errors for entire functions. All these results do not give any
information about the rates of decay of these errors when f is not entire. However, Rizvi and Nau-
tiyal [19] studied the rates of decay of approximation and interpolation errors when f is not entire.
But the results contained in [19] do not give any specific information about the growth of f (z) if
maximum modulus of f (z) is increasing so rapidly that the order of f (z) is infinite. In the present
paper, we have studied growth parameters in terms of weighted polynomial approximation errors
defined by (1.2) for the functions having rapidly increasing maximum modulus.

Let HR be the class of functions analytic in GR but not in GR′ if R < R′.
Thus we define the growth parameters for a function f ∈ HR, 0 < R < 1 as follows:
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A function f ∈ HR, 0 < R < 1 , will be said to be of q-order ρ0(q)
(ρ0(q) < ∞,ρ0(q− 1) = ∞, q = 2, 3, . . .) if

ρ0(q) = lim sup
r→R−

log[q] M(r)
log(R/(R− r))

. (1.3)

In case 0 < ρ0(q) < ∞ , the q-type T0(q)(0 ≤ T0(q) < ∞) of f is defined as

T0(q) = lim sup
r→R−

log[q−1] M(r)

(R/(R− r))ρ0(q)
, (1.4)

where

M(r) ≡M(r, f ) = max
z∈Gr

∣∣∣ f (z)∣∣∣
and

log[0] M(r) = M(r), log[q] M(r) = log log[q−1] M(r).

Pritsker and Varga [16] have given a necessary and sufficient condition for the validity of the
locally uniform approximation of any function f (z) which is analytic in an open bounded set G∗ in
the complex plane by weighted polynomials of the form {wn

∗ (z)Pn(z)}∞n=0, where w∗(z) is analytic
and different from zero in G∗. Also, they have generalized the Theorems 3.8 and 4.3 of [15].

It is significant to mention that our main results are different from those of Pritsker and Varga
( [15], [16]).

For the weighted normalized partial sums e−nzsn(z), the following inequality is valid∣∣∣e−nzsn(z) − 1
∣∣∣ ≤ 4
√

2nπ|z− 1|
, z ∈ G \ {1}, n ≥ 1. (1.5)

The detailed proof of (1.5) is available in [15].
In view of (1.5), a consequence of (1.1) is that e−nzsn(z) converges to f (z) ≡ 1, locally uniformly

in G, (i.e. , uniformly on every compact subset of G). This raises the question of possibility of
uniform approximation of any function analytic in G by weighted polynomials {e−nzPn(z)}, where
Pn is a complex polynomial of degree ≤ n, for each n ≥ 0.

The harmonic measure at the point z = 0 with respect to G is defined as the pre-image of the
normalized are-length measure on Γ = {w ∈ C : |w| = 1} under the mapping w = φ(z), where
φ(z) = ze1−z, i.e. ,

w(0, B, G) = m(φ(B∩ S)) (1.6)

for any Borel set B ⊂ C. Here dm = dθ/2π. From (1.6), note that w(0, ·, G) is a unit Borel measure
which is supported on S, i.e. , w(0, S, G) = 1 and supp w(0, ·, G) = S. For any polynomial Pn(z) ,
the normalized counting measure of its zeros is defined by

νn (Pn) =
1
n

∑
Pn(zi)=0

δzi , (1.7)

where δz is the unit point mass at z where all zeros are considered with multiplicity.
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2. Auxiliary Results

This section contains various results which have been utilized to prove the main theorems.

Lemma 2.1. Let (Ro, R) a pair of numbers with 0 < Ro < R ≤ 1. If a function f is analytic in GR, then
there exists a sequence of polynomials {Pn(z)} such that

Ew
n ( f , GRo) ≤

∥∥∥ f (z) − e−nzPn(z)
∥∥∥

GRo
≤ K′′

1
R− ε−R0

M(R− ε, f )

(Ro/R− ε)n+1 , (2.1)

where M(R− ε, f ) = maxz∈GR−ε | f (z)| and K′′ is a large number.

Proof. The following weighted equilibrium problem provides important tools in the derivation of
the proof. For the weighted energy integral

IE(µ) =

∫ ∫
ln

1
|z− t|w(z)w(t)

dµ(z) dµ(t), µ ∈M(E), (2.2)

find

τ∗E = inf
µ∈M(E)

IE(µ). (2.3)

and identify the extremal measure µE ∈ M(E) for which the infimum in (2.3) is attained. Here
M(E) denotes the class of all positive Borel measure µ on C which are supported on E and have
total mass unity, i.e. , µ(C) = 1.
The logarithmic potential of a Borel measure µ, with compact support which is defined as

Vµ(z) =
∫

ln
1
|z− t|

dµ(t).

It follows from Theorem I.3.3 of [20] that the solution of the weighted energy problem in (2.3)
for the weight function w(z) = eRe z, z ∈ C of (2.2) on GRo , 0 < Ro ≤ 1, is given by

µGRo
= w(0, ·, GRo),

and

V
µGRo (z) + Q(z) =


1− lnRo, z ∈ GRo

1− ln|φ(z)|, z ∈ C \GRo ,
(2.4)

where Q(z) = Re z and φ(z) = ze1−z.
Now, suppose that f (z) is analytic in GR. For each n ≥ 0, let z(n+1)

1 , z(n+1)
2 , . . . , z(n+1)

n+1 be n + 1
points in GR. In view of the Hermite interpolation formula, the polynomial Pn(z)which interpolates
enz f (z) at these points is given by, see [24],

enz f (z) − Pn(z) =
wn+1(z)

2πi

∫
SR−ε

f (t)ent

(t− z)wn+1(t)
dt, (2.5)
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where wn+1(z) =
∏n+1

k=1 (z − z(n+1)
k ) and z ∈ GR−ε; ε > 0 is small enough so that the set

{z(n+1)
1 , z(n+1)

2 , . . . , z(n+1)
n+1 } is contained in GR−ε. Division by enz in (2.5) yields

f (z) − e−nzPn(z) =
e−nzwn+1(z)

2πi

∫
SR−ε

f (t) dt
(t− z)e−ntwn+1(t)

, z ∈ GR−ε.

Let νn(wn) be the normalized counting measure of zeros of wn(z) defined as (see (1.7)),

νn(wn) =
1
n

n∑
k=1

δzk(n), n ≥ 1.

Obviously,

|wn(z)| = exp{−nVνn(wn)(z)}, n ≥ 1. (2.6)

For each Ro with 0 < Ro < R, choosing an interpolation in (2.5) which satisfies{
z(n+1)

k

}n+1

k=1
⊂ SRo (2.7)

and

νn(wn)→ w(0, ·, GRo) as n→∞. (2.8)

Note that at (2.8) the convergence is weak-convergence. As an example of an interpolation where
(2.7) and (2.8) are valid, one can take the pre-images of equally spaced points on |w| = Ro under
the conformal map w = φ(z) = ze1−z, i.e. , for η = φ−1, we define

z(n)k = η
(
Roei2πk/n

)
, 1 ≤ k ≤ n, n = 1, 2, . . . .

In view of (2.6)-(2.8), we have

lim
n→∞

∣∣∣wn(z)
∣∣∣1/n

= lim
n→∞

exp{−Vνn(wn)(z)} = exp{−Vw(0,·,GRo )(z)}, (2.9)

which holds locally uniformly in C \GRo . Taking any ε > 0 small enough so that Ro + ε < R− ε in
(2.5) we obtain∥∥∥ f (z) − e−nzPn(z)

∥∥∥
GRo
≤

‖e−nzwn+1(z)‖SRo
‖ f ‖SR−ε

2π dist (SR−ε, SRo)mint∈SR−ε

∣∣∣e−ntwn+1(t)
∣∣∣ .

We see that the immediate outcome of (2.4) is

Vw(0,·,GRo )(z) = − ln |z|, (2.10)

where z ∈ C \ GRO . From (2.4), it is obvious that Vw(0,·,GRo )(z) is continuous on SRo =

supp w(0, ·, GRo) and, therefore, is continuous in C by Theorem II.3.5 of [20], see also Theorem
1.7 in [11]. Assume that z ∈ SRo , so that from (2.4), − ln |z|+ Re z = 1 − ln Ro. Then with (2.10), it
gives

Vw(0,·,GRo )(z) + Q(z) = − ln |z|+ Re z = 1− ln Ro, Q(z) = Re z.

It can be easily seen from the above definition that Vw(0,·,GRo ) + Q(z) is harmonic in GRo and is
identically constant on the boundary SRo . From (2.4) we have

Vw(0,·,GRo ) + Q(z) = 1− ln Ro, z ∈ GRo . (2.11)
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Using (2.9) and (2.11), we obtain

‖ f (z) − e−nzPn(z) ‖GRo
≤ K′

1
R− ε−R0

M(R− ε, f )
eRez(eln(R0)−1)n+1

eRet(eln(R0−ε)−1)n+1
,

which follows from :

e−nzwn+1(z) = ez(e−zwn+1(z)1/(n+1))n+1,

so ∣∣∣ez(e−zwn+1(z)1/(n+1))n+1
∣∣∣

is behaves like

|ez
|(e−Q−V)n+1 = eRez(eln(R0)−1)n+1,

by (2.4) and (2.9).

So we get

‖ f (z) − e−nzPn(z)‖GR0
≤ K′′

1
R− ε−R0

M(R− ε, f )
( R0

R− ε

)n+1
.

�

Remark 2.1. In proving Lemma 2.1, we have used the technique developed by Pritsker and Varga in [15].

Lemma 2.2. A function f has a singularity on SR if, and only if,

lim sup
n→∞

[
Ew

n ( f , GRo)
]1/n

=
Ro

R
.

Proof. If f (z) is analytic in GR, then by Lemma 2.1,

lim sup
n→∞

(
Ew

n ( f , GRo)
)1/n
≤

Ro

R− ε
,

for all R− ε sufficiently near to R and so

lim sup
n→∞

(
Ew

n ( f , GRo)
)1/n
≤

Ro

R
, (2.12)

However, the strict inequality in (2.12) is equivalent to the analyticity of f (z) in Gρ for some ρ
with R < ρ < 1, which is a contradiction. Thus f (z) has a singularity on SR if and only if equality
holds in (2.12).

�

Lemma 2.3. For any polynomial Pn(z) of degree ≤ n, we have∣∣∣e−nzPn(z)
∣∣∣ ≤ ‖e−nzPn(z)‖SRo

(
|φ(z)|

Ro

)n

,

where z ∈ C \GRO , n ≥ 0 and 0 < Ro ≤ 1.
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Proof. Since ln(|φ(z)|/Ro) is the green function, the statement of the lemma follows on the similar
lines as that of the Bernstein-Walsh lemma (see [22]). �

Lemma 2.4. Let f ∈ HR and let Ro be a fixed number (0 < Ro < R). Then the function g(z) =∑
∞

n=0 Ew
n ( f , GRo)zn is analytic in a disk centered at origin whose radius is R/R0 and for every r, Ro ≤ r <

R,we have

M(r, f ) ≤ ao + 2g(r/Ro), (2.13)

where ao is not a constant it depends on r = |z|.

Proof. Since f ∈ HR so f (z) is analytic in GR. Consider the function

g(z) =
∞∑

n=0

Ew
n

(
f , GRo

)
zn.

As limn→∞
[
Ew

n

(
f , GRo

)]1/n
= Ro/R, by Lemma 2.2. It follows that g(z) is analytic in a disk centered

at the origin whose radius is R/Ro.
By uniform convergence on GRo , the function f (z) can be represented in telescopic series:

f (z) = e−nzPn(z) +
∞∑

k=n

(
e−(k+1)zPk+1(z) − e−kzPk(z)

)
, z ∈ GRo .

where Pn′s are best approximation polynomials for which

‖ f − e−kzPk(z)‖GR0
= Ew

k .

Thus,

| f (z)| ≤ |e−nzPn(z)|+
∞∑

k=n

∣∣∣(e−(k+1)zPk+1(z) − e−kzPk(z))
∣∣∣ (2.14)

and ∣∣∣e−(k+1)zPk+1(z) − e−kzPk(z)
∣∣∣ ≤ ∥∥∥e−(k+1)zPk+1(z) − e−kzPk(z)

∥∥∥
GRo

≤

∥∥∥ f − e−(k+1)zPk+1(z)
∥∥∥

GRo

+
∥∥∥ f − e−kzPk(z)

∥∥∥
GRo

= Ew
k+1

(
f , GRo

)
+ Ew

k

(
f , GRO

)
≤ 2Ew

k

(
f , GRo

)
.

In view of Lemma 2.3, we get∣∣∣e−(k+1)zPk+1(z) − e−kzPk(z)
∣∣∣ ≤ 2Ew

k

(
f , GRo

) ( |φ(z)|
Ro

)k

, k ≥ n, z ∈ C \GR0 .

Hence the inequality (2.14) yields

| f (z)| ≤ ao + 2
∞∑

k=n

Ew
k

(
f , GRo

) ( |φ(z)|
Ro

)k

.
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If z ∈ Sr, i.e.,|φ(z)| = r,then

| f (z)| ≤ ao + 2
∞∑

k=n

Ew
k

(
f , GRo

) ( r
Ro

)k
. (2.15)

The last series in (2.15) converges inside GR since we can majorate it by g. Now (2.15) implies
(2.13). Hence the proof is completed.

�

In order to prove the main results we need the concepts of q order and q type of a function of a
single complex variable which is analytic in the disc |z| < R.

The q order ρ0(q) and type T0(q) of f (z) are defined in a analogous manner to (1.3) and (1.4).
The coefficient characterization of ρ0(q) and T0(q) for f (z) are as follows;

Let f (z) =
∑
∞

n=0 anzn be analytic in |z| < R, 0 < R < 1. and have q -order ρ0(q) (ρ0(q) > 0, q > 2).
Then

ρ0(q) + A(q) = lim sup
n→∞

log[q−1]
|an|Rn

log n− log+ log+
|an|Rn

, 0 ≤ ρ0(q) ≤ ∞, (2.16)

where A(q) = 1 if q = 2, A(q) = 0 if q ≥ 3 and for x > 0, we put log+ x = max(log x, 0).
The function f is of q-order ρ0(q)(0 < ρ0(q) < ∞) and q-type T0(q) if, and only if,

V(q) = T0(q)B(q), (2.17)

where B(q) = (ρ0+1)ρ0+1)

ρ
ρ0
0

for q = 2 and B(q) = 1 if q = 3, 4, . . . and

V(q) = lim sup
n→∞

(log[q−2] n)(log+
|an|Rn)ρ0(q)+A(q).

The above coefficients characterizations of f (z) are due to c.f. ( [8], Theorems 1 and 5).

3. Main Results

Theorem 3.1. Let f ∈ HR, 0 < R0 < R < 1, be of order ρ0(q). Then

ρ0(q) + A(q) = lim sup
n→∞

log[q−1] n

log n− log+ log+ Ew
n ( f , GRo)(R/Ro)n

. (3.1)

Proof. Let

lim inf
n→∞

log n− log+ log+ En,1( f )Rn

logq−1 n
= α.

Obviously 0 ≤ α ≤ ∞. First suppose that 0 < α < ∞. Then, by the definition of α, there exists a
sequence {nk} of positive integers tending to infinity such that

log Ew
n ( f , GRo)(R/Ro)

n
k > nk(log[q−2] nk)

(−α+ε) f or k = 1, 2, 3, . . . (3.2)

Using (2.1) and with (3.2), we obtain

log M(R0, f ) ≥ nk(log[q−2] nk)
(−α+ε) + nk log(R0/R) − log A (3.3)

for the sequence {nk} and all R0(< R) sufficiently close to R. Let {R0k} be a sequence defined by
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nk = exp[q−2] {e log (R/R0k)
}

, k = 1, 2, 3, . . . , then R0k → R as k→∞.

Thus, using (3.2) and (3.3), for all sufficiently large values of k, we get

log M(R0k, f ) ≥ (1− e)nk(log[q−2] nk)
−(α+ε)[1 + 0(1)]

= e(e− 1)
{
exp[q−2] (e log(R/R0k))

−1/(α+ε)
}

. (3.4)

log(R/R0k)
−1[1 + 0(1)].

Since log(R/(R−R0k)) − log log(R/R0k) as k→∞, after a simple calculation the above inequality
gives

ρ0(q) + A(q) ≥ 1/α. (3.5)

This inequality is trivially true if α = 0 or α = ∞.
For reverse inequality in (3.1), we just apply (2.16) to g(z), defined in Lemma 2.4. This completes

the proof.
�

Theorem 3.2. Let f ∈ HR, 0 < R0 < R < 1, and have q − order ρ0(q)(0 < ρ0(q) < ∞), q − type T0(q),
then

G(q) = T0(q)B0(q), (3.6)

where B0(2) =
(ρ0(2)+1)ρ0(2)+1

(ρ0(2)/2)ρ0(2)
, A(2) = 1 and B0(q) = 1, A(q) = 0 if q = 3, 4, . . .

G(q) = lim sup
n→∞

(log[q−2] n)

 log+ Ew
n ( f , GRo)(R/Ro)n

n

ρ0(q)+A(q)

. (3.7)

Proof. Let G(q) < ∞. For given ε > 0, by (3.7) we have

(
log[q−2] n

)  log+ Ew
n ( f , GRo)(R/Ro)n

n

ρ0(q)+A(q)

< G(q) + ε,

for all n > n0 ≡ n0(ε), it gives

log[q−1] n + (ρ0(q) + A(q))
[
log+ log+ Ew

n ( f , GRo)(R/Ro)
n
− log n

]
< log(G(q) + ε),

or

ρ0(q) + A(q) >
log[q−1] n

log n− log+ log+ Ew
n ( f , GRo)(R/Ro)n

−
log(G(q) + ε)

log n− log+ log+ Ew
n ( f , GRo)(R/Ro)n

.



10 Int. J. Anal. Appl. (2024), 22:5

Let 0 < T0(q) < ∞. For given ε > 0, by definition, we have

log M(R0, f ) < exp[q−2]
{
(T0(q) + ε)(R/(R−R0))

ρ0(q)
}

(3.8)

for all R0 such that 0 < r0 = r0(ε) < R0 < R.
Thus using Lemma 2.1, (3.8) gives

log+ Ew
n ( f , GRo)(R/Ro)

n
≤ exp[q−2]

{
(T0(q) + ε)(R/(R−R0))

ρ0(q)
}

+ n log(R/R0) + log+ A. (3.9)

The maximum value of right hand side of (3.9) is uniquely determined by the value of R0 given
by

q−2∏
i=0

exp[i]
{
(T0(q) + ε)(R/(R−R0))

ρ0(q)
}
=

n(R−R0)

Rρ0(q)
. (3.10)

For q = 2, using (3.10) in (3.9), we get

log+ Ew
n ( f , GRo)(R/Ro)

n
≤

(T0(q) + ε)1/(ρ0(q)+1)(2n)ρ0(q)/(1+ρ0(q))

(ρ0(q))
ρ0(q)/(1+ρ0(q)+1)

(1 + ρ0(q) + o(1)),

for all sufficiently large value of n. On proceeding to limits, the above inequality gives (3.6) for
q = 2.

Next, for q = 3, 4, . . . (3.10) gives

R
R−R0

'

 log[q−2] n
T0(q) + ε

1/ρ0(q)

as n→∞.

Thus for n > n0, (3.9) gives

log+ Ew
n ( f , GRo)(R/Ro)

n < n + n log(R/R0) + log+A,

or

log[q−2] n(1+o(1))

 log+ Ew
n ( f , GRo)(R/Ro)n

n

ρ0(q)

< (T0(q) + ε)(1 + o(1)).

Proceeding to limits as n→∞, the above inequality gives

T0(q) ≥ G(q) f or q ≥ 3.

The reverse inequality is obtained by applying (2.17) to g(z) of Lemma 2.4. If G(q) is infinite then
T0(q) = ∞ and f is of growth (ρ0(q),∞). Hence the proof is completed.
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