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Abstract. Frame is a fundamental notion in the study of vector spaces; they offer redundancy and

flexibility, which favor their application in various fields of mathematics. This article aims to collect

important results of frames in Hibert pro-C∗-modules: Frame, ∗-frame, ∗-K-frame, g-frame, ∗-g-
frame, ∗-K-g-frame, operator frame, ∗-operator frame, ∗-K-operator frames. We also prove some

new notions.

1. Introduction

It is known that the bases in vector spaces represent every item uniquely and conveniently. However,

the linear independence property of a basis, which allows each vector to be represented only as a linear

combination, is very limited for practical problems. A frame is more general than a basis: one can

represent each element of the vector space by a frame, but this representation may not necessarily be

unique.

Although Duffin and Schaefer introduced the concept of Frames [3] in 1952, it was only in the last

ten years that the theory of frames was developed extensively by Grossman and Meyer [6]. n the 1970s

and 1980s, the study of frames was extended to the context of Hilbert spaces, where it was used to

understand the representation and analysis of signals and images; this led to the development of the

theory of frames, a well-established area of mathematics with a rich body of research and numerous

applications in signal processing, image analysis, and numerical analysis.

Received: Oct. 13, 2023.

2020 Mathematics Subject Classification. 42C15, 46L05.

Key words and phrases. frames; pro-C∗-algebra; Hilbert pro-C∗-modules.

https://doi.org/10.28924/2291-8639-21-2023-130
ISSN: 2291-8639

© 2023 the author(s).

https://doi.org/10.28924/2291-8639-21-2023-130


2 Int. J. Anal. Appl. (2023), 21:130

In recent years, the study of frames has continued to evolve and expand, and it has become an

essential tool for understanding the representation and analysis of signals, images, and functions in a

wide range of areas, including mathematics, physics, engineering, and computer science.

In 2008, Joita [11] extended the theory of frame in Hilbert modules over pro-C∗-algebras, which led

to the initiation of new notions of frames in Hilbert pro-C∗-modules.

In this work, we gather all the crucial results concerning frames in Hilbert pro-C∗-modules and prove

some new results.

2. Preliminaries

Pro-C∗-algebra is considered as a complete Hausdorff complex topological ∗-algebra A whose topol-

ogy is determined by its continuous C∗-seminorms in the sens that a net {aα} converges to 0 if and

only if pα(aα) converges to 0 for all continuous C∗-seminorm pα on A, and we have:

1) pα(γβ) ≤ pα(γ)pα(β)

2) pα(γ∗γ) = pα(γ)2

for all γ, β ∈ A sptr(γ) denotes the spectrum of γ such that: sptr(γ) = {λ ∈ C : λ1A − γ is not

invertible } for all γ ∈ A. Where A is unital pro-C∗-algebra with unite 1A.

We denote by Se(A) the set of all continunous C∗-seminorms on A. A+ designates the set of all

positive elements of A, and it is a closed convex C∗-seminorms on A.
HA denotes the set of all sequences (γn)n with γn ∈ A such that

∑
n γ
∗
nγn converges in A.

Example 2.1. Every C∗-algebra is a locally C∗-algebra.

Definition 2.1. [15] A pre-Hilbert module over locally C∗-algebra A, is a complex vector space X
which is also a left A-module compatible with the complex algebra structure, equipped with an A-
valued inner product 〈., .〉 X × X → A which is C-and A-linear in its first variable and satisfies the

following conditions:

1) 〈ξ, η〉∗ = 〈η, ξ〉 for every ξ, η ∈ X
2) 〈ξ, ξ〉 ≥ 0 for every ξ ∈ X
3) 〈ξ, ξ〉 = 0 if and only if ξ = 0

for every ξ, η ∈ X .We say X is a Hilbert A-module (or Hilbert pro-C∗-module over A ) if it is complete

with respect to the topology determined by the family of seminorms

p̄X (ξ) =
√
pα(〈ξ, ξ〉) ξ ∈ X , p ∈ S(A)

In all the rest A is a pro-C∗-algebra, X and Y are two Hilbert A-modules and I and J are countable

index sets.

We call an operator from X to Y every bounded A-module map from X to Y. The set of all

operator from X to Y by is denoted by HomA(X ,Y).
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Proposition 2.1. [9] Let A be a unital pro-C∗-algebra with an identity 1A. Then for any pα ∈ Se(A),

we have:

(1) pα(γ) = pα(γ∗) for all γ ∈ A
(2) pα (1A) = 1

(3) If 1A ≤ β, then β is invertible and β−1 ≤ 1A

(4) If γ, β ∈ A+ are invertible and 0 ≤ γ ≤ β, then 0 ≤ β−1 ≤ γ−1

(5) If γ, β ∈ A+ and γ2 ≤ β2, then 0 ≤ γ ≤ β

Proposition 2.2. [2]. Let X be a Hilbert module over pro-C∗-algebra A and T be an invertible

element in Hom∗A(X ) such that both are uniformly bounded. Then for each ξ ∈ X ,∥∥T−1
∥∥−2

∞ 〈ξ, ξ〉 ≤ 〈Tξ, Tξ〉 ≤ ‖T‖
2
∞〈ξ, ξ〉.

3. Frames

Definition 3.1. [11] A sequence {ξi}i in M(X ) is a standard frame of multipliers in X if for each

ξ ∈ X ,
∑
i 〈ξ, ξi〉M(X ) 〈ξi , ξ〉M(X ) converges in A, and there are two positive constants C and D such

that

C〈ξ, ξ〉X 6
∑
i

〈ξ, ξi〉M(X ) 〈ξi , ξ〉M(X ) 6 D〈ξ, ξ〉X

for all ξ ∈ X . If D = C = 1 we say that {ξi}i is a standard normalized frame of multipliers.

Particularly if the right inequality∑
i

〈ξ, ξi〉M(X ) 〈ξi , ξ〉M(X ) 6 D〈ξ, ξ〉X ∀ξ ∈ X

holds true, we call {ξi}i∈I a Bessel sequence.

Remark 3.1. [11] Let {ηi}i be a sequence in M(X ). Then {ηi}i is a standard normalized frame of

multipliers in X if and only if
{(
πA,Xp

)
∗ (ηi)

}
i
is a standard normalized frame of multipliers in Xp for

each pα ∈ Se(A).

Example 3.1. [11] For any pro-C∗-algebra, {ui}i is a standard normalized frame of multipliers in HA.
Indeed, if (αi)i ∈ HA then, since〈(

αj
)
j
, ui

〉
M(HA)

〈
ui ,
(
αj
)
j

〉
M(HA)

= α∗i αi

for each positive integer i , we have∑
i

〈(
αj
)
j
, ui

〉
M(HA)

〈
ui ,
(
αj
)
j

〉
M(HA)

=
∑
i

α∗i αi =
〈(
αj
)
j
,
(
αj
)
j

〉
HA

and so {ui}i is a standard normalized frame of multipliers in HA.

Proposition 3.1. [11] Any countably generated Hilbert A-module X in M(X ) admits a standard

normalized frame of multipliers.
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Theorem 3.1. [11][The reconstruction formula]

Let X be a countably generated Hilbert A-module in M(X ) and let {ηi}i be a sequence in M(X ).

Then {ηi}i is a standard normalized frame of multipliers if and only if for all ξ ∈ X ,
∑
i ηi · 〈ηi , ξ〉M(X )

converges in X and moreover,

ξ =
∑
i

ηi · 〈ηi , ξ〉M(X ) .

Proof. By Remark 3.1 and [13, Theorem 3.4], {hn}n is a standard normalized frame of multipliers in

X if and only if
∑
n

(
πA,Xp

)
∗ (hn) ·

〈(
πA,Xp

)
∗ (hn) , σXp (ξ)

〉
M(X )

converges in Xp for all ξ ∈ X and for

each p ∈ S(A), and moreover,

σXp (ξ) =
∑
n

(
πA,Xp

)
∗ (hn) ·

〈(
πA,Xp

)
∗ (hn) , σXp (ξ)

〉
M(X )

From this fact and taking into account that

p̄X

(
ξ −

n∑
k=1

hk · 〈hk , ξ〉M(X )

)
=

∥∥∥∥∥σXp (ξ)− σXp

(
n∑
k=1

hk · 〈hk , ξ〉M(X )

)∥∥∥∥∥
Xp

=

∥∥∥∥∥σXp (ξ)−
n∑
k=1

(
πA,Xp

)
∗ (hk) ·

〈(
πA,Xp

)
∗ (hk) , σXp (ξ)

〉
M(X )

∥∥∥∥∥
Xp

for all ξ ∈ X , for all p ∈ S(A) and for all positive integers n, we deduce that {hn}n is a standard

normalized frame of multipliers in X if and only if
∑
n hn · 〈hn, ξ〉M(X ) converges in X for all ξ ∈ X ,

and moreover, ξ =
∑
n hn · 〈hn, ξ〉M(X ) for all ξ ∈ X . �

Remark 3.2. [11] If {hn}n is a standard normalized frame of multipliers in X , then
∑
n (hn ◦ h∗n) (ξ) =

ξ for all ξ ∈ E, since (hn ◦ h∗n) (ξ) = hn · 〈hn, ξ〉M(X ) for each positive integer n. Therefore, {hn}n is a
standard normalized frame of multipliers in X if and only if

∑
n (hn ◦ h∗n) (ξ) converges in X for each

ξ ∈ X and moreover,
∑
n (hn ◦ h∗n) (ξ) = ξ.

Corollary 3.1. [11] If The bounded part of X noted b(X ) admits a standard normalized frame of

multipliers, then X admits a standard normalized frame of multipliers.

Proof. We will show that if {hn}n is a standard normalized frame of multipliers in b(X ), then
{
h̃n
}
n
,

where h̃n is the extension of hn to an element in M(X ), is a standard normalized frame of multipliers

in X .
Let ξ ∈ X , p ∈ Se(A) and ε > 0. Since b(X ) is dense in X , there is ξ0 ∈ b(X ) such that

p̄X (ξ − ξ0) 6 ε/3. Since {hn}n is a standard normalized frame of multipliers in b(X ), there is n0 such

that ∥∥∥∥∥ξ0 −
n∑
k=1

(hk ◦ h∗k) (ξ0)

∥∥∥∥∥
∞

6 ε/3
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for all n with n > n0. Then

p̄X

(
ξ −

n∑
k=1

(
h̃k ◦ h̃∗k

)
(ξ)

)

6 p̄X (ξ − ξ0) + p̄X

(
ξ0 −

n∑
k=1

(hk ◦ h∗k) (ξ0)

)
+ p̄X

(
n∑
k=1

(
h̃k ◦ h̃∗k

)
(ξ − ξ0)

)

6 ε/3 +

∥∥∥∥∥ξ0 −
n∑
k=1

(hk ◦ h∗k) (ξ0)

∥∥∥∥∥
∞

+ p̃L(X )

(
n∑
k=1

h̃k ◦ h̃∗k

)
p̄X (ξ − ξ0)

6 ε/3

(
2 +

∥∥∥∥∥
n∑
k=1

h̃k ◦ h̃∗k

∥∥∥∥∥
∞

)

= ε/3

(
2 +

∥∥∥∥∥
n∑
k=1

hk ◦ h∗k

∥∥∥∥∥
)

6 ε

for all n with n > n0. This shows that
∑
n

(
h̃n ◦ h̃∗n

)
(ξ) converges to ξ in X for each ξ ∈ X and so{

h̃n
}
n
is a standard normalized frame of multipliers in X

If {hn}n is a standard frame of multipliers in X , then
∑
n 〈ξ, hn〉M(X ) 〈hn, ξ〉M(X ) converges in X

for all ξ ∈ X . From this fact and taking into account that 〈hn, ξ〉M(X ) ∈ A for all positive integers n,

we conclude that
(
〈hn, ξ〉M(X )

)
n
∈ HA. Thus we can define a linear map θ : X → HA by

θ(ξ) =
(
〈hn, ξ〉M(X )

)
n

Moreover, θ is a continuous module morphism, since

θ(ξa) =
(
〈hn, ξa〉M(X )

)
n

=
(
〈hn, ξ〉M(X ) a

)
n

= θ(ξ)a

for all ξ ∈ X and for all a ∈ A and

p̄HA(θ(ξ))2 = p

(∑
n

〈ξ, hn〉M(X ) 〈hn, ξ〉M(X )

)
6 Cp̄X (ξ)2

for all ξ ∈ X and for all p ∈ S(A). �

3.1. g-frame.

Definition 3.2. [7] A sequence Γ =
{

Γi ∈ Hom∗A (X ,Yi)
}
i∈I is called a g-frame for X with respect

to {Yi}i∈I if there are two positive constants C and D such that for every ξ ∈ X ,

C〈ξ, ξ〉 ≤
∑
i∈I
〈Γiξ,Γiξ〉 ≤ D〈ξ, ξ〉.

The constants C and D are called g-frame bounds for Γ. The g-frame is called tight if C = D and

called a Parseval if C = D = 1. If in the above we only need to have the upper bound, then Γ is called

a g-Bessel sequence. Also if for each i ∈ I,Yi = Y, we call it a g-frame for X with respect to Y.
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Example 3.2. Let {ξi}i∈I be a frame for X with bounds, C and D. Then by definition for each ξ ∈ X ,

C〈ξ, ξ〉 ≤
∑
i∈I
〈ξ, ξi〉 〈ξi , ξ〉 ≤ D〈ξ, ξ〉.

Now for i ∈ I define the operator Γξi as follows:

Γξi : X → A , Γξi (ξ) = 〈ξ, ξi〉 .

Clearly Γξi is a bounded operator in HomA(X ,A) and has adjoint as follows:

Γ∗ξi : A → X , Γ∗ξi (a) = aξi .

Hence Γξi ∈ Hom∗A(X ,A), i ∈ I. Also for each ξ ∈ X ,

C〈ξ, ξ〉 ≤
∑
i∈I
〈ξ, ξi〉 〈ξi , ξ〉 =

∑
i∈I
〈Γiξ,Γiξ〉 ≤ D〈ξ, ξ〉.

Therefore Γ =
{

Γξi
}
i∈I is a g-frame for X with respect to A. Let Γ =

{
Γi ∈ Hom∗A (X ,Yi)

}
i∈I be

a g-frame for X with respect to {Yi}i∈I and bounds C, D. We define the corresponding g-frame

transform as follows:

TΓ : X →
⊕
i∈I
Yi , TΓ(ξ) = {Γiξ}i∈I

Since Γ is a g-frame, hence for each ξ ∈ X we have:

C〈ξ, ξ〉 ≤
∑
i∈I
〈Γiξ,Γiξ〉 ≤ D〈ξ, ξ〉.

So TΓ is well-defined. Also for any p ∈ S(A) and ξ ∈ X the following inequality is obtained:

√
Cp̄X (ξ) ≤ p̄⊕i∈IYi (TΓξ) ≤

√
Dp̄X (ξ).

Frome the above, it follows that the g-frame transform is an uniformly bounded below operator in

HomA
(
X ,
⊕

i∈I Yi
)
. Thus by Proposition 2.13, TΓ is closed and injective.

Also, we define the synthesis operator for g-frame Γ as follows:

T ∗Γ :
⊕
i∈I
Yi → X , T ∗Γ ({ηi}i) =

∑
i∈I

Γ∗i (ηi) . (3.1)

Where Γ∗i is the adjoint operator of Γi .

Proposition 3.2. [7] The synthesis operator defined by 3.1 is well-defined, uniformly bounded and

adjoint of the transform operator. Since Γ = {Γi : i ∈ I} is a g-frame for X with respect to {Yi}i∈I ,
there exist positive constants C and D such that for any ξ ∈ X ,

C〈ξ, ξ〉 ≤
∑
i∈I
〈Γiξ,Γiξ〉 ≤ D〈ξ, ξ〉.
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Let J be an arbitrary finite subset of I. Using Cauchy-Bunyakovskii inequality for any p ∈ Se(A) and

(ηi)i ∈ ⊕i∈IYi we have:

p̄X

(∑
i∈J

Γ∗i (ηi)

)
= sup

{
p

〈∑
i∈J

Γ∗i (ηi) , ξ

〉
: ξ ∈ X , p̄X (ξ) ≤ 1

}

= sup

{
p

(∑
i∈J
〈ηi ,Γiξ〉

)
: ξ ∈ X , p̄X (ξ) ≤ 1

}

≤ sup
p̄X (ξ)≤1

(
p

(∑
i∈J
〈ηi , ηi〉

))1/2(
p

(∑
i∈J
〈Γiξ,Γiξ〉

))1/2

≤ sup
p̄X (ξ)≤1

√Dp̄X (ξ)

(
p
∑
i∈J
〈ηi , ηi〉

)1/2


≤
√
D

(
p

(∑
i∈J
〈ηi , ηi〉

))1/2

Now, since the series
∑
i∈I 〈ηi , ηi〉 converges in A, the above inequality shows that

∑
i∈I Γ∗i (ηi) is

convergent. Hence T ∗Γ is well-defined. On the other hand for any ξ ∈ X and (ηi)i ∈ ⊕i∈IYi , we have:

〈TΓ(ξ), (ηi)i〉 = 〈(Γix)i , (ηi)i〉

=
∑
i∈I
〈Γiξ, ηi〉

=
∑
i∈I
〈ξ,Γ∗i ηi〉

=

〈
ξ,
∑
i∈I

Γ∗i ηi

〉
= 〈ξ, T ∗Γ (ηi)i〉 .

Therefore by Proposition 2.11 it follows that the synthesis operator is adjoint of the transform operator.

Also, for any p ∈ S(A) we have:

p̄X (T ∗Γ (η)) ≤
√
Dp̄⊕i∈IYi(η), η = (ηi)i ∈ ⊕i∈IYi

Hence the synthesis operator is uniformly bounded.

Theorem 3.2. [7] Let Γ = {Γi}i∈I be a g-frame for X with respect to {Yi}i∈I and with bounds C,D.

Then SΓ is invertible positive operator. Also it is a self-adjoint operator such that:

CIX ≤ SΓ ≤ DIX (3.2)

Here IX is the identity function on X .
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Proof. According to the definition of the transform operator, for any ξ ∈ X we can write:

〈TΓ(ξ), TΓ(ξ)〉 =
〈
{Γix}i∈I , {Γiξ}i∈I

〉
=
∑
i∈I
〈Γiξ,Γiξ〉 .

Since Γ is a g-frame for X with bounds C and D, for each ξ ∈ X it follows that:

C〈ξ, ξ〉 ≤ 〈TΓ(ξ), TΓ(ξ)〉 ≤ D〈ξ, ξ〉.

On the other hand,

〈SΓ(ξ), ξ〉 = 〈T ∗ΓTΓ(ξ), ξ〉 = 〈TΓ(ξ), TΓ(ξ)〉 = 〈ξ, T ∗ΓTΓ(x)〉 = 〈ξ, SΓ(ξ)〉 .

Consequently, SΓ is a self-adjoint operator. Also for any ξ ∈ X , we obtain:

C〈ξ, ξ〉 ≤ 〈SΓ(ξ), ξ〉 ≤ D〈ξ, ξ〉.

From the above, it follows that the g-frame operator is positive and 3.2 is obtained too. Moreover by

Proposition 2.1 it follows that SΓ is invertible. By previous discussions, we have the following useful

result. �

3.2. ∗-frame.

Definition 3.3. [13] Let X be a Hilbert pro-C∗-module. The sequence {Tn}n in M(X ) we call a

standard ∗-frame of multipliers for X if for each ξ ∈ X , the series
∑
n 〈ξ, Tn〉M(X ) 〈Tn, ξ〉M(X ) is

convergent in A and there exist two strictly nonzero elements C and D in A such that

C〈ξ, ξ〉EC∗ 6
∑
n

〈ξ, Tn〉M(X ) 〈Tn, ξ〉M(X ) 6 D〈ξ, ξ〉XD∗

for all ξ ∈ X . If λ = C = D, then standard ∗-frame {Ti}i∈I of multipliers is called a standard λ-tight

*-frame. If {Ti}i∈I possesses an upper ∗-frame bound, but not necessarily a lower ∗-frame bound, we

call it standard ∗-Bessel sequence of multipliers for X .

Remark 3.3. [13] Every standard frame of multipliers in X with bounds C and D is a standard *-frame

of multipliers in X with A-valued *-frame bounds (
√
C)1A and (

√
D)1A.

Example 3.3. Let HA be a Hilbert A-module with the following operations:

ξη := {ξiηi}i∈N , ξ∗ :=
{
ξ̄i
}
i∈N , 〈{ξi} , {ηi}〉 :=

∑
i∈N

ξ∗i ηi ,

ρ̄HA(ξ) :=
(
ρ
(
〈ξ, ξ〉HA

)) 1
2 , ∀ξ = {ξi}i∈N , η = {ηi}i∈N .

Let J = N and define
{
φj
}
j∈J ∈ HA by φj =

{
φji

}
i∈N

such that

φji =

{
1Ai = j

0 i 6= j
, ∀j ∈ N.
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We observe that 〈
{ξi} , φj

〉
HA

〈
φj , {ξi}

〉
HA

= ξj1A1Aξj = ξjξj .

Also, ∑
j∈J

〈
ξ, φj

〉
HA

〈
φj , ξ

〉
HA

=
∑
j∈J

ξjξj = 〈ξ, ξ〉HA .

So
{
φj
}
j∈J ∈ HA is a standard normalized ∗-frame.

Example 3.4. [13] Let HA be a Hilbert A-module. Then Hom∗A (A,HA) is Hom(A)-module with

the following operations:

ξη := {ξiηi}i∈N , ξ∗ :=
{
ξ̄i
}
i∈N , 〈{ξi} , {ηi}〉 :=

∑
i∈N

ξiη
∗
i ,

p̄HA(ξ) =
(
p
(
〈ξ, ξ〉HA

)) 1
2 , ∀ξ = {ξi}i∈N , η = {ηi}i∈N .

Let J = N and define φj ∈ L (A, HA) by φj =
{
φji

}
i∈N

such that

φji (α) =

{
〈α,K1A〉 i = j

0 i 6= j
, ∀j ∈ N,

where K is constant.

p

∑
j

φji (α)φji (α)

 = p
(
φii(α)φii(α)

)
= p

(
〈α,K1A〉 〈α,K1A〉

)
= p (〈α,K1A〉)2 <∞,

which implies that φj is well-defined and adjointable. φ∗j ∈ Hom∗A (HA,A) is obtained by φ∗j ={
φj
∗

i

}
i∈N

, as φj
∗

i ({xi}) = K1Axj , and we have〈
{xi} , φj

〉
M(HA)

〈
φj , {xi}

〉
M(HA)

= φ∗j ({xi})φ∗j ({xi}) = K1Ax̄jK1Axj .

So, ∑
j∈J

〈
x, φj

〉
M(HA)

〈
φj , x

〉
M(HA)

=
∑
j∈J

〈
{xi}i∈N , φj

〉
M(HA)

〈
φj , {xi}i∈N

〉
M(HA)

=
∑
j∈J

K1Ax̄jxjK1A

= K1A
∑
j∈J

x̄jxjK1A = K1A〈x, x〉HAK1A.

Consequently,
{
φj
}
j∈I in M (HA) is a standard K1A-tight ∗-frame of multipliers in HA.

Proposition 3.3. [13] Let the sequence {Ti}i∈I be a standard ∗-frame of multipliers in X . Then{
〈Ti , ξ〉M(X )

}
i∈I
∈ HA.

Definition 3.4. [13] Let {Ti}i∈I be a standard ∗-frame of multipliers in X , thus we can define a linear

map T : E → HA by T (x) =
{
〈Ti , x〉M(E)

}
i∈I

is called the pre-∗-frame operator or ∗-frame transform

for {Ti}i∈I .
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Theorem 3.3. Let {φi}i∈I be a standard ∗-frame of multiplier s in E with lower and upper ∗-frame

bounds C and D, respectively. Then the pre-∗-frame operator T is invertible and p̂X ,HA(T ) 6 p(D).

Proof. Let J be an arbitrary finite subset of I. Using the Cauchy-Schwarz inequality, for any p ∈ Se(A)

and {ηi}i∈I ∈ HA, we have

(
p̄HA(Tξ)

)2
=
(
p̄HA

({
〈φi , ξ〉M(X )

}
i∈J

))2

= sup

{(
p
(〈{
〈hi , ξ〉M(X )

}
i
, {ηi}i

〉))2
: p̄HA ({ηi}i) 6 1

}
6 sup
p̄HA({ηi}i )61

p
(〈{
〈φi , ξ〉M(X )

}
i
,
{
〈φi , ξ〉M(X )

}
i

〉)
× sup
p̄HA({ηi}i )61

p (〈{ηi} , {ηi}〉)

6 p

(∑
i∈J
〈φi , ξ〉M(X ) 〈φi , ξ〉M(X )

)
6 p(D)p (〈ξ, ξ〉X ) p (D∗)

= (p(D))2 (p̄X (ξ))2 .

This shows p̄HA(Tξ) 6 p(D)p̄X (ξ) for all ξ ∈ X , so T is well-defined, bounded and p̂X ,HA(T ) 6

p(D). Since 〈Tξ, Tξ〉X =
∑
n 〈ξ, φn〉M(X ) 〈φn, ξ〉M(X ) for each ξ ∈ X , we observe that

C〈ξ, ξ〉XC∗ 6 〈Tξ, Tξ〉X 6 D〈ξ, ξ〉XD∗.

Suppose that ξ ∈ X and Tξ = 0. Thus, ξ = 0 and T is invertible. �

Proposition 3.4. [13] Let {φi}i∈I be a sequence in M(X ). Suppose that P : ξ →
{
〈φi , ξ〉M(X )

}
i∈I

is an invertible element in b
(
Hom∗A (X ,XA)

)
. Then {φi}i∈I is a standard ∗-frame of multipliers in X .

Proof. Let the sequence {αi}i∈I be in HA. We can write

〈
{αi}i∈I , P (ξ)

〉
XA

=
〈
{αi}i∈I ,

{
〈φi , ξ〉M(X )

}
i∈I

〉
HA

=
∑
i∈I

αi 〈φi , ξ〉M(E)

=

〈∑
i∈I

φiαi , ξ

〉
X

.

This shows P ∗
(
{ai}i∈I

)
=
∑
i∈I φiai . Moreover, P ∗ is an invertible element in b

(
L(HA,X )

)
. Define

V := P ∗P . Hence, V and V
1
2 are positive and invertible elements in b(Hom∗A(X )). As see in the [11]

we have ∥∥∥V −1
2

∥∥∥−2

∞
〈ξ, ξ〉X 6

〈
V

1
2 ξ,V

1
2 ξ
〉
X
6
∥∥∥V 1

2

∥∥∥2

∞
〈ξ, ξ〉X .
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Since 〈Pξ, Pξ〉X =
∑
i∈I 〈ξ, φi〉M(X ) 〈φi , ξ〉M(X ), series is convergent in A and(∥∥∥V −1

2

∥∥∥−1

∞
1A

)
〈ξ, ξ〉X

(∥∥∥V− 1
2

∥∥∥−1

∞
1A

)∗
6
∑
i∈I
〈ξ, φi〉M(X ) 〈φi , ξ〉M(X )

6
(∥∥∥V 1

2

∥∥∥
∞

1A

)
〈ξ, ξ〉X

(∥∥∥V 1
2

∥∥∥
∞

1A

)∗
.

So {φi}i∈I is a standard ∗-frame of multipliers in X . �

3.3. ∗-g-frame.

Definition 3.5. A sequence Γ =
{

Γi ∈ Hom∗A (X ,Yi)
}
i∈I is called a ∗-g-frame for X with respect to

{Yi}i∈I if for each ξ ∈ X , the series
∑
i∈I 〈Γi(ξ),Γi(ξ)〉 is convergent in A and there are two strictly

non-zero values C and D in A such that for every ξ ∈ X ,

C〈ξ, ξ〉C∗ ≤
∑
i∈I
〈Γi(ξ),Γi(ξ)〉 ≤ D〈ξ, ξ〉D∗.

The elements C and D are called ∗-g-frame bounds for Γ. The ∗-g-frame is called tight if C = D and

called Parseval if C = D = 1. If in the above we only need to have the upper bound, then Γ is called a

∗-g-Bessel sequence. Since the sequence
∑
i∈I 〈Γi(ξ),Γi(ξ)〉 is convergent in A, the ∗-g-frame can be

called standard but we use this definition without the word standard if there is no risk of ambiguity.

Besides, if for each i ∈ I, Yi = Y , we call it a ∗-g-frame for X with respect to Y .

Example 3.5. Let {ξi}i∈I be a ∗-frame for X with bounds C and D. For i ∈ I, consider the operator

Γξi defined via

Γξi : X −→ A; Γξi (x) = 〈ξ, ξi〉 .

It is obvious that Γξi is a bounded operator in HomA(X ,A) which its adjoint is

Γ∗ξi : A → X Γ∗ξi (α) = αξi .

Hence, Γξi ∈ Hom∗A(X ,A), i ∈ I. Moreover, by assumption, for each ξ ∈ X

C〈ξ, ξ〉C∗ ≤
∑
i∈I
〈ξ, ξi〉 〈ξi , ξ〉 =

∑
i∈I
〈Γi(ξ),Γi(ξ)〉 ≤ D〈ξ, ξ〉D∗.

Therefore, Γ =
{

Γξi
}
i∈I is a ∗-g-frame for X with respect to A.

Definition 3.6. Let Γ = {Γi : i ∈ I} be a ∗-g-frame for X with respect to {Yi}i∈I . Define the

corresponding ∗-g-frame operator SΓ = T ∗ΓTΓ : X −→ X via SΓ(ξ) =
∑
i∈I Γ∗i Γiξ. Then, SΓ is a

combination of two bounded operators and so it is a bounded operator.

Theorem 3.4. Let Γ = {Γi}i∈I be a ∗-g-frame for X with respect to {Yi}i∈I with frame bounds A

and B. Then, SΓ is an invertible positive operator. Moreover, it is a self-adjoint operator such that

A∗AIX ≤ SΓ ≤ B∗BIX (3.3)
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and

B−1 (B∗)−1 IX ≤ S−1
Γ ≤ A−1 (A∗)−1 IX , (3.4)

where IX is the identity function on X , and also we have

(
p
(
A−1

)−2 ≤ p−X (SΓ) ≤ (p(B))2.

Proof. According to the definition of the transform operator, for any ξ ∈ X we can write

〈TΓ(ξ), TΓ(ξ)〉 =
〈
{Γi(ξ)}i∈I , {Γi(ξ)}i∈I

〉
=
∑
i∈I
〈Γi(ξ),Γi(ξ)〉 .

By hypotheses, we get

A〈ξ, ξ〉A∗ ≤ 〈TΓ(ξ), TΓ(ξ)〉 ≤ B〈ξ, ξ〉B∗.

On the other hand,

〈SΓ(ξ), ξ〉 = 〈T ∗ΓTΓ(ξ), ξ〉 = 〈TΓ(ξ), TΓ(ξ)〉 = 〈ξ, T ∗ΓTΓ(ξ)〉 = 〈ξ, SΓ(ξ)〉 .

Consequently, SΓ is a self-adjoint operator. For any ξ ∈ X , we find

A〈ξ, ξ〉A∗ ≤ 〈SΓ(ξ), ξ〉 ≤ B〈ξ, ξ〉B∗. (3.5)

From 3.3, it follows that the *-g-frame operator is positive and 4.1 is obtained as well. Now, suppose

that SΓ(ξ) = 0 for any ξ ∈ X . By (5), we observe that 〈ξ, ξ〉 = 0, which implies SΓ is invertible. For

ξ ∈ X , we have

A
〈
S−1

Γ ξ, S−1
Γ ξ

〉
A∗ ≤

∑
i∈I

〈
ΓiS
−1
Γ ξ,ΓiS

−1
Γ ξ

〉
=
〈
S−1

Γ ξ, ξ
〉

and 〈
ξ, S−1

Γ (ξ)
〉

=
∑
i∈I

〈
ΓiS
−1
Γ (ξ),ΓiS

−1
Γ (ξ)

〉
≤ B

〈
S−1

Γ (ξ), S−1
Γ (ξ)

〉
B∗.

The last relations necessitate that for all ξ ∈ X

B−1
〈
S−1

Γ (ξ), ξ
〉

(B∗)−1 ≤
〈
S−1

Γ (ξ), S−1
Γ (ξ)

〉
≤ A−1

〈
S−1

Γ (ξ), ξ
〉

(A∗)−1

and so

B−1 (B∗)−1 S−1
Γ ≤

(
S−1

Γ

)2 ≤ A−1 (A∗)−1 S−1
Γ .
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Since S is a positive operator, B−1 (B∗)−1 IX ≤ S−1
Γ ≤ A−1 (A∗)−1 IX . Applying the CauchyBun-

yakovskii inequality and Lemma 2.2 in [19], we have(
p̄X

(∑
i∈J

Γ∗i Γi(ξ)

))2

=

{
sup p

(〈∑
i∈J

Γ∗i Γi(ξ), η

〉)
: η ∈ X , p̄X (η) ≤ 1

}2

=

{
sup p

(∑
i∈J
〈Γi(ξ),Γi(η)〉

)
: η ∈ X , p̄X (η) ≤ 1

}2

≤ sup
p̄X (η)≤1

(
p

(∑
i∈J
〈Γi(ξ),Γi(ξ)〉

))(
p

(∑
i∈J
〈Γi(η),Γi(η)〉

))
≤ sup
p̄X (η)≤1

(p(B))2 (p̄X (η))2 (p(B))2 (p̄X(ξ))2

≤ (p(B))4 (p̄X (ξ))2 .

for all p ∈ Se(A) and ξ, η ∈ X . Hence,

(p̄X (SΓ(ξ)))2 =

(
p̄X

(∑
i∈J

Γ∗i Γi(ξ)

))2

=

{
sup p

(〈∑
i∈J

Γ∗i Γi(ξ), η

〉)
: η ∈ X , p̄X (η) ≤ 1

}2

≤ (p(B))4 (p̄X (ξ))2 .

Furthermore, p̄X (SΓ(ξ))
(
p
(
A−1

))−2 ≤ p̄X (SΓ(ξ)). Therefore(
p
(
A−1

))−2 ≤ p̄X (SΓ(ξ)) ≤ (p(B))2.

This finishes the proof. �

Theorem 3.5. For each i ∈ I, let Γ = {Γi ∈ Hom∗A (X ,Yi)}i∈I and
{
ξi j
}
j∈Ji

be a Parseval-frame for

Yi . Then, the following assertions hold.

(i) {Γi}i∈I is a Parseval ∗-g-frame for X if and only if
{

Γ∗i ξi j
}
j∈Ji ,i∈I

is a Parseval ∗-frame for X.

(ii) The ∗-g-frame operator of {Γi}i∈I is the ∗-frame operator of Γ =
{

Γ∗i ξi j
}
j∈Ji ,i∈I

Proof. (i) It follows from the assumptions that

〈Γi(ξ),Γi(ξ)〉 =
∑
j∈Ji

〈
Γi(ξ), ξi j

〉 〈
ξi j ,Γi(ξ)

〉
.

Therefore ∑
i∈I
〈Γi(ξ),Γi(ξ)〉 =

∑
i∈I

∑
j∈Ji

〈
Γi(ξ), ξi j

〉 〈
ξi j ,Γi(ξ)

〉
.

for all ξ ∈ X . Since for every i ,Γi is adjointable and so the above equality can be summarized as

follow: ∑
i∈I
〈Γi(ξ),Γi(ξ)〉 =

∑
i∈I

∑
j∈Ji

〈
ξ,Γ∗i

(
ξi j
)〉 〈

Γ∗i
(
ξi j
)
, ξ
〉
,
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which shows that {Γi}i∈I is a Parseval ∗-g-frame for X if and only if
{

Γ∗i
(
ξi j
)}
j∈Ji ,i∈I

is a Parseval

∗-frame for X .
(ii) Let SΓ and SΓ be the ∗-frame operators for Γ and Γ, respectively. Then

SΓ(ξ) =
∑
i∈I

∑
j∈Ji

〈
ξ,Γ∗i

(
ξi j
)〉

Γ∗i
(
ξi j
)
, SΓ(ξ) =

∑
i∈I

Γ∗i Γi(ξ)

for all ξ ∈ X . On the other hand, for every i ∈ I and ξ ∈ X ,Γi(ξ) =
∑
j∈Ji

〈
Γi(ξ), ξi j

〉
ξi j . Since

Γi(ξ) ∈ Yi and the last equality is the reconstruction formula for Γiξ with respect to Parseval ∗-frame{
ξi j
}
j∈Ji

, we get

SΓ(ξ) =
∑
i∈I

∑
j∈Ji

〈
ξ,Γ∗i

(
ξi j
)〉

Γ∗i
(
ξi j
)

=
∑
i∈I

∑
j∈Ji

〈
Γi(ξ), ξi j

〉
Γ∗i
(
ξi j
)

=
∑
i∈I

Γ∗i

∑
j∈Ji

〈
Γi(ξ), ξi j

〉
ξi j

 =
∑
i∈I

Γ∗i Γi(ξ) = SΓ(ξ).

for all ξ ∈ X . The proof of part (ii) is now complete. �

3.4. K-g-frame.

Definition 3.7. Let K ∈ Hom∗A(X ). A sequence Γ =
{

Γi ∈ Hom∗A (X ,Yi)
}
i∈I is called a K-g-frame

for X with respect to {Yi}i∈I if there exist two positive constants A and B such that for every ξ ∈ X ,

A〈K∗ξ,K∗ξ〉 ≤
∑
i∈I
〈Γiξ,Γiξ〉 ≤ B〈ξ, ξ〉

The constants A and B are called the lower and upper bounds of K-g-frames, respectively. The

K-g-frame is called tight if A = B and a Parseval if A = B = 1

Definition 3.8. Suppose that K ∈ Hom∗A(X ) and {Γi}i∈I is a K-g-frame for X with respect to

{Yi}i∈I . A g-frame sequence {Ξi}i∈I for X with respect to {Yi}i∈I is said to be a K-dual g-frame

sequence of {Γi}i∈I if
Kξ =

∑
i∈I

Γ∗i Ξiξ, ∀ξ ∈ X

Lemma 3.1. Let
{
Ui ∈ Hom∗A (X ,Yi) : i ∈ I

}
be a g-orthonormal basis for X with respect to

{Yi : i ∈ I}; then the sequence
{

Γi ∈ Hom∗A (X ,Yi) : i ∈ I
}
is a g-frame sequence with respect to

{Yi : i ∈ I} if and only if there is a unique bounded operator Q : X → X such that Γi = UiQ
∗, for all

i ∈ I.

Proof. ⇒ Since
{
Ui ∈ Hom∗A (X ,Yi) : i ∈ I

}
is a g-orthonormal basis for X , {Uiξ : i ∈ I} ∈(∑

i∈I ⊕Yi
)
HA

, for any ξ ∈ X . If
{

Γi ∈ Hom∗A (X ,Yi) : i ∈ I
}

is a g-Bessel sequence, then the

operator Q below is well-defined and bounded

Q : X −→ X , Qξ =
∑
i∈I

Γ∗i Uiξ
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Also by using the definition of g-orthonormal basis, it is simple to observe that UiU∗j η = δi jη. So

QU∗j η =
∑
i∈I

Γ∗i UiU
∗
j η = Γ∗j UjU

∗
j η = Γ∗j η

for all η ∈ Yj , j ∈ I. Hence QU∗j = Γ∗j , which implies that UjQ∗ = Γj , j ∈ I. Suppose Q1, Q2 ∈
Hom∗A (X ,Yi) and UiQ∗1 = UiQ

∗
2 = Γi for any i ∈ I. Then for any ξ ∈ X , ηi ∈ Yi , we have〈

UiQ
∗
1ξ, ηi

〉
=
〈
UiQ

∗
2ξ, ηi

〉
, that is,

〈
Q∗1ξ, U

∗
i ηi
〉

=
〈
Q∗2ξ, U

∗
i ηi
〉
.

Since span
{
U∗i (Yi)

}
i∈I = X , Q∗1ξ = Q∗2ξ, which means that Q1 = Q2. Thus the operator Q is

unique.

⇐ : Since Γi = UiQ
∗, for all i ∈ I, for any ξ ∈ X , we have∑

i∈I
〈Γiξ,Γiξ〉 =

∑
i∈I
〈UiQ∗ξ, UiQ∗ξ〉 = 〈Q∗ξ,Q∗ξ〉.

The Proposition 2.2 in [1] shows that Q∗ is bounded below, therefore Q∗ is invertible. Then by

Theorem 3.2 in [2], we have:∥∥∥(Q∗)−1
∥∥∥−2

∞
〈ξ, ξ〉 ≤ 〈Q∗f , Q∗f 〉 ≤ ‖Q∗‖2

∞ 〈ξ, ξ〉

�

Lemma 3.2. Let {Γi}i∈I be a g-Bessel sequence for X with respect to {Yi}i∈I Then {Γi}i∈I is a K-g-
frame for X with respect to {Yi}i∈I if and only if there exists constant C > 0 such that S ≥ CKK∗,
where S is the frame operator for {Γi}i∈I

Proof. {Γi}i∈I is a K-g-frame for X with respect to {Yi}i∈I with bounds C, D if and only if

C〈K∗ξ,K∗〉 ≤
∑
i∈I
〈Γiξ,Γiξ〉 ≤ D〈ξ, ξ〉,∀ξ ∈ X ,

that is,

〈CKK∗ξ, ξ〉 ≤ 〈Sξ, ξ〉 ≤ 〈Dξ, ξ〉,∀ξ ∈ X ,

where S is the frame operator of K-g-frame {Γi}i∈I . Therefore, the conclusion holds. �

Theorem 3.6. Let K ∈ Hom∗A(X ) and
{
Ui ∈ Hom∗A (X ,Yi)

}
i∈I be a g-orthonormal basis for X with

respect to {Yi}i∈I . {Γi}i∈I is a K-g-frame for X with respect to {Yi}i∈I with the g-operator Q. P is

the g-operator of g-frame sequence {Ti}i∈I . Then {Ti}i∈I is the K-dual g-frame sequence of {Γi}i∈I
if and only if K = QP ∗.

Proof. Suppose {Ti}i∈I is the K-dual g-frame sequence of {Γi}i∈I , then ∀ξ ∈ X , we have Kξ =∑
i∈I Γ∗i Tiξ. Consider that {Ui}i∈I is the g-orthonormal basis for X , then by Lemma 3.1, ∀ξ ∈ X

Kξ =
∑
i∈I

(UiQ
∗)∗ (UiP

∗) ξ = Q
∑
i∈I

U∗i UiP
∗ξ = QP ∗ξ.

By the arbitrariness of ξ, we obtain K = QP ∗.
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Conversely, since {Γi}i∈I and {Ti}i∈I are two g-frame sequences, therfore using Lemma 3.1, there

are bounded operators Q and P , such that

Γi = UiP
∗, Ti = UiP

∗.

Hence, ∀ξ ∈ X ∑
i∈I

Γ∗i Tiξ =
∑
i∈I

(UiQ
∗)∗ (UiP

∗) ξ = Q
∑
i∈I

U∗i UiP
∗ξ = QP ∗ξ = Kξ.

This shows that {Ti}i∈I is the K-dual g-frame sequence of {Γi}i∈I . �

3.5. ∗-K-g-frame.

Definition 3.9. Let K ∈ Hom∗A(X ). We say that {Γi ∈ HomA (X ,Yi)}i∈I is ∗-K-g-frame for X with

respect to {Yi}i∈I if there exist nonzero elements A,B ∈ A such that for all ξ ∈ X ,

A〈K∗ξ,K∗ξ〉A∗ ≤
∑
i∈I
〈Γiξ,Γiξ〉 ≤ B〈ξ, ξ〉B∗ (3.6)

The numbers A and B are called lower and upper bound of the ∗-K-g-frame, respectively. If

A〈K∗ξ,K∗ξ〉A∗ =
∑
i∈I
〈Γiξ,Γiξ〉,∀ξ ∈ X . (3.7)

The ∗-K-g-frame is A-tight.

Example 3.6. Let l∞ be the set of all bounded complex-valued sequences. For any u = {uj}j∈N, v =

{vj}j∈N ∈ l∞, we define

uv = {ujvj}j∈N, u
∗ = {ūj}j∈N, ‖u‖ = sup

j∈N
|uj |.

Then A = {l∞, ‖.‖} is a C∗-algebra. Consequently A = {l∞, ‖.‖} is pro-C∗-algebra.
Let X = C0 be the set of all sequences converging to zero. For any u, v ∈ X we define

〈u, v〉 = uv∗ = {uj ūj}j∈N.

Then X is a Hilbert A-module.

Define fj = {f ji }i∈N∗ by f
j
i = 1

2 + 1
i if i = j and f ji = 0 if i 6= j ∀j ∈ N∗. Now define the adjointable

operator Λj : X → A, Λjξ = 〈ξ, fj〉.
then for every ξ ∈ X we have∑

j∈N

〈Λjξ,Λjξ〉 = {
1

2
+

1

i
}i∈N∗〈ξ, ξ〉{

1

2
+

1

i
}i∈N∗ .

Let K : X → X defined by Kξ = { ξii }i∈N∗ .

Then for every ξ ∈ X we have

〈K∗ξ,K∗ξ〉A ≤
∑
j∈N

〈Λjξ,Λjξ〉 = {
1

2
+

1

i
}i∈N∗〈ξ, ξ〉{

1

2
+

1

i
}i∈N∗ .
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Which shows that {Λj}j∈N is a ∗-K-g-frame for X with bounds 1 and {1
2 + 1

i }i∈N∗ .

Remark 3.4.

(1) Every ∗-g-frame for X with respect to {Yi : i ∈ I} is an ∗-K-g-frame, for any K ∈ L∗A(X ):

K 6= 0.

(2) If K ∈ b(LA(X )) is a surjective operator, then every ∗-K-g-frame for X with respect to

{Yi : i ∈ I} is a ∗-g-frame.

Example 3.7. Let X be a finitely or countably generated Hilbert A-module. L∗A(X ) Let K ∈ L∗A(X )

an invertible element such that both are uniformly bounded and K 6= 0. Let A be a Hilbert A-module

over itself with the inner product 〈a, b〉 = ab∗. Let {xi}i∈I be an ∗-frame for X with bounds A and

B, respectively. For each i ∈ I, we define Λi : X → A by Λiξ = 〈ξ, xi〉, ∀ξ ∈ X . Λi is adjointable and

Λ∗i a = axi for each a ∈ A. And we have

A〈ξ, ξ〉A∗ ≤
∑
i∈I
〈ξ, xi〉〈xi , ξ〉 ≤ B〈ξ, ξ〉B∗,∀ξ ∈ X .

Or

〈K∗ξ,K∗ξ〉 ≤ ‖K‖2
∞〈ξ, ξ〉,∀ξ ∈ X .

Then

‖K‖−1
∞ A〈K∗ξ,K∗ξ〉(‖K‖−1

∞ A)∗ ≤
∑
i∈I
〈Λiξ,Λiξ〉 ≤ B〈ξ, ξ〉B∗,∀ξ ∈ X .

So {Λi}i∈I is ∗-K-g-frame for X with bounds ‖K‖−1
∞ A and B, respectively.

4. K-Operator Frame for Hom∗A(X ) [17]

Definition 4.1. Let X be a Hilbert module over a pro-C∗-algebra A and let {Ti}i∈I be a family of

adjointable operators for X . {Ti}i∈I is called K-operator frame for Hom∗A(X ), if there exists positive

constants A,B > 0 such that

A〈K∗ξ,K∗ξ〉 ≤
∑
i∈I
〈Tiξ, Tiξ〉 ≤ B〈ξ, ξ〉,∀ξ ∈ X . (4.1)

The numbers A and B are called lower and upper bound of the K-operator frame, respectively. If

A〈K∗ξ,K∗ξ〉 =
∑
i∈I
〈Tiξ, Tiξ〉,

the K-operator frame is A-tight. If A = 1, it is called a normalized tight K-operator frame or a

Parseval K-operator frame.

Example 4.1. Let l∞ be the set of all bounded complex-valued sequences. For any u = {uj}j∈N, v =

{vj}j∈N ∈ l∞, we define

uv = {ujvj}j∈N, u
∗ = {ūj}j∈N, ‖u‖ = sup

j∈N
|uj |.
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Then A = {l∞, ‖.‖} is a C∗-algebra, as a result A is pro-C∗-algebra.

Let X = C0 be the set of all sequences converging to zero. For any u, v ∈ X we define

〈u, v〉 = uv∗ = {uj ūj}j∈N.

Then X is a Hilbert A-module.

Now let {ej}j∈N be the standard orthonormal basis of X . For each j ∈ N define the adjointable

operator

Tj : X → X , Tjξ = 〈ξ, ej〉ej ,

then for every ξ ∈ X we have ∑
j∈N

〈Tjξ, Tjξ〉 = 〈ξ, ξ〉.

Fix N ∈ N∗ and define

K : X → X , Kej =

jej if j ≤ N,

0 if j > N.

It is easy to check that K is adjointable and satisfies

K∗ej =

jej if j ≤ N,

0 if j > N.

For any ξ ∈ X we have
1

N2
〈K∗ξ,K∗ξ〉 ≤

∑
j∈N

〈Tjξ, Tjξ〉 = 〈ξ, ξ〉.

This shows that {Tj}j∈N is a K-operator frame with bounds
1

N2
, 1.

Theorem 4.1. For an operator Bessel sequence {Ti}i∈I ⊂ Hom∗A(X ), the following statements are

equivalent:

(1) {Ti}i∈I is K-operator frame for Hom∗A(X ).

(2) There exists A > 0 such that S ≥ AKK∗, where S is the frame operator for {Ti}i∈I .
(3) K = S

1
2Q, for some Q ∈ Hom∗A(X ).

5. Tensor Product

The tensor product of two C∗-algebras is a fundamental construction in the theory of C∗-algebras.

In the context of pro-C∗-algebras, the tensor product can be defined in several ways, depending on

the specific category of pro- C∗-algebras being considered.

One common approach is to define the tensor product of two pro- C∗-algebras as the projective

limit of the tensor products of the C*-algebras in the systems defining the pro- C∗-algebras. In this

way, the tensor product of pro- C∗-algebras can be viewed as a pro-C∗-algebra in a natural way.

The minimal or injective tensor product of the pro-C∗-algebras A and B, denoted by A ⊗ B, is the

completion of the algebraic tensor product A ⊗alg B with respect to the topology determined by a



Int. J. Anal. Appl. (2023), 21:130 19

family of C∗-seminorms. Suppose that X is a Hilbert module over a pro-C∗-algebra A and Y is a

Hilbert module over a pro-C∗-algebra B. The algebraic tensor product X ⊗alg Y of X and Y is a

pre-Hilbert A⊗ B-module with the action of A⊗ B on X ⊗alg Y defined by

(ξ ⊗ η)(a ⊗ b) = ξa ⊗ ηb for all ξ ∈ X , η ∈ Y, a ∈ A and b ∈ B

and the inner product

〈·, ·〉 :
(
X ⊗alg Y

)
×
(
X ⊗alg Y

)
→ A⊗alg B. defined by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈ξ1, ξ2〉 ⊗ 〈η1, η2〉

We also know that for z =
∑n
i=1 ξi ⊗ηi in X ⊗alg Y we have 〈z, z〉A⊗B =

∑
i ,j〈ξi , ξj〉A⊗〈ηi , ηj〉B ≥ 0

and 〈z, z〉A⊗B = 0 iff z = 0.

The external tensor product of X and Y is the Hilbert module X ⊗ Y over A ⊗ B obtained by the

completion of the pre-Hilbert A⊗ B-module X ⊗alg Y.
If P ∈ M(X ) and Q ∈ M(Y) then there is a unique adjointable module morphism P ⊗Q : A⊗B →

X ⊗Y such that (P ⊗Q)(a⊗ b) = P (a)⊗Q(b) and (P ⊗Q)∗(a⊗ b) = P ∗(a)⊗Q∗(b) for all a ∈ A
and for all b ∈ B (see, for example, [11]).

Let I and J be countable index sets.

Theorem 5.1. Let X and Y be two Hilbert pro-C∗-modules over unital pro-C∗-algebras A and B,
respectively. Let {Ti}i∈I ⊂ Hom∗A(X ) be a K1-operator frame for X and {Rj}j∈J ⊂ Hom∗B(Y) be

a K2-operator frame for Y with frame operators ST and SR and operator frame bounds (A,B) and

(C,D) respectively. Then {Ti⊗Rj}i∈I,j∈J is a K1⊗K2-operator frame for Hibert A⊗B-module X ⊗Y
with frame operator ST ⊗ SR and lower and upper operator frame bounds AC and BD, respectively.

Proof. By the definition of K1-operator frame {Ti}i∈I and K2-operator frame {Rj}j∈J we have

A〈K∗1ξ,K∗1ξ〉A ≤
∑
i∈I
〈Tiξ, Tiξ〉A ≤ B〈ξ, ξ〉A,∀ξ ∈ X .

C〈K∗2η,K∗2η〉B ≤
∑
j∈J
〈Rjη,Rjη〉B ≤ D〈η, η〉B,∀η ∈ K.

Therefore
(A〈K∗1ξ,K∗1ξ〉A)⊗ (C〈K∗2η,K∗2η〉B)

≤
∑
i∈I
〈Tiξ, Tiξ〉A ⊗

∑
j∈J
〈Rjη,Rjη〉B

≤ (B〈ξ, ξ〉A)⊗ (D〈η, η〉B),∀ξ ∈ X ,∀η ∈ Y.
Then

AC(〈K∗1ξ,K∗1ξ〉A ⊗ 〈K∗2η,K∗2η〉B)

≤
∑
i∈I,j∈J

〈Tiξ, Tiξ〉A ⊗ 〈Rjη,Rjη〉B

≤ BD(〈ξ, ξ〉A ⊗ 〈η, η〉B),∀ξ ∈ X ,∀η ∈ Y.
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Consequently we have

AC〈K∗1ξ ⊗K∗2η,K∗1ξ ⊗K∗2η〉A⊗B

≤
∑
i∈I,j∈J

〈Tiξ ⊗ Rjη, Tiξ ⊗ Rjη〉A⊗B

≤ BD〈ξ ⊗ η, ξ ⊗ η〉A⊗B,∀ξ ∈ X ,∀η ∈ Y.

Then for all ξ ⊗ η in X ⊗ Y we have

AC〈(K1 ⊗K2)∗(ξ ⊗ η), (K1 ⊗K2)∗(ξ ⊗ η)〉A⊗B

≤
∑
i∈I,j∈J

〈(Ti ⊗ Rj)(ξ ⊗ η), (Ti ⊗ Rj)(ξ ⊗ η)〉A⊗B

≤ BD〈ξ ⊗ η, ξ ⊗ η〉A⊗B.

The last inequality is satisfied for every finite sum of elements in X ⊗alg Y and then it’s satisfied for

all z ∈ X ⊗ Y. It shows that {Ti ⊗ Rj}i∈I,j∈J is a K1 ⊗K2-operator frame for Hilbert A⊗ B-module

X ⊗ Y with lower and upper operator frame bounds AC and BD, respectively.

By the definition of frame operator ST and SR we have

ST ξ =
∑
i∈I

T ∗i Tiξ, ∀ξ ∈ X .

SRη =
∑
j∈J

R∗j Rjη, ∀η ∈ K.

Therefore

(ST ⊗ SR)(ξ ⊗ η) = ST ξ ⊗ SRη

=
∑
i∈I

T ∗i Tiξ ⊗
∑
j∈J

R∗j Rjη

=
∑
i∈I,j∈J

T ∗i Tiξ ⊗ R∗j Rjη

=
∑
i∈I,j∈J

(T ∗i ⊗ R∗j )(Tiξ ⊗ Rjη)

=
∑
i∈I,j∈J

(T ∗i ⊗ R∗j )(Ti ⊗ Rj)(ξ ⊗ η)

=
∑
i∈I,j∈J

(Ti ⊗ Rj)∗)(Ti ⊗ Rj)(ξ ⊗ η).

Now by the uniqueness of frame operator, the last expression is equal to ST⊗R(ξ⊗ η). Consequently

we have (ST ⊗SR)(ξ⊗η) = ST⊗R(ξ⊗η). The last equality is satisfied for every finite sum of elements

in X ⊗alg Y and then it’s satisfied for all z ∈ X ⊗ Y. It shows that (ST ⊗ SR)(z) = ST⊗R(z). So

ST⊗R = ST ⊗ SR. �
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6. Dual of K-Operator Frame

In the following we define the Dual K-operator frame and we give some properties.

Definition 6.1. [17]

Let K ∈ Hom∗A(X ) and {Ti ∈ Hom∗A(X ), i ∈ I} be a K-operator frame for the Hilbert A-module

X . An operator Bessel sequences {Ri ∈ Hom∗A(X ), i ∈ I} is called a K-dual operator frame for

{Ti}i∈I if Kξ =
∑
i∈I T

∗
i Riξ for all ξ ∈ X .

Example 6.1. Let K∈ HomA∗(X ) be a surjective operator and {Ti ∈ Hom∗A(X ), i ∈ I} be a K-

operator frame for X with frame operator S, then S is invertible.

For all ξ ∈ X we have :

Sξ =
∑
i∈I T

∗
i Riξ.

So Kξ =
∑
i∈I T

∗
i RiS

−1Kξ.

Then the sequence {TiS−1K ∈ Hom∗A(X ), i ∈ I} is a dual K-operator frame of {Ti ∈
Hom∗A(X ), i ∈ I}

Theorem 6.1. Let K ∈ Hom∗A(X ) be an invertible element such that both are uniformly bounded

and Rang(K) is closed, and let {Ti}i∈I be K-operator frame for Hom∗A(X ) with frame operator S

and frame bounds A and B respectively. Then {TiπS(Rang(K))

(
S−1
|Rang(K)

)∗
K} is a K-dual of {Ti}i∈I

Proof. Let {Ti} be a K-operator frame for Hom∗A(X ). Since S : Rang(K)→ S(Rang(K)) is invert-

ible, we have

Kξ =
(
S−1
|Rang(K)

S|Rang(K)

)∗
Kξ

= S|Rang(K)

(
S−1
|Rang(K)

)∗
Kξ

= SπS(Rang(K))

(
S−1
|Rang(K)

)∗
Kξ

=
∑
i∈I

T ∗i TiπS(Rang(K))

(
S−1
|Rang(K)

)∗
Kξ, for all ξ ∈ X .

Also, we have ∑
i∈I
〈TiπS(Rang(K))

(
S−1

)∗
Kξ, TiπS(Rang(K))

(
S−1

)∗
Kξ〉

=
∑
i∈I
〈T ∗i TiπS(Rang(K))

(
S−1

)∗
Kξ,

(
S−1

)∗
Kξ〉

=
〈
S
(
S−1

)∗
Kξ,

(
S−1

)∗
Kξ
〉

=
〈
Kξ,

(
S−1

)∗
Kξ
〉

≤ A−1‖K−1‖2
∞ ‖K‖

2
∞ 〈ξ, ξ〉, ξ ∈ X

Hence
{
TiπRang(K)

(
S−1

)∗
K
}
is a dual of the K-operator frame {Ti}. �
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7. ∗-Operator Frame for Hom∗A(X )

Definition 7.1. A family of adjointable operators {Ti}i∈I on a Hilbert A-module X over a pro-C∗-

algebra is said to be an ∗-operator frame for Hom∗A(X ), if there exists two strictly nonzero elements

A and B in A such that

A〈ξ, ξ〉A∗ ≤
∑
i∈I
〈Tiξ, Tiξ〉 ≤ B〈ξ, ξ〉B∗,∀ξ ∈ X . (7.1)

The elements A and B are called lower and upper bounds of the ∗-operator frame, respectively. If

A = B = λ, the ∗-operator frame is λ-tight. If A = B = 1A, it is called a normalized tight ∗-operator
frame or a Parseval ∗-operator frame. If only upper inequality of (7.1) hold, then {Ti}i∈i is called an

∗-operator Bessel sequence for Hom∗A(X ).

Example 7.1. Let A be a Hilbert pro-C∗-module over itself with the inner product 〈a, b〉 = ab∗. Let

{ξi}i∈I be an ∗-frame for A with bounds A and B, respectively. For each i ∈ I, we define Ti : A → A
by Tiξ = 〈ξ, ξi〉, ∀ξ ∈ A. Ti is adjointable and T ∗i a = aξi for each a ∈ A. And we have

A〈ξ, ξ〉A∗ ≤
∑
i∈I
〈ξ, ξi〉〈ξi , ξ〉 ≤ B〈ξ, ξ〉B∗,∀ξ ∈ A.

Then

A〈ξ, ξ〉A∗ ≤
∑
i∈I
〈Tiξ, Tiξ〉 ≤ B〈ξ, ξ〉B∗,∀ξ ∈ A.

So {Ti}i∈I is an ∗-operator frame in A with bounds A and B, respectively.

Theorem 7.1. Let {Ti}i∈I ⊂ Hom∗A(X ) be an ∗-operator frame with lower and upper bounds A

and B, respectively. The ∗-operator frame transform R : X → l2(X ) defined by Rξ = {Tiξ}i∈I is
injective and closed range adjointable A-module map and p̄X (R) ≤ p̄X (B). The adjoint operator R∗

is surjective and it is given by R∗({ξi}i∈I) =
∑
i∈I T

∗
i ξi for all {ξi}i∈I in l2(X ).

Proof. By the definition of norm in l2(X )

p̄X (Rξ)2 = p(
∑
i∈I
〈Tiξ, Tiξ〉) ≤ p̄X (B)2p(〈ξ, ξ〉),∀ξ ∈ X . (7.2)

This inequality implies that R is well defined and p̄X (R) ≤ p̄X (B). Clearly, R is a linear A-module

map. We now show that the range of R is closed. Let {Rξn}n∈N be a sequence in the range of R

such that limn→∞Rξn = η. For n,m ∈ N, we have

p(A〈ξn − ξm, ξn − ξm〉A∗) ≤ p(〈R(ξn − ξm), R(ξn − ξm)〉) = p̄X (R(ξn − ξm))2.

Since {Rξn}n∈N is Cauchy sequence in X , then
p(A〈ξn − ξm, ξn − ξm〉A∗)→ 0, as n,m →∞.
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Note that for n,m ∈ N,

p(〈ξn − ξm, ξn − ξm〉) = p(A−1A〈ξn − ξm, ξn − ξm〉A∗(A∗)−1)

≤ p(A−1)2p(A〈ξn − ξm, ξn − ξm〉A∗).

Therefore the sequence {ξn}n∈N is Cauchy and hence there exists ξ ∈ X such that ξn → ξ as n →∞.

Again by (9.2), we have

p̄X (R(ξn − ξm))2 ≤ p̄X (B)2p(〈ξn − ξ, ξn − ξ〉).

Thus p(Rξn −Rξ)→ 0 as n →∞ implies that Rξ = η. It concludes that the range of R is closed.

Next we show that R is injective. Suppose that ξ ∈ X and Rξ = 0. Note that A〈ξ, ξ〉A∗ ≤ 〈Rξ,Rξ〉
then 〈ξ, ξ〉 = 0 so ξ = 0 i.e. R is injective.

For ξ ∈ X and {ξi}i∈I ∈ l2(X ) we have

〈Rξ, {ξi}i∈I〉 = 〈{Tiξ}i∈I , {ξi}i∈I〉 =
∑
i∈I
〈Tiξ, ξi〉 =

∑
i∈I
〈ξ, T ∗i ξi〉 = 〈ξ,

∑
i∈I

T ∗i ξi〉.

Then R∗({ξi}i∈I) =
∑
i∈I T

∗
i ξi . By injectivity of R, the operator R∗ has closed range and X =

range(R∗), which completes the proof. �

Theorem 7.2. Let (X ,A, 〈., .〉A) and (X ,B, 〈., .〉B) be two Hilbert pro-C∗-modules and let ϕ : A −→ B
be a ∗-homomorphism and θ be a map on X such that 〈θξ, θη〉B = ϕ(〈ξ, η〉A) for all ξ, η ∈ X . Also,
suppose that {Ti}i∈I ⊂ Hom∗A(X ) is an ∗-operator frame for (X ,A, 〈., .〉A) with ∗-frame operator SA

and lower and upper ∗-operator frame bounds A, B respectively. If θ is surjective and θTi = Tiθ for

each i in I, then {Ti}i∈I is an ∗-operator frame for (X ,B, 〈., .〉B) with ∗-frame operator SB and lower

and upper ∗-operator frame bounds ϕ(A), ϕ(B) respectively, and 〈SBθξ, θη〉B = ϕ(〈SAξ, η〉A).

Proof. Let η ∈ X then there exists ξ ∈ X such that θξ = η (θ is surjective). By the definition of

∗-operator frames we have

A〈ξ, ξ〉AA∗ ≤
∑
i∈I
〈Tiξ, Tiξ〉A ≤ B〈ξ, ξ〉AB∗.

By lemma 3.3 we have

ϕ(A〈ξ, ξ〉AA∗) ≤ ϕ(
∑
i∈I
〈Tiξ, Tiξ〉A) ≤ ϕ(B〈ξ, ξ〉AB∗).

By the definition of ∗-homomorphism we have

ϕ(A)ϕ(〈ξ, ξ〉A)ϕ(A∗) ≤
∑
i∈I

ϕ(〈Tiξ, Tiξ〉A) ≤ ϕ(B)ϕ(〈ξ, ξ〉A)ϕ(B∗).

By the relation betwen θ and ϕ we get

ϕ(A)〈θξ, θξ〉Bϕ(A)∗ ≤
∑
i∈I
〈θTiξ, θTiξ〉B ≤ ϕ(B)〈θξ, θξ〉Bϕ(B)∗.
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By the relation betwen θ and Ti we have

ϕ(A)〈θξ, θξ〉Bϕ(A)∗ ≤
∑
i∈I
〈Tiθξ, Tiθξ〉B ≤ ϕ(B)〈θξ, θξ〉Bϕ(B)∗.

Then

ϕ(A)〈η, η〉B(ϕ(A))∗ ≤
∑
i∈I
〈Tiη, Tiη〉B ≤ ϕ(B)〈η, η〉B(ϕ(B))∗,∀η ∈ X .

On the other hand we have
ϕ(〈SAξ, η〉A) = ϕ(〈

∑
i∈I

T ∗i Tiξ, η〉A)

=
∑
i∈I

ϕ(〈Tiξ, Tiη〉A)

=
∑
i∈I
〈θTiξ, θTiη〉B

=
∑
i∈I
〈Tiθξ, Tiθη〉B

= 〈
∑
i∈I

T ∗i Tiθξ, θη〉B

= 〈SBθξ, θη〉B.
Which completes the proof. �

8. Tensor Product

The minimal or injective tensor product of the pro-C∗-algebras A and B, denoted by A⊗B, is the
completion of the algebraic tensor product A ⊗alg B with respect to the topology determined by a

family of C∗-seminorms. Suppose that X is a Hilbert module over a pro-C∗-algebra A and Y is a

Hilbert module over a pro-C∗-algebra B. The algebraic tensor product X ⊗alg Y of X and Y is a

pre-Hilbert A⊗ B-module with the action of A⊗ B on X ⊗alg Y defined by

(ξ ⊗ η)(a ⊗ b) = ξa ⊗ ηb for all ξ ∈ X , η ∈ Y, a ∈ A and b ∈ B

and the inner product

〈·, ·〉 :
(
X ⊗alg Y

)
×
(
X ⊗alg Y

)
→ A⊗alg B. defined by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈ξ1, ξ2〉 ⊗ 〈η1, η2〉

We also know that for z =
∑n
i=1 ξi ⊗ηi in X ⊗alg Y we have 〈z, z〉A⊗B =

∑
i ,j〈ξi , ξj〉A⊗〈ηi , ηj〉B ≥ 0

and 〈z, z〉A⊗B = 0 iff z = 0.

The external tensor product of X and Y is the Hilbert module X ⊗ Y over A ⊗ B obtained by the

completion of the pre-Hilbert A⊗ B-module X ⊗alg Y.
If P ∈ M(X ) and Q ∈ M(Y) then there is a unique adjointable module morphism P ⊗Q : A⊗B →

X ⊗Y such that (P ⊗Q)(a⊗b) = P (a)⊗Q(b) and (P ⊗Q)∗(a⊗b) = P ∗(a)⊗Q∗(b) for all a ∈ A and

for all b ∈ B (see, for example, cite The minimal or injective tensor product of the pro-C∗-algebras
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A and B, denoted by A⊗B, is the completion of the algebraic tensor product A⊗alg B with respect

to the topology determined by a family of C∗-seminorms. Suppose that X is a Hilbert module over a

pro-C∗-algebra A and Y is a Hilbert module over a pro-C∗-algebra B. The algebraic tensor product

X ⊗alg Y of X and Y is a pre-Hilbert A⊗B-module with the action of A⊗B on X ⊗alg Y defined by

(ξ ⊗ η)(a ⊗ b) = ξa ⊗ ηb for all ξ ∈ X , η ∈ Y, a ∈ A and b ∈ B

and the inner product

〈·, ·〉 :
(
X ⊗alg Y

)
×
(
X ⊗alg Y

)
→ A⊗alg B. defined by

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 = 〈ξ1, ξ2〉 ⊗ 〈η1, η2〉

We also know that for z =
∑n
i=1 ξi ⊗ηi in X ⊗alg Y we have 〈z, z〉A⊗B =

∑
i ,j〈ξi , ξj〉A⊗〈ηi , ηj〉B ≥ 0

and 〈z, z〉A⊗B = 0 iff z = 0.

The external tensor product of X and Y is the Hilbert module X ⊗ Y over A ⊗ B obtained by the

completion of the pre-Hilbert A⊗ B-module X ⊗alg Y.
If P ∈ M(X ) and Q ∈ M(Y) then there is a unique adjointable module morphism P ⊗Q : A⊗B →

X ⊗Y such that (P ⊗Q)(a⊗ b) = P (a)⊗Q(b) and (P ⊗Q)∗(a⊗ b) = P ∗(a)⊗Q∗(b) for all a ∈ A
and for all b ∈ B (see, for example, [11]) Let I and J be countable index sets.

Theorem 8.1. Let X and Y be two Hilbert pro-C∗-modules over pro-C∗-algebrasA and B, respectively.
Let {Ti}i∈I ⊂ Hom∗A(X ) and {Lj}j∈J ⊂ Hom∗B(Y) be two ∗-operator frames for X and Y with ∗-
frame operators ST and SL and ∗-operator frame bounds (A,B) and (C,D) respectively. Then

{Ti ⊗Lj}i∈I,j∈J is an ∗-operator frame for Hibert A⊗B-module X ⊗Y with ∗-frame operator ST ⊗SL
and lower and upper ∗-operator frame bounds A⊗ C and B ⊗D, respectively.

Proof. By the definition of ∗-operator frames {Ti}i∈I and {Lj}j∈J we have

A〈ξ, ξ〉AA∗ ≤
∑
i∈I
〈Tiξ, Tiξ〉A ≤ B〈ξ, ξ〉AB∗,∀ξ ∈ X ,

and

C〈η, η〉BC∗ ≤
∑
j∈J
〈Ljη, Ljη〉B ≤ D〈η, η〉BD∗,∀η ∈ Y.

Therefore

(A〈ξ, ξ〉AA∗)⊗ (C〈η, η〉BC∗)

≤
∑
i∈I
〈Tiξ, Tiξ〉A ⊗

∑
j∈J
〈Ljη, Ljη〉B

≤ (B〈ξ, ξ〉AB∗)⊗ (D〈η, η〉BD∗),∀ξ ∈ X ,∀η ∈ Y.
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Then
(A⊗ C)(〈ξ, ξ〉A ⊗ 〈η, η〉B)(A∗ ⊗ C∗)

≤
∑
i∈I,j∈J

〈Tiξ, Tiξ〉A ⊗ 〈Ljη, Ljη〉B

≤ (B ⊗D)(〈ξ, ξ〉A ⊗ 〈η, η〉B)(B∗ ⊗D∗),∀ξ ∈ X ,∀η ∈ Y.
Consequently we have

(A⊗ C)〈ξ ⊗ η, ξ ⊗ η〉A⊗B(A⊗ C)∗

≤
∑
i∈I,j∈J

〈Tiξ ⊗ Ljη, Tiξ ⊗ Ljη〉A⊗B

≤ (B ⊗D)〈ξ ⊗ η, ξ ⊗ η〉A⊗B(B ⊗D)∗,∀ξ ∈ X ,∀η ∈ Y.

Then for all ξ ⊗ η ∈ X ⊗ Y we have

(A⊗ C)〈ξ ⊗ η, ξ ⊗ η〉A⊗B(A⊗ C)∗

≤
∑
i∈I,j∈J

〈(Ti ⊗ Lj)(ξ ⊗ η), (Ti ⊗ Lj)(ξ ⊗ η)〉A⊗B

≤ (B ⊗D)〈ξ ⊗ η, ξ ⊗ η〉A⊗B(B ⊗D)∗.

The last inequality is satisfied for every finite sum of elements in X ⊗alg Y and then it’s satisfied for

all z ∈ X ⊗ Y. It shows that {Ti ⊗Lj}i∈I,j∈J is ∗-operator frame for Hibert A⊗B-module X ⊗Y with

lower and upper ∗-operator frame bounds A⊗ C and B ⊗D, respectively.
By the definition of ∗-frame operator ST and SL we have:

ST ξ =
∑
i∈I

T ∗i Tiξ, ∀ξ ∈ X ,

and

SLη =
∑
j∈J

L∗j Ljη,∀η ∈ Y.

Therefore
(ST ⊗ SL)(ξ ⊗ η) = ST ξ ⊗ SLη

=
∑
i∈I

T ∗i Tiξ ⊗
∑
j∈J

L∗j Ljη

=
∑
i∈I,j∈J

T ∗i Tiξ ⊗ L∗j Ljη

=
∑
i∈I,j∈J

(T ∗i ⊗ L∗j )(Tiξ ⊗ Ljη)

=
∑
i∈I,j∈J

(T ∗i ⊗ L∗j )(Ti ⊗ Lj)(ξ ⊗ η)

=
∑
i∈I,j∈J

(Ti ⊗ Lj)∗)(Li ⊗ Lj)(ξ ⊗ η).

Now by the uniqueness of ∗-frame operator, the last expression is equal to ST⊗L(ξ⊗η). Consequently

we have (ST ⊗SL)(ξ⊗η) = ST⊗L(ξ⊗η). The last equality is satisfied for every finite sum of elements
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in X ⊗alg Y and then it’s satisfied for all z ∈ X ⊗ Y. It shows that (ST ⊗ SL)(z) = ST⊗L(z). So

ST⊗L = ST ⊗ SL. �

9. ∗-K-Operator Frame for Hom∗A(X )

Definition 9.1. [18] Let {Ti}i∈I be a family of adjointable operators on a Hilbert A-module X over a

unital pro-C∗-algebra, and let K ∈ Hom∗A(X ). {Ti}i∈I is called a ∗-K-operator frame for Hom∗A(H),

if there exists two nonzero elements A and B in A such that

A〈K∗ξ,K∗ξ〉A∗ ≤
∑
i∈I
〈Tiξ, Tiξ〉 ≤ B〈ξ, ξ〉B∗,∀ξ ∈ X . (9.1)

The elements A and B are called lower and upper bounds of the ∗-K-operator frame, respectively. If

A〈K∗ξ,K∗ξ〉∗ =
∑
i∈I
〈Tiξ, Tiξ〉,

the ∗-K-operator frame is an A-tight. If A = 1, it is called a normalized tight ∗-K-operator frame or

a Parseval ∗-K-operator frame.

Example 9.1. Let l∞ be the set of all bounded complex-valued sequences. For any u = {uj}j∈N, v =

{vj}j∈N ∈ l∞, we define

uv = {ujvj}j∈N, u
∗ = {ūj}j∈N, ‖u‖ = sup

j∈N
|uj |.

Then A = {l∞, ‖.‖} is a C∗-algebra. Then A is pro-C∗-algebra.
Let X = C0 be the set of all null sequences. For any u, v ∈ X we define

〈u, v〉 = uv∗ = {uj ūj}j∈N.

Therefore X is a Hilbert A-module.

Define fj = {f ji }i∈N∗ by f
j
i = 1

2 + 1
i if i = j and f ji = 0 if i 6= j ∀j ∈ N∗.

Now define the adjointable operator Tj : X → X , Tj{(ξi)i} = (ξi f
j
i )i .

Then for every x ∈ X we have∑
j∈N

〈Tjξ, Tjξ〉 = {
1

2
+

1

i
}i∈N∗〈ξ, ξ〉{

1

2
+

1

i
}i∈N∗ .

So {Tj}j is a {1
2 + 1

i }i∈N∗-tight ∗-operator frame.

Let K : H → H defined by Kξ = { ξii }i∈N∗ .

Then for every ξ ∈ X we have

〈K∗ξ,K∗ξ〉 ≤
∑
j∈N

〈Tjξ, Tjξ〉 = {
1

2
+

1

i
}i∈N∗〈ξ, ξ〉{

1

2
+

1

i
}i∈N∗ .

This shows that {Tj}j∈N is an ∗-K-operator frame with bounds 1, {1
2 + 1

i }i∈N∗ .

Remark 9.1.
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(1) Every ∗-operator frame for Hom∗A(X ) is an ∗-K-operator frame, for any K ∈ Hom∗A(X ):

K 6= 0.

(2) If K ∈ Hom∗A(X ) is a surjective operator, then every ∗-K-operator frame for Hom∗A(X ) is an

∗-operator frame.

Example 9.2. Let X be a finitely or countably generated Hilbert A-module. Hom∗A(X ). Let K ∈
Hom∗A(X ) an invertible element such that both are uniformly bounded and K 6= 0. Let {Ti}i∈I be an
∗-operator frame for X with bounds A and B, respectively. We have

A〈ξ, ξ〉A∗ ≤
∑
i∈I
〈Tiξ, Tiξ〉 ≤ B〈ξ, ξ〉B∗,∀ξ ∈ X .

Or

〈K∗ξ,K∗ξ〉 ≤ ‖K‖2
∞〈ξ, ξ〉,∀ξ ∈ X .

Then

‖K‖−1
∞ A〈K∗ξ,K∗ξ〉(‖K‖−1

∞ A)∗ ≤
∑
i∈I
〈Tiξ, Tiξ〉 ≤ B〈ξ, ξ〉B∗,∀ξ ∈ X .

So {Ti}i∈I is ∗-K-operator frame for X with bounds ‖K‖−1
∞ A and B, respectively.

Theorem 9.1. Let K be a surjective operators in Hom∗A(X ). If {Ti}i∈I is an ∗-K-operator frame for

Hom∗A(X ), then the frame operator S is positive, invertible and adjointable. In addition we have the

reconstruction formula, ξ =
∑
i∈I T

∗
i TiS

−1ξ, ∀ξ ∈ X .

Proof. We start by showing that, S is a self-adjoint operator. By definition we have ∀ξ, η ∈ H

〈Sξ, η〉 =

〈∑
i∈I

T ∗i Tiξ, η

〉
=
∑
i∈I
〈T ∗i Tiξ, η〉

=
∑
i∈I
〈ξ, T ∗i Tiη〉

=

〈
ξ,
∑
i∈I

T ∗i Tiη

〉
= 〈ξ, Sη〉.

Then S is a selfadjoint.

The operator S is clearly positive.

By (2) in Remark 9.1 {Ti}i∈I is an ∗-operator frame for Hom∗A(X ).

The definition of an ∗-operator gives

A1〈ξ, ξ〉A∗1 ≤
∑
i∈I
〈Tiξ, Tiξ〉 ≤ B〈ξ, ξ〉B∗.
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Thus by the definition of norm in l2(X )

p̄X (Rξ)2 = p̄X (
∑
i∈I
〈Tiξ, Tiξ〉) ≤ p̄X (B)2p(〈ξ, ξ〉),∀ξ ∈ X . (9.2)

Therefore R is well defined and p̄X (R) ≤ p̄X (B). It’s clear that R is a linear A-module map. We will

then show that the range of R is closed. Let {Rξn}n∈N be a sequence in the range of R such that

limn→∞Rξn = η. For n,m ∈ N, we have

p(A〈ξn − ξm, ξn − ξm〉A∗) ≤ p(〈R(ξn − ξm), R(ξn − ξm)〉) = p̄X (R(ξn − ξm))2.

Seeing that {Rξn}n∈N is Cauchy sequence in X , then
p(A〈ξn − ξm, ξn − ξm〉A∗)→ 0, as n,m →∞.
Note that for n,m ∈ N,

p(〈ξn − ξm, ξn − ξm〉) = p(A−1A〈ξn − ξm, ξn − ξm〉A∗(A∗)−1)

≤ p(A−1)2p(A〈ξn − ξm, ξn − ξm〉A∗).

Thus the sequence {ξn}n∈N is Cauchy and hence there exists ξ ∈ X such that ξn → ξ as n → ∞.

Again by (9.2), we have

p̄X (R(ξn − ξm))2 ≤ p̄X (B)2p(〈ξn − ξ, ξn − ξ〉).

Thus p(Rξn −Rξ)→ 0 as n →∞ implies that Rξ = η. It is therefore concluded that the range of

R is closed. We now show that R is injective. Let ξ ∈ X and Rξ = 0. Note that A〈ξ, ξ〉A∗ ≤ 〈Rξ,Rξ〉
then 〈ξ, ξ〉 = 0 so ξ = 0 i.e. R is injective.

For ξ ∈ X and {ξi}i∈I ∈ l2(X ) we have

〈Rξ, {ξi}i∈I〉 = 〈{Tiξ}i∈I , {ξi}i∈I〉 =
∑
i∈I
〈Tiξ, ξi〉 =

∑
i∈I
〈ξ, T ∗i ξi〉 = 〈ξ,

∑
i∈I

T ∗i ξi〉.

Then R∗({ξi}i∈I) =
∑
i∈I T

∗
i ξi . Since R is injective, then the operator R∗ has closed range and

X = range(R∗), therefore S = R∗R is invertible

�

Let K ∈ Hom∗A(X ), in the following theorem we constructed an ∗-K-operator frame by using an

∗-operator frame.

Theorem 9.2. Let {Ti}i∈I be an ∗-K-operator frame in X with bounds A, B and K ∈ Hom∗A(X )

be an invertible element such that both are uniformly bounded. Then {TiK}i∈I is an ∗-K∗-operator
frame in X with bounds A, ‖K‖∞B. The frame operator of {TiK}i∈I is S

′
= K∗SK, where S is the

frame operator of {Ti}i∈I .

Proof. From

A〈ξ, ξ〉A∗ ≤
∑
i∈I
〈Tiξ, Tiξ〉 ≤ B〈ξ, ξ〉B∗,∀ξ ∈ X .
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We get for all ξ ∈ X ,

A〈Kξ,Kξ〉A∗ ≤
∑
i∈I
〈TiKξ, TiKξ〉 ≤ B〈Kξ,Kξ〉B∗ ≤ ‖K‖∞B〈ξ, ξ〉(‖K‖∞B)∗.

Then {TiK}i∈I is an ∗-K∗-operator frame in X with bounds A, ‖K‖∞B.
By definition of S,we have SKξ =

∑
i∈I T

∗
i TiKξ. Then

K∗SK = K∗
∑
i∈I

T ∗i TiKξ =
∑
i∈I

K∗T ∗i TiKξ.

Hence S
′

= K∗SK. �
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