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ABSTRACT. Due to the fact that living organisms do not exist individually, but rather exist in clusters interacting with 

each other, which helps to spread epidemics among them. Therefore, the study of the prey-predator system in the 

presence of an infectious disease is an important topic because the disease affects the system's dynamics and its 

existence. The presence of the hunting cooperation characteristic and the induced fear in the prey community impairs 

the growth rate of the prey and therefore affects the presence of the predator as well. Therefore, this research is 

interested in studying an eco-epidemiological system that includes the above factors. Therefore, an eco-epidemiological 

prey-predator model incorporating predation fear and cooperative hunting is built and examined. It is considered that 

the disease in the predator is of the SIS kind, which means that the infected predator can recover and become 

susceptible through medical treatment. All possible equilibrium points have been found. The solution's positivity and 

boundedness are examined. Local and global stability analyses are performed. The uniform persistence conditions are 

established. The local bifurcation around the equilibrium points is studied. Finally, numerical simulation is performed 

to validate the obtained results and comprehend the parameter impact on system dynamics. 

 

 

1. INTRODUCTION 

Cooperation during hunting is a common habit among several large predators that improves 

the predator's skill to catch prey and can cause fear, which lowers the prey's birth rate [1]. 

Understanding the predation connections among species in an ecosystem largely depends on 

examining prey-predator models [2-4]. Predators must consume food in order to survive, hence 

they frequently work to improve their skills to catch and kill prey since it is more beneficial to 
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their long-term survival. Some animals frequently employ the method of cooperative hunting to 

increase their capacity to acquire and kill prey [5-10]. Several cooperative hunting tactics are 

explored [11], including the advantages of living in a social group, and how predators create 

cooperative groups with individuals who are actively engaged in prey capture. Although animals 

of the same species typically compete with one another for resources, some predators cooperate 

with one another and offer assistance to one another, because of a certain hunting process.  

The study of the various mechanisms relating to the prey-predator relationship is one of the main 

subjects in ecology and evolutionary biology, which are considered by many researchers, see for 

example [12-15] and the references mentioned therein. Therefore, cooperative hunting and their 

induced prey’s fear during the predation process is the most potent factor in a prey-predator 

relationship, especially when it comes to changing behavior that can affect both prey and predator 

features. Understanding these complicated situations has benefited greatly from the use of 

mathematical models. Since direct predation is very simple to observe in nature, most existing 

prey-predator models rely on the traditional Lotka-Volterra paradigm [16]. It usually 

presupposes that predators can only affect the prey population by direct killing. However, the 

presence of a predator may drastically alter the prey's physiological and behavioral 

characteristics to the point where it may have a greater impact on the prey population than direct 

predation [17] and the mentioned references therein. There are many research studies using 

mathematical modeling considered the impact of hunting cooperation [1,17-25] and the impact 

of fear [16,26-41] in the prey-predator models separately. Numerous prey species alter their 

behavior when predators are around because of the possibility of being eaten. In fact, the 

researchers have noted that prey that are afraid of predators have lower reproductive rates [42]. 

Prey clustering is a common antipredator activity in many prey species, and some studies have 

looked at how group size changes in response to the risk of predation. When the prey are in a 

group, the greatest advantage is enhanced predator detection. Predators can sometimes find 

larger groups easily, though, see [43]. 

Similar to how Kermack-McKendrick's groundbreaking research on SIRS (susceptible-infective-

removal-susceptible) epidemiological models has drawn significant interest from experts. 

Because infectious diseases are primarily spread through contact between species, there is a high 

risk of disease transmission between prey species, predator species, or both because of their 

frequent interactions, particularly when hunting cooperation and fear are present.  As a result, 

eco-epidemiology emerged as a brand-new field of study. Anderson and May [44] were the first 

to introduce eco-epidemiological models. Numerous ecologists and eco-epidemiologists have 

been familiar with eco-epidemiology due to the importance of protecting wild creatures [45]. 

Controlling the extension of diseases when disease and therapy coexist simultaneously is one of 

the key goals of the study of the eco-epidemic model [46-53]. 
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Recent research has merged eco-epidemiological prey-predator models with hunting cooperation 

and fear. For example, an eco-epidemiological model with disease in the prey population that 

incorporates the fear effect of predators on prey and cooperative hunting among predators was 

proposed and researched by Liu et al [23]. They demonstrated the occurrence of several limit 

cycles for low disease transmission rates and predator mortality rates, and they also 

demonstrated that the system becomes stable at high disease transmission rates and predator 

mortality rates. An eco-epidemiological model that Fakhry and Naji [24] devised and researched 

included diseased prey devoured by a predator with a fear cost and hunting cooperation 

property. It is assumed that the predator couldn't tell the difference between healthy and sick 

prey, therefore it ate both. They discovered that the persistence of the system and the spread of 

sickness are both influenced by the presence of fear. The created fear, however, might stop the 

spread of disease in the event that hunting cooperation rates increase. Finally, the development 

of a mathematical model by AL-Jubouri and Naji [25] was adopted in order to explain how the 

interaction between the prey and the predator changes in the presence of infectious disease as 

well as the predator community's propensity for cooperative hunting, which instills enormous 

anxiety in the prey community. Additionally, the existence of a period of incubation for the illness 

delays the spread of the illness from sick predators to healthy predators. They discovered that the 

dynamics of the system are stabilized by the fear rate and destabilized by the delay. On the other 

hand, until a specific value is achieved, at which point the infected predator dies, the hunting 

cooperation rate has a destabilizing effect on the dynamics of the system. 

The novelty of the topic investigated in this research, in contrast to the studies previously 

mentioned, lies in the existence of infectious diseases inside the predator community with the 

potential for curing the sickness based on treatment. In order to ascertain the dynamic behavior 

of the suggested epidemic ecology, it is crucial to investigate the effects of predator-hunting 

cooperation and the fear that is produced in the prey population. Therefore, the goal of the current 

work is to develop and examine an eco-epidemiological prey-predator model that includes 

predation fear and cooperative hunting. It is thought that the sickness in the predator is of the SIS 

kind, meaning that the sick predator can recover and revert to a vulnerable state with the help of 

medical treatment. We present the mathematical formulation in the section that follows. In 

Section 3, we look at the characteristics of the model's solution; in Section 4, we look at the 

viability of equilibria and their stability; in Section 5, we look at persistence; in Section 6, we talk 

about global stability; and in Section 7, we talk about the occurrence of local bifurcations. In 

Section 8, a numerical simulation is carried out. The paper concludes properly with a biological 

conclusion in Section 9.  
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2. MODEL FORMULATION 

In the following, the adopted assumptions to build the mathematical model that describes the 

eco-epidemiological system are stated. 

1. Let 𝑋(𝑇) be the density of the prey biomass at time 𝑇, and 𝑌(𝑇) = 𝑆(𝑇) + 𝐼(𝑇) be the density 

biomass of the predator at time 𝑇, where 𝑌(𝑇) is separated into two compartments due to the 

presence of the disease: susceptible population 𝑆(𝑇) and infected population 𝐼(𝑇). 

2. In the absence of the predator, the number of prey increases logistically. In the lack of food, 

the predator decays exponentially.  

3. The disease is thought to be of the SIS kind, and it is transmitted only between predator 

individuals by contact between an infected predator and a healthy predator, rather than 

genetically. The medicine administered to the infected predator also cures the sickness. 

4. Because the predator has a hunting cooperation behavior, it attacks the prey in a group. Fear 

of predation is generated in a prey population as a result of this.     

Accordingly, the stated eco-epidemiological system's dynamic can be represented by the 

following set of nonlinear first-order differential equations. 

   

𝑑𝑋

𝑑𝑇
=

𝑟𝑋

1+Ɣ1(𝑆+𝐼)
[1 −

𝑋

𝑘
] − (𝛼1 + 𝛼2(𝑆 + 𝐼))(𝑆 + 𝐼)𝑋   

𝑑𝑆

𝑑𝑇
= 𝑒(𝛼1 + 𝛼2(𝑆 + 𝐼))(𝑆 + 𝐼)𝑋 − 𝛽𝑆𝐼 +

𝜇𝐼

𝜎+𝐼
− 𝑑1𝑆

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 −

𝜇𝐼

𝜎+𝐼
− 𝑑2𝐼                                                         

,                                          (1) 

where 𝑋(0) = 𝑋0 ≥ 0, 𝑆(0) = 𝑆0 ≥ 0, and 𝐼(0) = 𝐼0 ≥ 0 represent the initial condition of the 

system (1), and all parameters are assumed nonnegative and can be described in Table 1. 

 

Table 1: The parameters description 

Parameters Description 

𝑟 > 0 The prey’s intrinsic growth rate 

𝑘 > 0 The environment-carrying capacity 

Ɣ1 ≥ 0 The level of fear that reduces the growth of the prey 

𝜎 ≥ 0 The depletion rate of the  treatment 

𝛽 > 0 The infection rate 

𝜇 > 0 The treatment rate 

𝛼1 > 0 The attack rate of the predator on the prey 

𝛼2 > 0 The predator hunting cooperation level 

𝑑1 > 0 The susceptible predator natural death rate 

𝑑2 > 0 The infected predator death rate combined natural and disease death rates 

𝑒 ∈ (0,1] The conversion rate of prey biomass to predator biomass 
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The following transformations were applied to remove all units from the system (1). 

   𝑟𝑡 = 𝑇, 
𝑥

𝑘
= 𝑥1, 

𝛼2

𝛼1
𝑆 = 𝑥2, 

𝛼2

𝛼1
𝐼 = 𝑥3.  

Then system (1) reduces to the following dimensionless form  

 

𝑑𝑥1

𝑑𝑡
=

𝑥1(1−𝑥1)

1+𝑤1(𝑥2+𝑥3)
− 𝑤2(1 + 𝑥2 + 𝑥3)(𝑥2 + 𝑥3)𝑥1 = 𝑥1𝑓1(𝑥1, 𝑥2, 𝑥3),                        

𝑑𝑥2

𝑑𝑡
= 𝑤3(1 + 𝑥2 + 𝑥3)(𝑥2 + 𝑥3)𝑥1 −𝑤4𝑥2𝑥3 +

𝑤5𝑥3

𝑤6+𝑥3
−𝑤7𝑥2 = 𝑥2𝑓2(𝑥1, 𝑥2, 𝑥3),

𝑑𝑥3

𝑑𝑡
= 𝑤4𝑥2𝑥3 −

𝑤5𝑥3

𝑤6+𝑥3
−𝑤8𝑥3 = 𝑥3𝑓3(𝑥1, 𝑥2, 𝑥3),                                                           

              (2) 

where 𝑤1 = Ɣ1
𝛼1

𝛼2
, 𝑤2 =

𝛼1
2

𝑟𝛼2
, 𝑤3 = 𝑒

𝑘𝛼1

𝑟
, 𝑤4 =

𝛽𝛼1

𝑟𝛼2
, 𝑤5 =

𝛼2𝜇

𝛼1𝑟
, 𝑤6 =

𝛼2𝜎

𝛼1
, 𝑤7 =

𝑑1

𝑟
, 𝑤8 =

𝑑2

𝑟
 . 

It is clear from the system (2) that, the functions 𝑥𝑖𝑓𝑖(𝑥1, 𝑥2, 𝑥3); 𝑖 = 1,2,3 in the system (2), are 

continuous and have continuous partial derivatives on the domain ℝ+
3 = {(𝑥1, 𝑥2, 𝑥3) ∈ ℝ

3: 𝑥1 ≥

0, 𝑥2 ≥ 0, 𝑥3 ≥ 0}. Therefore, they are locally Lipschitz functions in ℝ+
3 . Consequently, with the 

use of the fundamental existence and uniqueness theorem, it is obtained that system (2) with any 

non-negative initial condition 𝑥1(0) ≥ 0, 𝑥2(0) ≥ 0, and 𝑥3(0) ≥ 0 has a unique solution defined 

in ℝ+
3 .  

 

3. PROPERTIES OF THE SOLUTION 

This section discusses the characteristics of the system (2)'s solution, such as positivity and 

boundedness, as provided in the following theorems. 

Theorem 1: All system (2)’s solutions with the initial conditions belonging to 𝑖𝑛𝑡. ℝ+
3  are positively 

invariant. 

Proof. It is derived from the system's first equation (2): 

 
𝑑𝑥1

𝑥1
= 𝑓1(𝑥1, 𝑥2, 𝑥3)𝑑𝑡 

Integrating the above equation within the range [0, t] yields:  

𝑥1(𝑡) = 𝑥1(0)𝑒
∫ 𝑓1(𝑥1(𝑠), 𝑥2(𝑠), 𝑥3(𝑠))
𝑡

0
𝑑𝑠 > 0; ∀ 𝑡 

Similarly, for the second and third equations, it is obtained  

𝑥2(𝑡) = 𝑥2(0)𝑒
∫ 𝑓2(𝑥1(𝑠), 𝑥2(𝑠), 𝑥3(𝑠))
𝑡

0
𝑑𝑠 > 0; ∀ 𝑡 

𝑥3(𝑡) = 𝑥3(0)𝑒
∫ 𝑓3(𝑥1(𝑠), 𝑥2(𝑠), 𝑥3(𝑠))
𝑡

0
𝑑𝑠 > 0; ∀ 𝑡 

This completes the proof. 

Theorem 2: All system (2)’s solutions with the initial conditions belonging to ℝ+
3  are uniformly 

bounded 

Proof. From the first equation of system (2), it is easy to verify that 

𝑑𝑥1
𝑑𝑡

≤ 𝑥1(1 − 𝑥1) 

Then according to the lemma (2.2) [54], it is obtained that 
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 𝑥1(𝑡) ≤ [1 + (
1

𝑥1(0)
− 1) 𝑒−𝑡]

−1
 

Hence for 𝑡 → ∞, it is obtained that 𝑥1(𝑡) ≤ 1. Let 𝑊 =
𝑤3

𝑤2
𝑥1 + 𝑥2 + 𝑥3, then by using system (2) 

equations, derive W with respect to t gives 

𝑑𝑊

𝑑𝑡
≤ 2

𝑤3

𝑤2
𝑥1 −𝑀𝑊, 

where 𝑀 = min{1,𝑤7, 𝑤8}. Hence, simple manipulation yields  

𝑑𝑊

𝑑𝑡
+𝑀𝑊 ≤ 2

𝑤3

𝑤2
. 

So, according to the lemma (2.1) [54], it is obtained that 

 𝑊(𝑡) ≤ 2
𝑤3

𝑀𝑤2
[1 + (

𝑀𝑤2𝑊(0)

3𝑤3
− 1) 𝑒−𝑀𝑡] 

Therefore, for 𝑡 → ∞, it is obtained that:  

𝑊(𝑡) ≤ 2
𝑤3

𝑀𝑤2
. 

That completes the proof. 

 

4. EQUILIBRIA AND STABILITY ANALYSIS 

This section determines the stability analysis of each probable equilibrium point. The 

following equilibrium points (EPs) exist in System (2): 

1. The total extinction equilibrium point (TEEP) that is denoted 𝑝1 = (0,0,0) and the axial 

equilibrium point (AEP) that denoted 𝑝2 = (1,0,0) always exist. 

2. The disease-free equilibrium point (DFEP) that is denoted 𝑝3 = (�̅�1, �̅�2, 0) = (𝑚1,𝑚2, 0), 

where 

 𝑚1 = 1 − 𝑤2𝑚2(1 + 𝑚2)(1 + 𝑤1𝑚2),                                        (3) 

while 𝑚2 is a positive root of the following polynomial equation 

𝑤1𝑤2𝑤3𝑚2
4 + (𝑤2𝑤3 + 2𝑤1𝑤2𝑤3)𝑚2

3 + (2𝑤2𝑤3 + 𝑤1𝑤2𝑤3)𝑚2
2

−(𝑤3 − 𝑤2𝑤3)𝑚2 − 𝑤3 + 𝑤7 = 0
.     

Hence, the conditions of having a unique DFEP are given by 

 𝑤7 < 𝑤3.                     (4) 

𝑤2𝑚2(1 + 𝑚2)(1 + 𝑤1𝑚2) < 1.                (5) 

3. The positive equilibrium point (PEP) that is denoted 𝑝4 = (�̃�1, �̃�2, �̃�3) = (𝑞1, 𝑞2, 𝑞3), where 

𝑞1 = [−1 − 𝑤1 (𝑥3 +
𝑤5+𝑤6𝑤8+𝑤8𝑞3

𝑤4(𝑤6+𝑞3)
)] [𝑤2 (𝑞3 +

𝑤5+𝑤6𝑤8+𝑤8𝑞3

𝑤4(𝑤6+𝑞3)
)           

(1 + 𝑞3 +
𝑤5+𝑤6𝑤8+𝑤8𝑞3

𝑤4(𝑤6+𝑞3)
) −

1

1+𝑤1(𝑞3+
𝑤5+𝑤6𝑤8+𝑤8𝑞3

𝑤4(𝑤6+𝑞3)
)
]

𝑞2 =
𝑤5+𝑤6𝑤8+𝑤8𝑞3

𝑤4(𝑤6+𝑞3)
                                                                                             }

 
 

 
 

,                     (6) 

while 𝑞3 represents a positive root of the following tenth-order polynomial equation. 
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𝐴10𝑥3

10 + 𝐴9𝑥3
9 + 𝐴8𝑥3

8 + 𝐴7𝑥3
7 + 𝐴6𝑥3

6 + 𝐴5𝑥3
5 + 𝐴4𝑥3

4

+𝐴3𝑥3
3 + 𝐴2𝑥3

2 + 𝐴1𝑥3 + 𝐴0 = 0
 ,                                                   (7) 

where 

𝐴0 = 𝑤1𝑤2𝑤3(𝑤5
5 +𝑤6

5𝑤8
5) + 𝑤2𝑤3𝑤4𝑤6(𝑤5 +𝑤6𝑤8)

4(1 + 2𝑤1)                        

+𝑤2𝑤3𝑤4
2𝑤6

2(𝑤5 +𝑤6𝑤8)
3(2 + 𝑤1) + 𝑤3𝑤4

3𝑤6
3(𝑤5 +𝑤6𝑤8)

2(𝑤2 − 1)

+𝑤4
4𝑤6

4(𝑤5 +𝑤6𝑤8)(𝑤7 −𝑤3) + 5𝑤1𝑤2𝑤3𝑤5𝑤6𝑤8(𝑤5
3 +𝑤6

3𝑤8
3)

+10𝑤1𝑤2𝑤3𝑤5
2𝑤6

2𝑤8
2(𝑤5 +𝑤6𝑤8)

. 

  𝐴10 = 𝑤1𝑤2𝑤3𝑤4
5. 

While the other coefficients 𝐴𝑖; 𝑖 = 1,2,… ,9 were computed using Mathematica software and have 

complicated forms, so it's omitted. Consequently, equation (7) has at least one positive root 

provided that the following condition is met.  

 𝐴0 < 0.                                 (8) 

Moreover, the PEP exists in the interior of ℝ+
3 , if in addition to condition (8) the following 

condition holds. 

 
1

1+𝑤1(𝑞3+
𝑤5+𝑤6𝑤8+𝑤8𝑞3

𝑤4(𝑤6+𝑞3)
)
> 𝑤2 (𝑞3 +

𝑤5+𝑤6𝑤8+𝑤8𝑞3

𝑤4(𝑤6+𝑞3)
) (1 + 𝑞3 +

𝑤5+𝑤6𝑤8+𝑤8𝑞3

𝑤4(𝑤6+𝑞3)
).                         (9) 

The following calculated Jacobian matrix (JM) can be used to study the local stability analysis of 

the aforementioned EPs. 

𝐽 = [𝑎𝑖𝑗]3×3,                                                                          (10) 

where 

𝑎11 = −
𝑥1

1+𝑤1(𝑥2+𝑥3)
+

1−𝑥1

1+𝑤1(𝑥2+𝑥3)
−𝑤2(𝑥2 + 𝑥3)(1 + 𝑥2 + 𝑥3) = 𝑥1

𝜕𝑓1

𝜕𝑥1
+ 𝑓1. 

𝑎12 = 𝑎13 = −𝑥1 [𝑤2(𝑥2 + 𝑥3) + 𝑤2(1 + 𝑥2 + 𝑥3) +
𝑤1(1−𝑥1)

(1+𝑤1(𝑥2+𝑥3))
2]. 

𝑎21 = 𝑤3(𝑥2 + 𝑥3)(1 + 𝑥2 + 𝑥3). 

𝑎22 = −𝑤7 −𝑤4𝑥3 +𝑤3𝑥1(𝑥2 + 𝑥3) + 𝑤3𝑥1(1 + 𝑥2 + 𝑥3). 

𝑎23 = −𝑤4𝑥2 −
𝑤5𝑥3

(𝑤6+𝑥3)
2 +

𝑤5

𝑤6+𝑥3
+𝑤3𝑥1(𝑥2 + 𝑥3) + 𝑤3𝑥1(1 + 𝑥2 + 𝑥3). 

𝑎31 = 0. 

𝑎32 = 𝑤4𝑥3. 

𝑎33 =
𝑤5𝑥3

(𝑤6+𝑥3)
2 −𝑤8 +𝑤4𝑥2 −

𝑤5

𝑤6+𝑥3
= 𝑥3

𝜕𝑓3

𝜕𝑥3
+ 𝑓3. 

The Jacobian at the TEEP can be written as: 

 𝐽(𝑝1) = [

1 0 0

0 −𝑤7
𝑤5

𝑤6

0 0 −
𝑤5

𝑤6
−𝑤8

]                                                                   (11)  

Therefore, the eigenvalues of  𝐽(𝑝1) are given by  

𝜆11 = 1 > 0 , 𝜆12 = −𝑤7 < 0 , 𝜆13 = −(
𝑤5

𝑤6
+𝑤8) < 0.                           (12) 

As one of the eigenvalues is positive and the others are negative, hence, 𝑝1 is a saddle point. 
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The Jacobian at the AEP can be written as: 

 𝐽(𝑝2) =

[
 
 
 
−1 −𝑤2 −𝑤2
0 𝑤3 −𝑤7 𝑤3 +

𝑤5

𝑤6

0 0 −
𝑤5

𝑤6
−𝑤8]

 
 
 
.                                     (13) 

Therefore, the eigenvalues of  𝐽(𝑝2) are given by 

𝜆21 = −1 < 0 , 𝜆22 = 𝑤3 −𝑤7, 𝜆23 = −(
𝑤5

𝑤6
+𝑤8) < 0.                         (14) 

Hence, the AEP is locally asymptotically stable (LAS), nonhyperbolic point, and saddle point 

provided that the following conditions are met respectively. 

𝑤3 < 𝑤7.                                                                                          (15) 

𝑤3 = 𝑤7.                  (16) 

𝑤3 > 𝑤7.                             (17) 

The Jacobian at the DFEP can be written as: 

 𝐽(𝑝3) = [𝑐𝑖𝑗]3×3
,                    (18) 

where 

 𝑐11 =
1−𝑚1

1+𝑚2𝑤1
−

𝑚1

1+𝑚2𝑤1
−𝑤2𝑚2(1 + 𝑚2), 

 𝑐12 = 𝑐13 = −𝑚1 [
(1−𝑚1)𝑤1
(1+𝑚2𝑤1)

2 +𝑚2𝑤2 + (1 +𝑚2)𝑤2], 

 𝑐21 = 𝑚2(1 + 𝑚2)𝑤3, 

 𝑐22 = 𝑚1𝑚2𝑤3 +𝑚1(1 + 𝑚2)𝑤3 −𝑤7, 

 𝑐23 = 𝑚1𝑚2𝑤3 +𝑚1(1 + 𝑚2)𝑤3 −𝑚2𝑤4 +
𝑤5

𝑤6
, 

 𝑐31 = 𝑐32 = 0, 

 𝑐33 = 𝑚2𝑤4 −
𝑤5

𝑤6
− 𝑤8. 

Hence, the characteristic equation of 𝐽(𝑝3) can be written as: 

[𝜆2 − (𝑐11 + 𝑐22)𝜆 + 𝑐11𝑐22 − 𝑐12𝑐21][𝑐33 − 𝜆] = 0.                               (19) 

Direct computation gives the following roots 

 

𝜆31 =
(𝑐11+𝑐22)

2
+
1

2
√(𝑐11 + 𝑐22)

2 − 4(𝑐11𝑐22 − 𝑐12𝑐21)

𝜆32 =
(𝑐11+𝑐22)

2
−
1

2
√(𝑐11 + 𝑐22)

2 − 4(𝑐11𝑐22 − 𝑐12𝑐21)

𝜆33 = 𝑚2𝑤4 −
𝑤5

𝑤6
−𝑤8                                                          

 

}
 
 

 
 

.                       (20) 

Direct computation shows that, the eigenvalues 𝜆31 and 𝜆32 have negative real parts if the 

following conditions hold.  

 
1−𝑚1

1+𝑚2𝑤1
<

𝑚1

1+𝑚2𝑤1
+𝑚2(1 + 𝑚2)𝑤2.                       (21) 

 𝑚1𝑚2𝑤3 +𝑚1(1 + 𝑚2)𝑤3 < 𝑤7.               (22) 

While the third eigenvalue 𝜆33 is negative if the following condition is met. 

𝑚2𝑤4 <
𝑤5

𝑤6
+𝑤8.                   (23) 
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Therefore, the DFEP is a LAS if the conditions (21)-(23) are satisfied.  

Finally, the Jacobian at the PEP can be written as: 

 𝐽(𝑝4) = [𝑏𝑖𝑗]3×3
,                               (24) 

where 

𝑏11 = −
𝑞1

1+𝑤1(𝑞2+𝑞3)
, 

𝑏12 = 𝑏13 = −𝑞1 [
(1−𝑞1)𝑤1

(1+(𝑞2+𝑞3)𝑤1)
2 +𝑤2(𝑞2 + 𝑞3) + 𝑤2(1 + 𝑞2 + 𝑞3)], 

𝑏21 = 𝑤3(𝑞2 + 𝑞3)(1 + 𝑞2 + 𝑞3), 

𝑏22 = 𝑤3𝑞1(𝑞2 + 𝑞3) + 𝑤3𝑞1(1 + 𝑞2 + 𝑞3) − 𝑤4𝑞3 −𝑤7, 

𝑏23 = 𝑤3𝑞1(𝑞2 + 𝑞3) + 𝑤3𝑞1(1 + 𝑞2 + 𝑞3) − 𝑤4𝑞2 −
𝑤5𝑞3

(𝑞3+𝑤6)
2 +

𝑤5

𝑞3+𝑤6
, 

𝑏31 = 0, 𝑏32 = 𝑞3𝑤4, 𝑏33 =
𝑤5𝑞3

(𝑞3+𝑤6)
2. 

The characteristic equation of  𝐽(𝑝4) can be written as 

𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0,                          (25) 

where  

𝐴1 = −(𝑏11 + 𝑏22 + 𝑏33), 

𝐴2 = 𝑏11𝑏22 − 𝑏12𝑏21 + 𝑏11𝑏33 + 𝑏22𝑏33 − 𝑏23𝑏32, 

𝐴3 = −[𝑏11(𝑏22𝑏33 − 𝑏23𝑏32) + 𝑏21(𝑏13𝑏32 − 𝑏12𝑏33)], 

∆= 𝐴1𝐴2 − 𝐴3 = −(𝑏11 + 𝑏22)[𝑏11𝑏22 − 𝑏12𝑏21] − (𝑏22+𝑏33)[𝑏22𝑏33 − 𝑏23𝑏32]

+𝑏11𝑏33(𝑏11+𝑏33) − 2𝑏11𝑏22𝑏33 + 𝑏13𝑏21𝑏32.
 

The characteristic equation (25), according to the Routh-Hurwitz criterion, has three eigenvalues 

with negative real portions if the following conditions are met: 𝐴1 > 0; 𝐴3 > 0, and ∆= 𝐴1𝐴2 −

𝐴3 > 0. Moreover, the Routh-Hurwitz requirements are satisfied if the conditions given in the 

following theorem hold. 

Theorem 3: The PEP of the system (2) is LAS if and only if the following sufficient conditions are 

met. 

   𝑤3𝑞1(𝑞2 + 𝑞3) + 𝑤3𝑞1(1 + 𝑞2 + 𝑞3) < 𝑤4𝑞3 +𝑤7.                                 (26)

 𝑤3𝑞1(𝑞2 + 𝑞3) + 𝑤3𝑞1(1 + 𝑞2 + 𝑞3) +
𝑤5

𝑞3+𝑤6
< 𝑤4𝑞2 +

𝑤5𝑞3
(𝑞3+𝑤6)

2.                                     (27) 

 
𝑤5𝑞3

(𝑞3+𝑤6)
2 < min {

𝑤3𝑞1(𝑞2+𝑞3)+𝑤3𝑞1(1+𝑞2+𝑞3)−𝑤4𝑞2−
𝑤5𝑞3

(𝑞3+𝑤6)
2+

𝑤5
𝑞3+𝑤6

𝑤3𝑞1(𝑞2+𝑞3)+𝑤3𝑞1(1+𝑞2+𝑞3)−𝑤4𝑞3−𝑤7
𝑞3𝑤4, 𝑞3𝑤4}.                    (28) 

 
𝑤5𝑞3

(𝑞3+𝑤6)
2 < min {

𝑞1

1+𝑤1(𝑞2+𝑞3)
, 𝑤4𝑞3 +𝑤7 −𝑤3𝑞1(𝑞2 + 𝑞3) − 𝑤3𝑞1(1 + 𝑞2 + 𝑞3) }.          (29) 

 𝑏11𝑏33(𝑏11+𝑏33) − 2𝑏11𝑏22𝑏33 + 𝑏13𝑏21𝑏32 > 0.                     (30) 

Proof. Direct application of the Routh-Hurwitz criterion with the given condition the proof 

follows. 
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5. PERSISTENCE 

The persistence and extinction properties of an eco-epidemiological model including fear and 

hunting cooperation are investigated, in this section. The goal is to examine how fear and hunting 

cooperation affect the persistence and extinction of system species in a sick prey-predator system. 

The system's border levels' dynamics must be understood to understand the conditions that 

assure the continued existence of all species. Clearly, system (2) has a subsystem representing the 

infected predator's absence, which can be written as: 

 

𝑑𝑥1

𝑑𝑡
=

𝑥1(1−𝑥1)

1+𝑤1𝑥2
−𝑤2(1 + 𝑥2)𝑥1𝑥2 = 𝑔1(𝑥1, 𝑥2)

𝑑𝑥2

𝑑𝑡
= 𝑤3(1 + 𝑥2)𝑥1𝑥2 −𝑤7𝑥2 = 𝑔2(𝑥1, 𝑥2)    

.                (31) 

It is noted that, subsystem (31) has three equilibrium points given by  𝑝11 = (0,0), 𝑝12 = (1,0), and 

𝑝13 = (𝑚1, 𝑚2), which are coincide with the projection of TEEP, AEP, and DFEP on the 

𝑥1𝑥2 −plane respectively. As a result, they have the exact prerequisites for local stability. The 

Dulac-Bendixon criterion is now used to evaluate the possibility of not existence of periodic 

dynamics in the interior of positive quadrants corresponding to subsystems (31). 

Theorem 4: There are no periodic dynamics that fall entirely in the interior of a positive quadrant 

of 𝑥1𝑥2 −plane provided that 

 

𝑤3 <
1

𝑥2(1+𝑤1𝑥2)

𝑂𝑅

𝑤3 >
1

𝑥2(1+𝑤1𝑥2)

}.                   (32) 

Proof. Consider the continuous differential function 𝐷(𝑥1, 𝑥2) =
1

𝑥1𝑥2
 on a simple connected 

region of the interior of a positive quadrant of 𝑥1𝑥2 −plane. Then the expiration   

 ∆=
𝜕(𝐷𝑔1)

𝜕𝑥1
+
𝜕(𝐷𝑔2)

𝜕𝑥2
= −

1

𝑥2(1+𝑤1𝑥2)
+𝑤3. 

It’s clear that ∆ has the same sign and does not equal zero under the condition (32). Therefore, as 

a result of the Dulac-Bendixon criterion, a subsystem (31) lacks periodic dynamics in the interior 

of the positive quadrant of the 𝑥1𝑥2 −plane. 

Theorem 5: Assume that there is no periodic dynamics in the boundary planes of ℝ+
3 . Let the 

conditions (17), (21), and (22) with the next condition are met, then the system (2) is uniformly 

persistent. 

 
𝑤5

𝑤6
+𝑤8 < 𝑚2𝑤4.                   (33) 

Proof: Assume 𝑣 is a point in the interior of ℝ+
3  and 𝑂(𝑣) is the orbit through it. Let Ω(𝑣) represent 

the 𝜔⎼limit set of 𝑂(𝑣). It is worth noting that because the system (2) is bounded, so is Ω(𝑣). To 

demonstrate that 𝑝1 ∉ Ω(𝑣), the opposite is assumed first. Because 𝑝1 is a saddle point, it cannot 

be the only point in Ω(𝑣), and hence there must be at least one other point 𝑢 such that 𝑢 ∈ 𝜔𝑠(𝑝1) ∩

Ω(𝑣), where 𝜔𝑠(𝑝1) is the stable manifold of 𝑝1, see Butler-McGhee lemma [55]. 
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Given that the stable manifold of 𝑝1 is given by the 𝑥2𝑥3 −plane, it is included in Ω(𝑣). As a result, 

if 𝑢 lies on the boundary axes of the 𝑥2𝑥3 −plane, then the positive particular axis (containing 𝑢) 

is contained in Ω(𝑣), which contradicts its boundedness. 

Let 𝑢 now belong to the inside of the 𝑥2𝑥3 −plane. Because there is no other equilibrium points in 

the interior of the 𝑥2𝑥3 −plane, the orbit through 𝑢 included in Ω(𝑣) must be infinite. Giving a 

contradiction also demonstrates that 𝑝1 ∉ Ω(𝑣).  

To demonstrate that 𝑝2 ∉ Ω(𝑣), the opposite is also assumed. Because 𝑝2 is saddle under condition 

(17) with stable manifold given by 𝑥1𝑥3 −plane, the evidence is the same as in the proof of the 

first point 𝑝1. As a result, 𝑝2 ∉ Ω(𝑣) is found. 

Similarly, when requirements (21)-(22) hold, 𝑝3 ∉ Ω(𝑣) under condition (33), which produces 𝑝3 

saddle point, with stable manifold supplied by 𝑥1𝑥2 −plane.  

Because there are no periodic dynamics in the boundary planes of ℝ+
3 , and the above points 𝑝1, 

𝑝2, and 𝑝3 are the only potential attractive points for the solutions of system (2), system (2) 

uniformly persists. 

6. GLOBAL STABILITY ANALYSIS 

In this section, we study the global asymptotic stability (GAS) of all single-existence 

equilibrium points using the Lyapanov function whenever it exists as described in the following 

theorems 

Theorem 5: Assume that condition (15) holds, then the AEP is a GAS provided that the following 

condition holds. 

𝑤3 (1 + 2
𝑤3

𝑤2𝑀
) < min{𝑤7, 𝑤8}                                         (34) 

Proof: Consider the following positive definite real-valued function around the AEP 

𝑉1 = 𝛼1[𝑥1 − 1 − ln 𝑥1] + 𝛼2𝑥2 + 𝛼3𝑥3 

Then, we have 

           
𝑑𝑉1
𝑑𝑡

= 𝛼1
(𝑥1 − 1)

𝑥1

𝑑𝑥1
𝑑𝑡

+ 𝛼2
𝑑𝑥2
𝑑𝑡

+ 𝛼3
𝑑𝑥3
𝑑𝑡

 

 

𝑑𝑉1
𝑑𝑡

= 𝛼1(𝑥1 − 1) [
1 − 𝑥1

1 + 𝑤1(𝑥2 + 𝑥3)
− 𝑤2(1 + 𝑥2 + 𝑥3)(𝑥2 + 𝑥3)]

+ 𝛼2 [𝑤3(1 + 𝑥2 + 𝑥3)(𝑥2 + 𝑥3)𝑥1 − 𝑤4𝑥2𝑥3 +
𝑤5𝑥3
𝑤6 + 𝑥3

− 𝑤7𝑥2]

+ 𝛼3 [𝑤4𝑥2𝑥3 −
𝑤5𝑥3
𝑤6 + 𝑥3

− 𝑤8𝑥3] 

Now, choosing 𝛼1 =
𝑤3

𝑤2
, and 𝛼2 = 𝛼3 = 1 with use of the theorem (2), it is obtained that  
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𝑑𝑉1
𝑑𝑡

≤ −
𝑤3(𝑥1 − 1)

2

𝑤2[1 + 𝑤1(𝑥2 + 𝑥3)]
− [𝑤7 − 𝑤3 (1 + 2

𝑤3
𝑤2𝑀

)] 𝑥2

−[𝑤8 − 𝑤3 (1 + 2
𝑤3
𝑤2𝑀

)] 𝑥3

 

Clearly, condition (34) gives that  
𝑑𝑉1

𝑑𝑡
 is negative definite. Moreover, since 𝑉1 is radially 

unbounded function, then AEP is a GAS. 

Theorem 6: assume that the DFEP denoted by 𝑝3 = (�̅�1, �̅�2, 0) = (𝑚1,𝑚2, 0) is a LAS, then it is a 

GAS provided that the following sufficient conditions hold. 

(𝑤3 (
𝑤1(1−𝑚1)

𝐵1𝐵2
+ 𝑤2(1 + 𝑥2 +𝑚2)) −

𝑤2𝑤3𝑚2(1+𝑚2)

𝑥2
)

2

< 4(
−𝑤3

𝐵1
) (𝑤7 − 𝑤3𝑥1(1 + 𝑥2 +𝑚2)).                      (35) 

𝑤7 > 𝑤3𝑥1(1 + 𝑥2 +𝑚2).                                                                                                                                 (36) 

 
𝑥1

𝑥2
> 𝑚1.                                                                                                                                                             (37) 

𝑤2𝑤8 >
2𝑤1𝑤3𝑚1

𝐵2
+ 𝑤2𝑤3𝑚1 + 2𝑤2𝑤3𝑚1𝑥2 +𝑤2𝑤4𝑚2.                                                                           (38) 

Proof: consider the following positive definite real valued function around 𝑝3 

𝑉2 = 𝛼1 [𝑥1 −𝑚1 −𝑚1ln
𝑥1
𝑚1
] + 𝛼2 [𝑥2 −𝑚2 −𝑚2ln

𝑥2
𝑚2
] + 𝛼3𝑥3 

Hence, we have 

𝑑𝑉2
𝑑𝑡

= 𝛼1
(𝑥1 −𝑚1)

𝑥1

𝑑𝑥1
𝑑𝑡

+ 𝛼2
(𝑥2 −𝑚2)

𝑥2

𝑑𝑥2
𝑑𝑡

+ 𝛼3
𝑑𝑥3
𝑑𝑡

 

𝑑𝑉2

𝑑𝑡
= 𝛼1(𝑥1 −𝑚1) [

1−𝑥1

1+𝑤1𝑥2+𝑤1𝑥3
−𝑤2(1 + 𝑥2 + 𝑥3)(𝑥2 + 𝑥3)                                 

−
1−𝑚1

1+𝑤1𝑚2
+𝑤2(1 + 𝑚2)𝑚2] + 𝛼2

(𝑥2−𝑚2)

𝑥2
[𝑤3(1 + 𝑥2 + 𝑥3)(𝑥2 + 𝑥3)𝑥1

−𝑤4𝑥2𝑥3 +
𝑤5𝑥3

𝑤6+𝑥3
−𝑤7𝑥2 −𝑤3(1 + 𝑚2)𝑚1𝑚2 +𝑤7𝑚2]

+𝛼3 [𝑤4𝑥2𝑥3 −
𝑤5𝑥3

𝑤6+𝑥3
−𝑤8𝑥3]

. 

By using  𝛼1 = 𝑤3, 𝛼2 = 𝛼3 = 𝑤2 it is obtained that: 

𝑑𝑉2

𝑑𝑡
≤

−𝑤3

𝐵1
(𝑥1 −𝑚1)

2 −
𝑤2

𝑥2
[𝑤7 −𝑤3𝑥1(1 + 𝑥2 +𝑚2)](𝑥2 −𝑚2)

2 −𝑤2𝑤3 [   
𝑥1

𝑥2
−𝑚1] 𝑥3

2

−[𝑤3 (
𝑤1(1−𝑚1)

𝐵1𝐵2
+𝑤2(1 + 𝑥2 +𝑚2)) −

𝑤2𝑤3𝑚2(1+𝑚2)

𝑥2
] (𝑥1 −𝑚1)(𝑥2 −𝑚2)

− [𝑤2𝑤8 −
2𝑤1𝑤3𝑚1

𝐵2
−𝑤2𝑤3𝑚1 − 2𝑤2𝑤3𝑚1𝑥2 −𝑤2𝑤4𝑚2] 𝑥3

. 

Then we have  
𝑑𝑉2

𝑑𝑡
 is negative definite. 

Moreover, since 𝑉2 is radially unbounded function the DFEP is a GAS. 

7. LOCAL BIFURCATION 

Sotomayor's bifurcation theorem [56] was applied to determine the possibility of local 

bifurcation near the equilibrium points of the system (2) when the parameter passes through a 

specific value making the equilibrium point a non-hyperbolic point. The condition that the 
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equilibrium point is non-hyperbolic is a necessary but not sufficient condition for a local 

bifurcation to occur as is known. The study of the bifurcation of the system (2) is vital because the 

parameters are not constant in actual reality and are constantly changing according to the 

conditions of the environment containing the organisms of the system. Now, rewrite the system 

(2) in the vector form as: 

 
𝑑𝐗

𝑑𝑡
= 𝐅(𝐗, 𝜇), 𝐗 = (𝑥1, 𝑥2, 𝑥3)

T, 𝐅 = (𝑥1𝑓1(𝐗, 𝜇), 𝑥2𝑓2(𝐗, 𝜇), 𝑥3𝑓3(𝐗, 𝜇))
T,                            (39) 

where 𝜇 ∈ ℝ represents a bifurcation parameter. Hence the second and third directional 

derivatives for (39) can be written respectively as: 

𝐷2𝐅(𝑿, 𝜇)(𝐕, 𝐕) = [𝑛𝑖1]3×1,                                              (40) 

where 𝐕 = (𝑣1, 𝑣2, 𝑣3)
𝑇 be any vector with 

𝑛11 =
1

[1 + 𝑤1(𝑥2 + 𝑥3)]
3
2{−𝑣1

2[1 + 𝑤1(𝑥2 + 𝑥3)]
2                                 

−(𝑣2 + 𝑣3)
2𝑥1[𝑤2 + 3𝑤1𝑤2(𝑥2 + 𝑥3) + 𝑤1

3𝑤2(𝑥2 + 𝑥3)
3

+𝑤1
2(−1 + 𝑥1 + 3𝑤2(𝑥2 + 𝑥3)

2)]

−𝑣1(𝑣2 + 𝑣3)[1 + 𝑤1(𝑥2 + 𝑥3)][𝑤2(1 + 2𝑥2 + 2𝑥3)

+𝑤1
2𝑤2(𝑥2 + 𝑥3)

2(1 + 2𝑥2 + 2𝑥3)

+𝑤1(1 − 2𝑥1 + 2𝑤2(𝑥2 + 𝑥3)(1 + 2𝑥2 + 2𝑥3))]}

 

 
𝑛21 = 2{𝑣2

2𝑤3𝑥1 − 𝑣2𝑣3(𝑤4 − 2𝑤3𝑥1) + 𝑣1(𝑣2 + 𝑣3)𝑤3(1 + 2𝑥2 + 2𝑥3)

+𝑣3
2(𝑤3𝑥1 −

𝑤5𝑤6
(𝑤6+𝑥3)

3)}
 

 𝑛31 = 2𝑣3(𝑣2𝑤4 +
𝑣3𝑤5𝑤6

(𝑤6+𝑥3)
3) 

And 

𝐷3𝐅(𝐗, 𝜇)(𝐕, 𝐕, 𝐕) = [𝑛𝑖2]3×1,                                         (41) 

where 

𝑛12 = 6(𝑣2 + 𝑣3) [
(𝑣2+𝑣3)

2𝑤1
3(−1+𝑥1)𝑥1

(1+𝑤1(𝑥2+𝑥3))
4 +

𝑣1
2𝑤1

(1+𝑤1(𝑥2+𝑥3))
2

+𝑣1(𝑣2 + 𝑣3)(−𝑤2 +
𝑤1
2(1−2𝑥1)

(1+𝑤1(𝑥2+𝑥3))
3)]

. 

𝑛22 = 6(𝑣1(𝑣2 + 𝑣3)
2𝑤3 +

𝑣3
3𝑤5𝑤6

(𝑤6+𝑥3)
4). 

𝑛32 = −
6𝑣3

3𝑤5𝑤6

(𝑤6+𝑥3)
4. 

Theorem 7: When the parameter 𝑤3 passes through the value 𝑤3
∗ = 𝑤7, the system (2) undergoes 

a Transcritical bifurcation (TB) at AEP, provided that 𝑤2 ≠ 1. Otherwise, pitchfork bifurcation 

(PB) occurs. 

Proof. From the equation (13) with 𝑤3 = 𝑤3
∗ the JM becomes: 

𝐽1
∗ = 𝐽(𝑝2, 𝑤3

∗) = (

−1 − 𝑤2 −𝑤2
0 0 𝑤3 +

𝑤5

𝑤6

0 0 −
𝑤5

𝑤6
−𝑤8

).       
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Therefore, the eigenvalues of  𝐽1
∗ are given by 

𝜆21(𝑤3
∗) = −1 < 0 , 𝜆22(𝑤3

∗) = 0, 𝜆23(𝑤3
∗) = −

𝑤5

𝑤6
−𝑤8 < 0.         

Thus AEP is a non-hyperbolic point at 𝑤3 = 𝑤3
∗. 

Let  𝐕1 = (𝑣11, 𝑣12, 𝑣13)
T and 𝐔1 = (𝑢11, 𝑢12, 𝑢13)

T be the eigenvectors corresponding to the 

eigenvalue 𝜆22(𝑤3
∗) = 0 of the matrices 𝐽1

∗ and 𝐽1
∗𝑇 respectively. Thus, direct computation gives 

that 𝐕1 = (−𝑤2, 1,0)
T and 𝐔1 = (0,1,

𝑤3𝑤6+𝑤5

𝑤5+𝑤6𝑤8
)𝑇.  

Following Sotomayor’s theorem, gives that: 

  
𝜕

𝜕𝑤3
𝐅(𝐗,𝑤3) = (

0
(1 + 𝑥2 + 𝑥3)(𝑥2 + 𝑥3)𝑥1

0
) ⇛ 𝐅𝑤3(𝑝2, 𝑤3

∗) = (
0
0
0
) 

Therefore, 𝐔1
𝑇𝐅𝑤3(𝑝2, 𝑤3

∗) = 0, as a result, the first requirement for TB is met. Moreover, since  

𝐷𝐅𝑤3(𝐗,𝑤3) = [
0 0 0

(1 + 𝑥2 + 𝑥3)(𝑥2 + 𝑥3) 𝑥1(1 + 2𝑥2 + 2𝑥3) 𝑥1(1 + 2𝑥2 + 2𝑥3)
0 0 0

]  

⇛ 𝐷𝐅𝑤3(𝑝2, 𝑤3
∗)𝐕1 = [

0
1
0
]. 

Therefore: 

 𝐔1
T𝐷𝐅𝑤3(𝑝2, 𝑤3

∗)𝐕1 = 1 ≠ 0. 

Now using equation (40), gives  

 𝐷2𝐅(𝑝2, 𝑤3
∗)(𝐕1, 𝐕1) = [

2(−𝑤2
2(1+𝑤1))

2

(1+𝑤1)
3

2𝑤7(1 − 𝑤2)
0

] ⇛ 𝐔1
T𝐷2𝐅(𝑝2, 𝑤3

∗)(𝐕1, 𝐕1) = 2𝑤7(1 − 𝑤2) ≠ 0. 

Hence a TB take place near AEP when 𝑤2 ≠ 1. Otherwise using equation (41) gives 

𝐷3𝐅(𝑝2, 𝑤3
∗)(𝐕1, 𝐕1, 𝐕1) = [𝑛𝑖2(𝑝2, 𝑤3

∗)],  

where  

𝑛12(𝑝3, 𝑤3
∗) = 6(𝑤1𝑤1

2 − 2𝑤2 −𝑤1
2) 

 𝑛22(𝑝3, 𝑤3
∗) = −6𝑤2𝑤7 

𝑛32(𝑝3, 𝑤3
∗) = 0. 

Accordingly, obtained 

 𝐔1
𝑇𝐷3𝐅(𝑝2, 𝑤3

∗)(𝐕1, 𝐕1, 𝐕1) = −6𝑤2𝑤7 ≠ 0. 

Therefore, PB takes place near AEP, and the proof is complete.  

Theorem 8: Assume that conditions (21)-(22) hold, and the parameter 𝑤4 passes through the value 

𝑤4
∗ =

𝑤8

𝑚2
+

𝑤5

𝑚2𝑤6
, then system (2) undergoes a TB at DFEP provided that the following condition 

holds 

 𝜎2𝑤4
∗ +

𝑤5

𝑤6
2 ≠ 0,                     (42) 

Otherwise, PB takes place, where all the new symbols are defined in the proof. 
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Proof. From the equation (18) with 𝑤4 = 𝑤4
∗ the JM becomes 

𝐽2
∗ = 𝐽(𝑝3, 𝑤4

∗) = [

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23

∗

0 0 0
].      

where 𝑐𝑖𝑗; 𝑖 = 1,2, 𝑗 = 1,2,3 are given in (18), while 𝑐23
∗ = 𝑐23(𝑤4

∗) = 𝑚1𝑚2𝑤3 +𝑚1(1 + 𝑚2)𝑤3 −

𝑤8. Therefore, the eigenvalues of  𝐽2
∗ are given by equation (20), so that 𝜆31 and 𝜆32 have negative 

real parts under conditions (20)-(21), while the third one 𝜆31 = 0. Thus DFEP is a non-hyperbolic 

point at 𝑤4 = 𝑤4
∗. 

Let  𝐕2 = (𝑣21, 𝑣22, 𝑣23)
T and 𝐔2 = (𝑢21, 𝑢22, 𝑢23)

T be the eigenvectors corresponding to the 

eigenvalue 𝜆33 = 0 of the metrics 𝐽2
∗ and 𝐽2

∗𝑇 respectively. Direct computation gives that 

𝐕2 = (𝜎1, 𝜎2, 1)
T and 𝐔2 = (0,0,1)

𝑇, where 𝜎1 =
𝑐12𝑐23

∗ −𝑐22𝑐13

𝑐11𝑐22−𝑐12𝑐21
 and 𝜎2 = −

𝑐11𝑐23
∗ −𝑐21𝑐13

𝑐11𝑐22−𝑐12𝑐21
. 

Following Sotomayor’s theorem, gives that: 

  
𝜕

𝜕𝑤4
𝐅(𝐗,𝑤4) = (

0
−𝑥2𝑥3
𝑥2𝑥3

) ⇛ 𝐅𝑤4(𝑝3, 𝑤4
∗) = (

0
0
0
) 

Therefore, 𝐔2
T𝐅𝑤4(𝑝3, 𝑤4

∗) = 0, as a result, the first condition for the occurrence of transcritical 

bifurcation is met. Moreover, since  

 𝐷𝐅𝑤4(𝐗,𝑤4) = [
0 0 0
0 −𝑥3 −𝑥2
0 𝑥3 𝑥2

] ⇛ 𝐷𝐅𝑤4(𝑝3, 𝑤4
∗)𝐕2 = [

0
−𝑚2

𝑚2

]. 

Therefore 

 𝐔2
T𝐷𝐅𝑤4(𝑝3, 𝑤4

∗)𝐕2 = 𝑚2 ≠ 0. 

Using equation (40) gives  

𝐷2𝐅(𝑝3, 𝑤4
∗)(𝐕2, 𝐕2) = [𝑛𝑖1(𝑝3, 𝑤4

∗)],  

where 

𝑛11(𝑝3, 𝑤4
∗) =

1

[1 + 𝑤1𝑚2]
3
2{−𝜎1

2[1 + 𝑤1𝑚2]
2 

−(𝜎2 + 1)
2𝑤2𝑚1[1 + 3𝑤1𝑚2 +𝑤1

3𝑚2
3

+𝑤1
2(−1 +𝑚1 + 3𝑤2𝑚2

2)]

−𝜎1(𝜎2 + 1)[1 + 𝑤1𝑚2][𝑤2(1 + 2𝑚2)

+𝑤1
2𝑤2𝑚2

2(1 + 2𝑚2)

+𝑤1(1 − 2𝑚1 + 2𝑤2𝑚2(1 + 2𝑚2))]}

 

 
𝑛21(𝑝3, 𝑤4

∗) = 2{𝜎2
2𝑤3𝑚1 − 𝜎2(𝑤4

∗ − 2𝑤3𝑚1) + 𝜎1(𝜎2 + 1)𝑤3(1 + 2𝑚2)

+(𝑤3𝑚1 −
𝑤5

𝑤6
2)}

. 

 𝑛31(𝑝3, 𝑤4
∗) = 2(𝜎2𝑤4

∗ +
𝑤5

𝑤6
2) 

Now, when the condition (42) is met, it is obtained that 

𝐔2
𝑇𝐷2𝐅(𝑝3, 𝑤4

∗)(𝐕2, 𝐕2) = 2(𝜎2𝑤4
∗ +

𝑤5

𝑤6
2) ≠ 0. 

Hence a TB take place near DFEP. Otherwise, if the condition (42) is violated, it is obtained that 
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𝐷3𝐅(𝑝3, 𝑤4
∗)(𝐕2, 𝐕2, 𝐕2) = [𝑛𝑖2(𝑝3, 𝑤4

∗)],  

where  

𝑛12(𝑝3, 𝑤4
∗) = 6(𝜎2 + 1)(

(𝜎2 + 1)
2(𝑚1 − 1)𝑤1

3𝑚1

(1 + 𝑤1𝑚2)
4 )+

𝜎1
2𝑤1

(1 + 𝑤1𝑚2)
2

+ 𝜎1(𝜎2 + 1) (−𝑤2 +
𝑤1
3(1 − 2𝑚1)

(1 + 𝑤1𝑚2)
3) 

 𝑛22(𝑝3, 𝑤4
∗) = 6 (𝜎1(𝜎2 + 1)

2𝑤3 +
𝑤5

𝑤6
2) 

𝑛32(𝑝3, 𝑤4
∗) = −

𝑤5

𝑤6
3. 

Accordingly, it is obtained 

 𝐔2
𝑇𝐷3𝐅(𝑝3, 𝑤4

∗)(𝐕2, 𝐕2, 𝐕2) = −
𝑤5

𝑤6
3 ≠ 0. 

Therefore, PB takes place near DFEP, and the proof is complete.   

Theorem 9: Assume that conditions (26), (27), and (29) are met along with the following 

conditions 

𝑏33 <
𝑏23𝑏32

𝑏11+𝑏22
∗ ,                             (43) 

𝜎5𝑛11(𝑝4, 𝑤7
∗) + 𝜎6𝑛21(𝑝4, 𝑤7

∗) + 𝑛31(𝑝4, 𝑤7
∗) ≠ 0,                       (44) 

where all the new symbols are defined in the proof. Then system (2) undergoes a saddle-node 

bifurcation (SNB) near PEP when the parameter 𝑤7 passes through the value 𝑤7
∗, where 

 
𝑤7
∗ = [𝑞1(𝑞2 + 𝑞3)𝑤3 + 𝑞1(1 + 𝑞2 + 𝑞3)𝑤3 − 𝑞3𝑤4]

+
1

𝑏11𝑏33
[𝑏13𝑏21𝑏32 − 𝑏11𝑏23𝑏32 − 𝑏12𝑏21𝑏33]

 .     

Proof. From the equation (24) with 𝑤7 = 𝑤7
∗ the JM becomes 

𝐽4
∗ = 𝐽(𝑝4, 𝑤7

∗) = (

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22

∗ 𝑏23
0 𝑏32 𝑏33

)

3×3

, 

where 𝑏𝑖𝑗; 𝑖,𝑗=1,2,3 are given in equation (24), with 𝑏22
∗ = 𝑏22(𝑤7

∗).       

As a result, it is simple to verify that the coefficient 𝐴3 = 0 in equation (25) at 𝑤7 = 𝑤7
∗. Therefore, 

the characteristic equation (25) becomes 

 (𝜆2 + 𝐴1
∗𝜆 + 𝐴2

∗ )𝜆 = 0, 

where 𝐴1
∗ = 𝐴1(𝑤7

∗) and 𝐴2
∗ = 𝐴2(𝑤7

∗) with 𝐴1 and 𝐴2 as given in equation (25). Clearly, 𝐴1
∗ > 0 

and 𝐴2
∗ > 0 under the conditions (26), (27), (29) and (43). Therefore, due to Routh-Hurwitz 

criterion, the quadratic term in the above-obtained characteristic equation has two eigenvalues 

with negative real parts, while the third one is zero eigenvalue. Thus PEP is a non-hyperbolic 

point at 𝑤7 = 𝑤7
∗. 

Let  𝐕4 = (𝑣41, 𝑣42, 𝑣43)
T and 𝐔4 = (𝑢41, 𝑢42, 𝑢43)

T be the eigenvectors corresponding to the zero 

eigenvalue of 𝐽4
∗ and 𝐽4

∗𝑇 respectively. Then direct computation gives that 𝐕4 = (𝜎3, 𝜎4, 1)
T and 



Int. J. Anal. Appl. (2024), 22:15 17 

 

𝐔4 = (𝜎5, 𝜎6, 1)
T, where 𝜎3 =

𝑏12𝑏23−𝑏13𝑏22
∗

𝑏11𝑏22
∗ −𝑏12𝑏21

, 𝜎4 = −
𝑏11𝑏23−𝑏13𝑏21

𝑏11𝑏22
∗ −𝑏12𝑏21

< 0, 𝜎5 =
𝑏21𝑏32

𝑏11𝑏22
∗ −𝑏12𝑏21

> 0, and 𝜎6 =

−
𝑏11𝑏32

𝑏11𝑏22
∗ −𝑏12𝑏21

> 0. 

Following Sotomayor’s theorem, gives that: 

 
𝜕

𝜕𝑤7
𝐅(𝐗,𝑤7) = (

0
−𝑥2
0
) ⇛ 𝐅𝑤7(𝑝4, 𝑤7

∗) = (
0
−𝑞2
0
).  

Therefore, it is obtained. 

 𝐔4
T𝐅𝑤7(𝑝4, 𝑤7

∗) = −𝑞2𝜎6 ≠ 0 

Now using equation (40) gives that  

𝐷2𝐅(𝑝4, 𝑤7
∗)(𝐕4, 𝐕4) = [𝑛𝑖1(𝑝4, 𝑤7

∗)],  

where 

𝑛11(𝑝4, 𝑤7
∗) =

1

[1 + 𝑤1(𝑞2 + 𝑞3)]
3
2{−𝜎3

2[1 + 𝑤1(𝑞2 + 𝑞3)]
2                                 

−(𝜎4 + 1)
2𝑞1[𝑤2 + 3𝑤1𝑤2(𝑞2 + 𝑞3) + 𝑤1

3𝑤2(𝑞2 + 𝑞3)
3

+𝑤1
2(−1 + 𝑞1 + 3𝑤2(𝑞2 + 𝑞3)

2)]

−𝜎3(𝜎4 + 1)[1 + 𝑤1(𝑞2 + 𝑞3)][𝑤2(1 + 2𝑞2 + 2𝑞3)

+𝑤1
2𝑤2(𝑞2 + 𝑞3)

2(1 + 2𝑞2 + 2𝑞3)

+𝑤1(1 − 2𝑞1 + 2𝑤2(𝑞2 + 𝑞3)(1 + 2𝑞2 + 2𝑞3))]}

 

 
𝑛21(𝑝4, 𝑤7

∗) = 2{𝜎4
2𝑤3𝑞1 − 𝜎4(𝑤4 − 2𝑤3𝑞1) + 𝜎3(𝜎4 + 1)𝑤3(1 + 2𝑞2 + 2𝑞3)

+(𝑤3𝑞1 −
𝑤5𝑤6

(𝑤6+𝑞3)
3)}

 

 𝑛31(𝑝4, 𝑤7
∗) = 2(𝜎4𝑤4 +

𝑤5𝑤6

(𝑤6+𝑞3)
3) 

Thus, due to condition (44), the following is obtained. 

 𝐔4
𝑇𝐷2𝐅(𝑝4, 𝑤7

∗)(𝐕4, 𝐕4) = 𝜎5𝑛11(𝑝4, 𝑤7
∗) + 𝜎6𝑛21(𝑝4, 𝑤7

∗) + 𝑛31(𝑝4, 𝑤7
∗) ≠ 0. 

Therefore, SNB takes place as the 𝑤7 = 𝑤7
∗.  

8. NUMERICAL SIMULATION 

The purpose of this section is to explore the diseased prey-predator interaction contained by 

the system (2) using numerical approaches. We are particularly interested in the consequences of 

prey fear, sickness, and predator-hunting cooperation. Unless otherwise specified, parameter 

values are fixed according to the biologically feasible set listed below. 

 𝑤1 = 0.2, 𝑤2 = 0.3, 𝑤3 = 0.25,𝑤4 = 0.2,𝑤5 = 0.1,𝑤6 = 2,𝑤7 = 0.1,𝑤8 = 0.1.                    (45) 

In this case, the system (2) approaches PEP asymptotically, as shown in Figure (1). 
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Fig. 1:  The solutions of system (2) approach to 𝑝4 = (0.19,0.71,0.35) using the data set (45) and 

starting from different initial values. (a) 3D phase portrait. (b) Time series. 

Figure (1) shows that system (2) has a distinct PEP that is asymptotically stable and dependent 

on the data collection (45). To investigate the effect of modifying the parameters on the dynamic 

of the system (2), the numerical solution is calculated using data set (45) by varying one parameter 

at a time, and the results are then displayed in the form of phase portraits and their time series.  

It is observed that as 𝑤1 ∈ [0,1.3) and 𝑤1 ≥ 1.3 the solution of system (2) approaches to PEP and 

DFEP respectively, see Figure (1) for the first case and Figure (2) for a selected value of 𝑤1 in the 

second case. Similar behavior is obtained as that of 𝑤1 when the parameters 𝑤5 and 𝑤8 varying. 

 

Fig. 2:  The solutions of system (2) approach to 𝑝3 = (0.22,0.73,0) using the data set (45) with 𝑤1 =

1.35 and starting from different initial values. (a) 3D phase portrait. (b) Time series. 

For the ranges 𝑤2 ∈ (0,0.06], 𝑤2 ∈ (0.06,0.51], and 𝑤2 > 0.51 the solution of system (2) goes 

asymptotically to 3D periodic dynamic, 𝑝4 see Figure (1), and 𝑝3 respectively. Figure (3) is drawn 

to explain the obtained results at selected values of 𝑤2. 
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Fig. 3:  The solutions of system (2) using the data set (45) go asymptotically to (a) 3D periodic 

attractor when 𝑤2 = 0.05. (b) Time series of the periodic case. (c) 𝑝3 = (0.22,0.73,0) when 𝑤2 =

0.6 starting from different initial points. (d) Time series when 𝑤2 = 0.6. 

On the other hand, it is obtained that system (2) approaches asymptotically to 𝑝2, bistable between 

𝑝2 and 𝑝3, 𝑝4, and 3D periodic attractor when 𝑤3 ∈ (0,0.06], 𝑤3 ∈ (0.06,0.1], 𝑤3 ∈ (0.1,0.66) see 

Figure (1), and 𝑤3 ≥ 0.66 respectively. Figure (4) shows the behavior of the system (3) at selected 

values of 𝑤3. 
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Fig. 4:  The solutions of system (2) using the data set (45) goes asymptotically to: (a) 𝑝2 = (1,0,0) 

when 𝑤3 = 0.05 starting from different initial points. (b) Time series when 𝑤3 = 0.05. (c) Bistable 

case between 𝑝2 abd 𝑝3 = (0.71,0.54,0) when 𝑤3 = 0.09. (d) Time series when 𝑤3 = 0.09. (e) 3D 

periodic attractor when 𝑤3 = 0.7. (f) Time series of the periodic case. 

Now, when 𝑤4 ∈ (0,0.14], and 𝑤4 > 0.14, it is observed that the solution of system (2) goes 

asymptotically to 𝑝3 and 𝑝4 respectively. The obtained results at selected values are shown in 

Figure (5). 
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Fig. 5: The solutions of system (2) using the data set (45) and starting from different initial values 

goes asymptotically to: (a) 𝑝3 = (0.19,1.07,0) when 𝑤4 = 0.1. (b) Time series when 𝑤4 = 0.1. (c) 

𝑝4 = (0.19,0.27,0.79) when 𝑤4 = 0.5. (b) Time series when 𝑤4 = 0.5. 

Similar behavior as that shown in case of varying 𝑤4 is obtained when 𝑤6 is varied with different 

bifurcating point. Finally, for the ranges 𝑤7 ∈ (0,0.24), 𝑤7 ∈ [0.24,0.29), and 𝑤7 ≥ 0.29 the 

solution of system (2) goes asymptotically to 𝑝4, 𝑝3, and 𝑝2 respectively as explain in Figure (6) as 

selected values of 𝑤7. 
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Fig. 6: The solutions of system (2) using the data set (45) and starting from different initial values 

goes asymptotically to: (a) 𝑝4 = (0.37,0.72,0.19) when 𝑤7 = 0.2. (b) Time series when 𝑤7 = 0.2. 

(c) 𝑝3 = (0.58,0.7,0) when 𝑤7 = 0.25. (b) Time series when 𝑤7 = 0.25. (e) 𝑝2 = (1,0,0) when 𝑤7 =

0.35. (b) Time series when 𝑤7 = 0.35. 

9. CONCLUSIONS 

This research involved the study of the impact of both fear and hunting cooperation on the  

eco-epidemiological system of the prey-predator. The mathematical model was first formulated 

and then the proposed model was studied theoretically using known mathematical methods and 

it was noted that the model contains at most four equilibrium points.  The proposed system's 

stability, uniform persistence, and local bifurcation analysis were performed, and all of the 

prerequisites required to acquire these concepts were determined. To confirm the analytical 

findings and understand the impact of parameters on the dynamic of the system (2), numerical 

simulation was used. Figure (2) shows that fear has an extinction effect on the infected predator. 

Concerning the recovery rate and infected predator mortality rate, similar results have been 

observed with fear levels. While, as shown in Figure (3), the hunting cooperation level first has a 

stabilizing influence on the system's (2) dynamic behavior and later, at a critical threshold, 

becomes an extinction factor for the infected predator. The conversion rate has a beneficial effect 

on the overall coexistence of the system since it is a stabilizing component at the positive 

equilibrium point at the start, but when it exceeds a certain point, it has an instability effect and 

the system switches to cyclic dynamics, see Figure (4).The infection rate (similarly, treatment rate 

depletion) has a stabilizing influence on the system dynamics at the PEP, see Figure (5). Finally, 

as shown in Figure (6), healthy predator death rate works as a extinction factor for the predator 

species. 
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