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Abstract. Identifying the risk factor is a key to success for the Failure model. This paper presents

a new FMEA (Failure Mode and Effect Analysis) in medical accident for the hospital management

by using vague rough matrix information captured through vague rough set. Using β-product and

β-complement product into fuzzy relation matrix and vague set to find the new lower and upper

approximation of vague rough set. This method will provide an easy methodology to find the weight

of risk factor. Using an example we validate our proposed approach.

1. Introduction

US aerospace industry introduced the concept of FMEA during 1960. The implementation of this

technique can be classified as a risk management strategy and used for mission successes. The primary

aim of this methodology is to identify and prioritizes eventual failures modes alongside the targeted

system and risk mitigation strategies. The FMEA process is conducted using the risk priority number
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(RPN). The outcome of the calculation is derived through the mathematical operation of multiplying

the respective magnitudes of occurrence (O), severity (S) and detection (D).

The application of a systematic and structured approach is evident in various industries, such as

manufacturing, engineering, health care, and other fields. This methodology is employed to ascertain

and allocate precedence to potential failure modes within a product, process, or system. The applica-

tion of FMEA allows teams to proactively detect and mitigate potential issues before they occur, there

by enhancing the reliability, safety, and overall performance of a product or process. The following is

a comprehensive exposition on the functioning of FMEA and its fundamental constituents.

The initial stage of the FMEA involves the identification of components, processes, or systems

that necessitate analysis. The entity in question may encompass a product, a manufacturing process,

a service, or any other intricate system. The implementation of FMEA commonly involves the for-

mation of a cross-functional team consisting of persons possessing diverse expertise and viewpoints.

This practise ensures that multiple facets of the product or the consideration of various processes is

undertaken. The methodology of identifying failure modes is conducted by the team, encompassing

all potential ways in which the component, process, or system may experience failure. This entails the

consideration of both prospective functional failures, i.e., potential malfunctions, and the potential

consequences of such failures, i.e., how they might affect the end-user or subsequent operations. The

severity ratings are assigned to each identified failure mode using a predetermined scale. The rating

provided quantifies the potential consequences of a failure on the end-user, the organization, or the

environment. In general, higher severity ratings are indicative of more significant repercussions. The

occurrence ratings are assigned by the team with the aim to evaluate and analyse probability or fre-

quency of each failure mode occurring. Occurrence ratings evaluate the frequency at which a failure is

anticipated to occur, often measured on a numerical scale ranging from 1 (indicating a low probability)

to 10 (indicating a high probability). Detection ratings are utilised to assess the probability of identi-

fying a failure mode prior to it reaching the end-user or resulting in any kind of harm. The presence of

low detection ratings implies that the failure in question possesses a level of intricacy that renders it

challenging to identify, whilst high ratings show that the failure is more readily discernible. The RPN

is determined for each failure mode through the multiplication of severity, occurrence, and detection

ratings, resulting in a numerical value. RPN offers a quantitative measure that aids in ascertaining the

hierarchy of precedence. for addressing various failure modes. Elevated RPN readings are indicative

of increased risk levels and necessitate a heightened focus on mitigation efforts. The team utilizes

the RPN values to establish a hierarchy of actions aimed at minimising or preventing failures. Greater

RPN levels are indicative of a heightened requirement for prompt attention. Teams have the option

to engage in the redesigning of processes, enhancing safety measures, or implementing other steps in

order to mitigate the risks associated with failure modes that are of high priority. The team proceeds

to adopt preventative and corrective measures in response to the identified activities, with the aim of
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mitigating the risk associated with failure modes. This may entail the reconfiguration of components,

modification of processes, augmentation of training protocols, or revision of quality control measures.

The periodic review of FMEA necessitates an ongoing and iterative approach, rather than a singu-

lar event. The document ought to undergo regular review and revision in light of emerging data or

modifications to the product or process. Periodic evaluations guarantee that potential hazards are

consistently assessed and resolved.

The FMEA is an indispensable technique utilized for the enhancement of quality, effective risk

management, and the assurance of reliability in products or processes. The implementation of proactive

measures enables organisations to effectively identify and proactively resolve possible issues, resulting

in improved levels of safety, quality, and customer satisfaction.

Pawlak introduced rough sets [11], and since then, numerous researchers have produced various

extensions of this concept. The notions of rough matrix theory were introduced by Vijayabalaji and

Balaji [16, 17, 18], who subsequently utilised the aforementioned ideas across numerous domains.

Vague Rough Sets can be seen as an expanded version of classical Rough Sets theory, specifically

developed to address the challenges posed by ambiguity and uncertainty in a more efficient manner.

Fuzzy logic is employed in the field of data processing, specifically in scenarios involving imprecise or

missing data. Vague Rough Sets aim to comprehensively collect and represent imprecise or uncertain

data in a more nuanced manner as compared to conventional Rough Sets.

The following are few fundamental components of Vague Rough Sets.

The notion of Vague Sets pertains to a mathematical framework that facilitates the depiction and

management of imprecise or uncertain data. Concealed within the context of traditional rough set

theory, information is classified into crisp sets, where objects are assigned to a particular set based on

whether they are considered to belong or not belong to it. In contrast, Vague Sets enable the depiction

of progressive or hazy membership. This approach proves to be particularly advantageous when

confronted with data that possesses intrinsic uncertainty or imprecision. The concept of granularity

in Vague Rough Sets encompasses the consideration of several levels of information granularity. In

the larger context of traditional rough sets, the classification of information is often divided into lower

and upper approximations. However, Vague Rough Sets introduce the concept of allowing for multiple

degrees of granularity that exist between these approximations. The ability to adapt and be versatile is

crucial when confronted with data that lacks clarity or precision. Degrees of membership are assigned

to objects in Vague Rough Sets with the objective to offer a more comprehensive depiction of the

relationship between objects and sets. Instead of employing a binary framework of membership, when

objects are either deemed to belong or not belong to sets, it is possible to consider a scenario where

objects exhibit partial belonging to sets. Vague Rough Sets offer enhanced procedures for effectively

managing incomplete or missing information. The significance of this aspect becomes particularly

obvious in practical scenarios when data may exhibit incompleteness or uncertainty. The integration
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of fuzzy logic is commonly observed in Vague Rough Sets, where concepts like fuzzy membership

functions are employed to effectively represent and measure the inherent uncertainty or vagueness

present in data. Vague Rough Sets have been applied in diverse domains, including in the field of

medical diagnosis, it is common for patient symptoms and test findings to exhibit a degree of vagueness

and uncertainty. Vague rough sets have the potential to contribute to the modelling and analysis of

such data, hence facilitating accurate diagnosis. In the field of natural language processing, which deals

with the inherent vagueness and ambiguity of language, the utilisation of Vague Rough Sets might

be beneficial in managing linguistic uncertainty present in textual data. Environmental monitoring is

a field that frequently encounters ambiguity and imprecision in the data collected. Vague rough sets

have the capability to analyse data and facilitate decision-making processes. In the realm of business,

the accuracy and comprehensiveness of client data can sometimes be ambiguous or inaccurate. The

application of Vague Rough Sets in the context of customer relationship management enables the

generation of informed judgements.

In the field of image and pattern recognition, Vague Rough Sets can be employed for feature analysis

when dealing with objects that may only partially conform to a given pattern or demonstrate a certain

level of resemblance. Vague Rough Sets broaden the scope of Rough Sets theory by accommodating

situations characterised by intrinsic vagueness, uncertainty, or ambiguity in the data. This extension

offers a more sophisticated framework for analysing data and making decisions in complex scenarios.

The FMEA methodology has been extensively utilised across many sectors, including aerospace,

nuclear, automotive, and health industries. Numerous writers have made significant contributions

to the advancement of FMEA. In their study, Geum et al. [6] presented a structured approach for

identifying and evaluating probable failures. This approach involved the use of service-specific FMEA

along with the grey relational analysis (GRA) tool. Through the use of the intuitionistic fuzzy hybrid

weighted Euclidean distance method, Liu et al. [8] originated a risk evaluation and prioritisation

method to analyse modes of failure in FMEA. Additionally, Liu et al.[9] incorporated the Interval

2-Tuple Hybrid Weighted Distance and Interval 2-Tuple Linguistic Variables with GRA [10] in their

analysis. Chang et al. [2] employed a fuzzy technique and grey theory in order to identify the RPNs.

Safari et al. [13] proposed an expansion of the VIKOR method known as the Fuzzy VIKOR-based

FMEA model. Emovon et al. [4] effectively examined the failure modes related to marine equipment

systems in their research. The methodology commonly referred to as the fuzzy technique for order

preference by similarity to ideal solution (TOPSIS) for failure mode and effects analysis (FMEA) was

initially introduced by Braglia et al. [1]. The risk assessment problem in Failure Mode and Effects

Analysis (FMEA) was addressed by Chang et al.[3] through the development by TOPSIS approach. In

their study, Wang et al. [19, 20] developed an enhanced Failure Mode, Effects, and Criticality Analysis

(FMECA) feed system for a Computer Numerical Control (CNC) machine. In their study, Liu et al.[7]

introduced a unique FMEA model. This methodology incorporates the use of fuzzy digraph and matrix
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techniques to assess and prioritise the risks associated with different failure modes. Wang et al. [21]

pioneered the soft set-based FMEA technique. Song et al. [15] proposed an FMEA model based on

rough set theory.

In this research, we put forward a novel hybrid FMEA model known as the vague rough set approach

for analysing failure factors in hospital settings, as indicated by the aforementioned analysis. Based on

the vague set and fuzzy equivalence matrix, first we construct the vague rough lower approximation

and upper approximation values for each failure factors of each expert. Nextwe calculate the roughness

measure for each failure factor. Finally we rank the failure factor and give the conclusion.

The present paper is organised in the following manner. In section 2, a fundamental definition

pertaining to our methodology is provided. In the third section, we present the construction of our

proposed FMEA model and algorithms. An illustrative instance is furnished within section 4, serving as

a manifestation of our proposed methodology. The culmination of the research findings is expounded

upon in Section 5.

2. Preliminaries

Definition 2.1. [22]: A fuzzy set A is defined by A = {(x, µA(x)) : x ∈ A, µA(x) ∈ [0, 1]}. In the

pair (x, µA(x)), the first element x belong to the classical set A, the second element µA(x), belong

to the interval [0, 1], called membership function.

Definition 2.2. [5]: Let U = {x1, x2, . . . , xn} be the universe of discourse, xi denotes a generic

element of U. A vague set A in the universe of discourse U is characterized by a truth-membership

function tA and false-membership function fA given by tA : U → [0, 1] and fA : U → [0, 1], where tA(xi)

is a lower bound on the grade of membership of xi derived from “the evidence for xi ”, fA(xi) is a lower

bound on the negation of xi derived from “the evidence against xi ”, and tA(xi) + fA(xi) ≤ 1. Thus the

grade of membership of xi in the vague set A is bounded to a subinterval [tA(xi), 1− fA(xi)] of [0, 1].

This indicates that if the actual grade of membership is µA(xi), then tA(xi) ≤ µA(xi) ≤ 1− fA(xi).

In general, the vague set A is written as A = {< x, tA(x), fA(x) >: x ∈ U}, where the interval

[tA(xi), 1− fA(xi)] is called the vague value of x in A.

Definition 2.3. [12]: Using the indiscernibility relation the two operations are defined as

B∗(X) = {x ∈ U : B(x) ⊆ X} and B∗(X) = {x ∈ U : B(x) ∩ X 6= φ} assigning to every subset

X ⊆ U two sets B∗(X) and B∗(X), called the B-lower and B-upper approximation of X respectively.

More over the sets, PosB(X) = B∗(X), NegB(X) = U − B∗(X), BndB(X) = B∗(X) − B∗(X)

are referred as the B-positive, B-negative and B-boundary region of X respectively. If the boundary

region of X is empty then X is crisp with respect to B , otherwise the set is rough.
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Definition 2.4. [14]: For the finite universes U = {x1, x2, . . . , xn} and V = {y1, y2, . . . , ym} the
fuzzy relation R ∈ (U, V ) may be expressed by the fuzzy matrix, i.e., if the element ri j = R(ui , vj),

then the matrix R = (ri j)n×m represents a fuzzy relation on U × V .

Definition 2.5. [14]: Suppose β : [0, 1]× [0, 1]→ [0, 1], for all a, b ∈ [0, 1], we have

aβb =

{
b
a if a > b

1 if a ≤ b

the mapping β is called the β-operator and

aβ∗b =

{
1− b

a if a > b

0 if a ≤ b

The mapping β∗ : [0, 1]× [0, 1]→ [0, 1] is called β-complement operator.

Definition 2.6. [14]: Let A = (ai j)m×n and B = (bi j)n×s be two fuzzy matrices,

the β-product of the matrices A and B is defined as AβB = C = (ci j)m×s , where

ci j = Λnk=1((aik
∨
bkj)βbkj), i = 1, 2, . . . , n ; j = 1, 2, . . . , s.

Definition 2.7. [14]: Let A = (ai j)m×n and B = (bi j)n×s be two fuzzy matrices, the β-complement

product of the matrices A and B is defined as Aβ∗B = D = (di j)m×s , where di j =
∨n
k=1((aikβ

∗(1−
bkj)), i = 1, 2, . . . , n ; j = 1, 2, . . . , s.

Example 2.8. [14]: Let A =


0.3 0.5

0.2 0.7

0.5 0.4

 and B =

[
0.5 0.6 0.4

0.1 0.7 0.2

]
then

AβB =



1
5 1 2

5

1
7 1 2

7

1
4 1 1

2


and Aβ∗B =



0 2
5 0

0 4
7 0

0 1
4 0


.

Definition 2.9. [14]: Let A = {(x, tA(x), fA(x)) : x ∈ U} be a vague set of the universe set U and

R be a fuzzy equivalence relation on U. The lower approximation A and the upper approximation A

of A in the fuzzy approximation space (U,R) are defined as

A = {(x, (x, tA(x), fA(x)) : x ∈ U)} and A = {(x, (x, tA(x), fA(x)) : x ∈ U)}, where ∀ x ∈ U.
tA(x) =

∧
x∈U((R(x, y)

∨
tA(y))βtA(y)) and fA(x) =

∨
x∈U(R(x, y)β∗(1− fA(y))),

tA(x) =
∨
x∈U(R(x, y)β∗(1− tA(y))) and fA(x) =

∧
x∈U((R(x, y)

∨
fA(y))βfA(y)).

Generally, the pair (A,A) can be called vague rough sets in the fuzzy approximation space.
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Definition 2.10. [14]: A roughness measure ραβA of the vague set A of U with respect to the

parameters α, β in the fuzzy approximation space (U,R), is defined as

ραβA = 1−
|Aαβ|
|Aαβ|

. Especially, ραβA = 0 when |Aαβ| = 0.

3. The Suggestive FMEA Paradigm

This section presents a novel risk prioritisation model for FMEA that makes use of vague set

theory and rough set called fuzzy rough approximation model. Figure.1 depicts the flowchart of the

proposed FMEA algorithm. Consider a multidisciplinary FMEA group, including l team members

TMk (k = 1, 2, . . . , l) has to asses m failure modes FMi (i = 1, 2, . . . , m) based on n risk factors

RFj (j = 1, 2, . . . , n). The specific stages of the proposed FMEA methodology are outlined.

Step 1. The primary aims of risk assessment encompass the identification and evaluation of prospec-

tive risks, as well as the determination of their likelihood and potential impact. Furthermore, the

development of strategies to effectively reduce or manage these risks is a crucial component of the

risk assessment process.

Step 2. To initiate the establishment of a FMEA team, it is important to compile a comprehensive

list of likely failure modes.

Step 3. To ascertain the fuzzy relation matrix for each failure scenario, it is necessary to perform

an analysis.

Step 4. Construct expert opinions in the form of vague set for each failure modes.

Step 5. Construct fuzzy rough set (lower and upper approximations in the form of vague values)

on each failure modes.
FMEA Team

⇓
Determine the potential failure factors of S ,O & D

⇓
Assess failure factors using fuzzy equivalence relation matrix

⇓
Construct vague sets of each expert

⇓
Separate out the true-membership and false-membership functions

⇓
Determine lower and upper approximations of the rough vague sets

⇓
Calculate the roughness measure of each failure factors

⇓
Rank the risk of failure mode

⇓

Figure 1. Conceptualized FMEA framework flowchart

Step 6. Tabulate experts’ opinions values of O, S & D in the form of vague rough set.

Step 7. Find the roughness measure on each failure modes.

Step 8. Rank the roughness measures.

Step 9. Conclusion.
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4. An Example

The application of FMEA might prove to be a valuable asset within the healthcare sector, specifically

when considering patient safety and the mitigation of medical mishaps. The FMEA methodology is

employed in a systematic manner to identify and assign priority to potential failure modes present in

healthcare processes and systems. This approach aims to comprehensively understand the causes and

implications of various failure patterns, afterwards adopt preventative measures to mitigate the risk of

medical errors and accidents. This paper discusses the application of FMEA as a preventive measure

for medical incidents.

The integration of FMEA into the organizational culture of healthcare institutions is vital in order

to uphold their dedication to ensuring patient safety. Through a methodical process of identifying

and mitigating potential failure modes, healthcare providers have the ability to decrease the likelihood

of medical mishaps, enhance patient outcomes, and elevate the overall quality of care.

Medical risk management uses the recommended FMEA paradigm.

Step 1. The first step involves mitigating medical errors and non-iatrogenic disorders in order to

prevent medical accidents. The risk study was conducted by medical professionals, including doctors,

anesthetists a, and nurses. A team consisting of two decision makers, referred to as DM1 and DM2,

has been established inside the hospital to conduct examination of discovered failure modes. The

FMEA team has collected relevant information through interviews, discussions, and the review of

public materials.

Step 2. The research team has successfully identified the six primary potential failure modes for

the ongoing examination. The failure modes that have been chosen for analysis include arterial gas

embolism (FM1), esophageal intubation (FM2), respiratory depression (FM3), inadequate surgical

planning (FM4), incorrect blood transfusion (FM5), and visceral injury (FM6).

Step 3. The third stage of the proposed framework involves the identification of risk factors,

represented as O, S, and D, using fuzzy relation matrices.

For the fuzzy relation matrix of O is

O =



1 0.8 0.8 0.2 0.8 0.2

0.8 1 0.85 0.2 0.85 0.2

0.8 0.85 1 0.2 0.9 0.2

0.2 0.2 0.2 1 0.2 0.2

0.8 0.85 0.9 0.2 1 0.9

0.2 0.2 0.2 0.2 0.9 1
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For the fuzzy relation matrix of S is

S =



1 0.6 0.75 0.9 0.8 0.4

0.6 1 0.6 0.8 0.5 0.3

0.75 0.6 1 0.75 0.4 0.5

0.9 0.8 0.75 1 0.6 0.25

0.8 0.5 0.4 0.6 1 0.2

0 0.3 0.5 0.25 0.2 1



For the fuzzy relation matrix of D is

D =



1 0.8 0.7 0.9 0.6 0.85

0.8 1 0.95 0.75 0.8 0.65

0.7 0.95 1 0.6 0.75 0.9

0.9 0.75 0.6 1 0.4 0.7

0.6 0.8 0.75 0.4 1 0.6

0.85 0.65 0.9 0.7 0.6 1


Step 4. The experts opinion of vague values for O are

OE1 =
{
[0.2,0.5]
FM1 ,

[0.7,0.8]
FM2 ,

[0.4,0.6]
FM3 ,

[0.1,0.4]
FM4 ,

[0.6,0.9]
FM5 ,

[0.2,0.4]
FM6

}
OE2 =

{
[0.4,0.6]
FM1 ,

[0.3,0.7]
FM2 ,

[0.3,0.6]
FM3 ,

[0.2,0.5]
FM4 ,

[0.4,0.8]
FM5 ,

[0.2,0.5]
FM6

}
The experts opinion of vague values for S are

SE1 =
{
[0.3,0.6]
FM1 ,

[0.2,0.4]
FM2 ,

[0.4,0.6]
FM3 ,

[0.2,0.6]
FM4 ,

[0.3,0.7]
FM5 ,

[0.4,0.8]
FM6

}
SE2 =

{
[0.2,0.8]
FM1 ,

[0.3,0.9]
FM2 ,

[0.4,0.6]
FM3 ,

[0.1,0.5]
FM4 ,

[0.4,0.8]
FM5 ,

[0.2,0.7]
FM6

}
The experts opinion of vague values for D are

DE1 =
{
[0.3,0.6]
FM1 ,

[0.2,0.5]
FM2 ,

[0.3,0.7]
FM3 ,

[0.4,0.8]
FM4 ,

[0.2,0.6]
FM5 ,

[0.3,0.6]
FM6

}
DE2 =

{
[0.4,0.6]
FM1 ,

[0.5,0.8]
FM2 ,

[0.2,0.5]
FM3 ,

[0.3,0.6]
FM4 ,

[0.2,0.6]
FM5 ,

[0.1,0.4]
FM6

}
Step 5. First separate out the true membership values and false membership values. For

′O′tOE1 = {0.2, 0.7, 0.4, 0.1, 0.6, 0.2}, fOE1 = {0.5, 0.2, 0.4, 0.6, 0.1, 0.6}

tOE2 = {0.4, 0.3, 0.3, 0.2, 0.4, 0.2}, fOE2 = {0.4, 0.3, 0.4, 0.5, 0.2, 0.5}
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Find the vague rough lower and upper approximations of ′O′ (using Definition.2.5 and Definition.

2.6.)

tOE1 = Oβ(tOE1)
T =



1 0.8 0.8 0.2 0.8 0.2

0.8 1 0.85 0.2 0.85 0.2

0.8 0.85 1 0.2 0.9 0.2

0.2 0.2 0.2 1 0.2 0.2

0.8 0.85 0.9 0.2 1 0.9

0.2 0.2 0.2 0.2 0.9 1


β



0.2

0.7

0.4

0.1

0.6

0.2



tOE1 = [0.2, 0.25, 0.25, 0.1, 0.22, 0.2]T

tOE1 = Oβ∗(tOE1)
T =



1 0.8 0.8 0.2 0.8 0.2

0.8 1 0.85 0.2 0.85 0.2

0.8 0.85 1 0.2 0.9 0.2

0.2 0.2 0.2 1 0.2 0.2

0.8 0.85 0.9 0.2 1 0.9

0.2 0.2 0.2 0.2 0.9 1


β∗



0.2

0.7

0.4

0.1

0.6

0.2



tOE1 = [0.625, 0.7, 0.647, 0.1, 0.647, 0.55]T

fOE1 = Oβ∗(fOE1)
T =



1 0.8 0.8 0.2 0.8 0.2

0.8 1 0.85 0.2 0.85 0.2

0.8 0.85 1 0.2 0.9 0.2

0.2 0.2 0.2 1 0.2 0.2

0.8 0.85 0.9 0.2 1 0.9

0.2 0.2 0.2 0.2 0.9 1


β∗



0.5

0.2

0.4

0.6

0.1

0.6



fOE1 = [0.5, 0.375, 0.4, 0.6, 0.556, 0.6]T

fOE1 = Oβ(fOE1)
T =



1 0.8 0.8 0.2 0.8 0.2

0.8 1 0.85 0.2 0.85 0.2

0.8 0.85 1 0.2 0.9 0.2

0.2 0.2 0.2 1 0.2 0.2

0.8 0.85 0.9 0.2 1 0.9

0.2 0.2 0.2 0.2 0.9 1


β



0.5

0.2

0.4

0.6

0.1

0.6



fOE1 = [0.125, 0.118, 0.111, 0.5, 0.235, 0.111]T
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We have vague rough lower approximation and upper approximations. There are

OE1 =
{
[0.2,0.5]
FM1 ,

[0.25,0.625]
FM2 ,

[0.25,0.6]
FM3 ,

[0.1,0.4]
FM4 ,

[0.22,0.44]
FM5 ,

[0.2,0.4]
FM6

}
OE1 =

{
[0.625,0.875]

FM1 ,
[0.7,0.882]
FM2 ,

[0.647,0.889]
FM3 ,

[0.1,0.5]
FM4 ,

[0.647,0.9]
FM5 ,

[0.55,0.889]
FM6

}
Similarly we get, OE2 =

{
[0.375,0.6]
FM1

[0.3,0.765]
FM2 ,

[0.3,0.6]
FM3 ,

[0.2,0.5]
FM4 ,

[0.22,0.56]
FM5 ,

[0.2,0.5]
FM6

}
OE2 =

{
[0.4,0.75]
FM1 ,

[0.3,0.765]
FM2 ,

[0.33,0.78]
FM3 ,

[0.2,0.5]
FM4 ,

[0.4,0.8]
FM5 ,

[0.33,0.78]
FM6

}
SE1 =

{
[0.111,0.556]

FM1 ,
[0.125,0.625]

FM2 ,
[0.133,0.6]
FM3 ,

[0.1,0.5]
FM4 ,

[0.167,0.8]
FM5 ,

[0.2,0.7]
FM6

}
SE1 =

{
[0.25,0.833]

FM1 ,
[0.3,0.9]
FM2 ,

[0.4,0.833
FM3 ,

[0.2,0.875]
FM4 ,

[0.4,0.8]
FM5 ,

[0.2,0.7]
FM6

}
SE2 =

{
[0.22,0.6]
FM1 ,

[0.2,0.4]
FM2 ,

[0.267,0.6]
FM3 ,

[0.2,0.5]
FM4 ,

[0.3,0.7]
FM5 ,

[0.4,0.8]
FM6

}
SE2 =

{
[0.3,0.625]
FM1 ,

[0.2,0.5]
FM2 ,

[0.4,0.6]
FM3 ,

[0.22,0.6]
FM4 ,

[0.3,0.7]
FM5 ,

[0.4,0.8]
FM6

}
DE1 =

{
[0.25,0.6]
FM1 ,

[0.2,0.5]
FM2 ,

[0.211,0.526]
FM3 ,

[0.267,0.667]
FM4 ,

[0.2,0.4]
FM5 ,

[0.3,0.4]
FM6

}
DE1 =

{
[0.3,0.778]
FM1 ,

[0.263,0.733]
FM2 ,

[0.3,0.7]
FM3 ,

[0.4,0.8]
FM4 ,

[0.2,0.6]
FM5 ,

[0.3,0.714]
FM6

}
DE2 =

{
[0.118,0.471]

FM1 ,
[0.514,0.526]

FM2 ,
[0.111,0.444]

FM3 ,
[0.143,0.571]

FM4 ,
[0.167,0.6]
FM5 ,

[0.1,0.4]
FM6

}
DE2 =

{
[0.4,0.75]
FM1 ,

[0.5,0.8]
FM2 ,

[0.474,0.789]
FM3 ,

[0.333,0.73]
FM4 ,

[0.375,0.75]
FM5 ,

[0.294,0.692]
FM6

}
Step 6. The expert’s opinions of O,S & D are listed in the following tables.

Step 7. Find the roughness measure.

If α = 0.2, β = 0.4 (Using Definition. 2.9.)

FM1 = { [0.25, 0.6], [0.375, 0.6], [0.22, 0.6] }

FM1 = { [0.625, 0.875], [0.25, 0.833], [0.3, 0.778], [0.4, 0.75], [0.3, 0.625], [0.4, 0.75] }
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Table 1. Vague rough lower and upper approximation for Expert-1 (Opinion of O, S & D

- O S D

FAILURE LA UA LA UA LA UA

MODE

FM1 [0.2,0.5] [0.625,0.875] [0.111,0.556] [0.25,0.833] [0.25,0.6] [0.3,0.778]

FM2 [0.25,0.625] [0.7,0.882] [0.125,0.625] [0.3,0.9] [0.2,0.5] [0.263,0.733]

FM3 [0.25,0.6] [0.647,0.889] [0.133,0.6] [0.4,0.833] [0.211,0.526] [0.3,0.7]

FM4 [0.1,0.4] [0.1,0.5] [0.1,0.5] [0.2,0.875] [0.267,0.667] [0.4,0.8]

FM5 [0.22,0.44] [0.647,0.9] [0.167,0.8] [0.4,0.8] [0.2,0.4] [0.2,0.6]

FM6 [0.2,0.4] [0.55,0.889] [0.2,0.7] [0.2,0.7] [0.3,0.4] [0.3,0.714]

Table 2. Vague rough lower and upper approximation for Expert-2 (Opinion of O, S & D

- O S D

FAILURE LA UA LA UA LA UA

MODE

FM1 [0.375,0.6] [0.4,0.75] [0.22,0.6] [0.3,0.625] [0.118,0.471] [0.4,0.75]

FM2 [0.3,0.765] [0.3,0.765] [0.2,0.4] [0.2,0.5] [0.154,0.526] [0.5,0.8]

FM3 [0.3,0.6] [0.33,0.78] [0.267,0.6] [0.4,0.6] [0.111,0.444] [0.474,0.789]

FM4 [0.2,0.5] [0.2,0.5] [0.2,0.5] [0.22,0.6] [0.143,0.571] [0.333,0.73]

FM5 [0.22,0.56] [0.4,0.8] [0.3,0.7] [0.3,0.7] [0.167,0.6] [0.375,0.75]

FM6 [0.2,0.5] [0.33,0.78] [0.4,0.8] [0.4,0.8] [0.1,0.4] [0.294,0.692]

Roughness measure of the failure mode FM1 = 1˘
|FM1|
|FM1|

= 1−
3

6
= 0.5

FM2 = { [0.25, 0.625], [0.3, 0.765] }

FM2 = { [0.7, 0.882], [0.3, 0.9], [0.263, 0.733], [0.3, 0.765], [0.2, 0.5], [0.5, 0.8] }

Roughness measure of the failure mode FM2 = 1˘
|FM2|
|FM2|

= 1−
2

6
= 0.667

FM3 = { [0.25, 0.6], [0.211, 0.526], [0.3, 0.6], [0.267, 0.6] }

FM3 = { [0.647, 0.889], [0.4, 0.833], [0.3, 0.7], [0.33, 0.78], [0.4, 0.6], [0.474, 0.789] }

Roughness measure of the failure mode FM3 = 1˘
|FM3|
|FM3|

= 1−
4

6
= 0.333
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FM4 = { [0.267, 0.667] }

FM4 = { [0.2, 0.875], [0.4, 0.8], [0.2, 0.5], [0.22, 0.6], [0.333, 0.73] }

Roughness measure of the failure mode FM4 = 1˘
|FM4|
|FM4|

= 1−
1

5
= 0.8

FM5 = { [0.22, 0.44], [0.22, 0.56], [0.3, 0.7] }

FM5 = { [0.647, 0.9], [0.4, 0.8], [0.2, 0.6], [0.4, 0.8], [0.3, 0.7], [0.375, 0.75] }

Roughness measure of the failure mode FM5 = 1˘
|FM5|
|FM5|

= 1−
3

6
= 0.5

FM6 = { [0.3, 0.4], [0.4, 0.8] }

FM6 = { [0.55, 0.889], [0.2, 0.7], 0.3, 0.714], [0.33, 0.78], [0.4, 0.8], [0.294, 0.692] }

Roughness measure of the failure mode FM6 = 1˘
|FM6|
|FM6|

= 1−
2

6
= 0.667

Step 8. The hospital has identified the highest priority risk, which will be subsequently addressed.

FM4 > FM6 ≥ FM2 > FM5 ≥ FM1 > FM3.

Step 9. FM3 have the minimum value, so give first priority for respiratory depression.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.

References

[1] M. Braglia, M. Frosolini, R. Montanari, Fuzzy Topsis Approach for Failure Mode, Effects and Criticality Analysis,

Qual. Reliab. Eng. Int. 19 (2003), 425–443. https://doi.org/10.1002/qre.528.

[2] C. Chang, C. Wei, Y. Lee, Failure Mode and Effects Analysis Using Fuzzy Method and Grey Theory, Kybernetes.

28 (1999), 1072–1080. https://doi.org/10.1108/03684929910300295.

[3] K.H. Chang, A Novel General Risk Assessment Method Using the Soft TOPSIS Approach, J. Ind. Product. Eng.

32 (2015), 408–421. https://doi.org/10.1080/21681015.2015.1070375.

[4] I. Emovon, R.A. Norman, A. Murphy J., K. Pazouki, An Integrated Multicriteria Decision Making Methodology

Using Compromise Solution Methods for Prioritising Risk of Marine Machinery Systems, Ocean Eng. 105 (2015),

92–103. https://doi.org/10.1016/j.oceaneng.2015.06.005.

[5] W.L. Gau, D.J. Buehrer, Vague Sets, IEEE Trans. Syst., Man, Cybern. 23 (1993), 610–614. https://doi.org/

10.1109/21.229476.

https://doi.org/10.1002/qre.528
https://doi.org/10.1108/03684929910300295
https://doi.org/10.1080/21681015.2015.1070375
https://doi.org/10.1016/j.oceaneng.2015.06.005
https://doi.org/10.1109/21.229476
https://doi.org/10.1109/21.229476


14 Int. J. Anal. Appl. (2023), 21:134

[6] Y. Geum, Y. Cho, Y. Park, A Systematic Approach for Diagnosing Service Failure: Service-Specific FMEA and

Grey Relational Analysis Approach, Math. Comput. Model. 54 (2011), 3126–3142. https://doi.org/10.1016/j.

mcm.2011.07.042.

[7] H.C. Liu, Y.Z. Chen, J.X. You, H. Li, Risk Evaluation in Failure Mode and Effects Analysis Using Fuzzy Digraph

and Matrix Approach, J. Intell. Manuf. 27 (2014), 805–816. https://doi.org/10.1007/s10845-014-0915-6.

[8] H.C. Liu, L. Liu, P. Li, Failure Mode and Effects Analysis Using Intuitionistic Fuzzy Hybrid Weighted Euclidean

Distance Operator, Int. J. Syst. Sci. 45 (2013), 2012–2030. https://doi.org/10.1080/00207721.2012.760669.

[9] H.C. Liu, J.X. You, X.Y. You, Evaluating the Risk of Healthcare Failure Modes Using Interval 2-Tuple Hybrid

Weighted Distance Measure, Comput. Ind. Eng. 78 (2014), 249–258. https://doi.org/10.1016/j.cie.2014.

07.018.

[10] H.C. Liu, P. Li, J.X. You, Y.Z. Chen, A Novel Approach for FMEA: Combination of Interval 2-Tuple Linguistic

Variables and Gray Relational Analysis, Qual. Reliab. Eng. Int. 31 (2014), 761–772. https://doi.org/10.1002/

qre.1633.

[11] Z. Pawlak, Rough Sets, Int. J. Comput. Inf. Sci. 11 (1982), 341–356. https://doi.org/10.1007/bf01001956.

[12] Z. Pawlak, Rough Sets and Fuzzy Sets, Fuzzy Sets Syst. 17 (1985), 99–102. https://doi.org/10.1016/

s0165-0114(85)80029-4.

[13] H. Safari, Z. Faraji, S. Majidian, Identifying and Evaluating Enterprise Architecture Risks Using FMEA and Fuzzy

VIKOR, J. Intell. Manuf. 27 (2014), 475–486. https://doi.org/10.1007/s10845-014-0880-0.

[14] Y. Shen, F. Wang, Rough Approximations of Vague Sets in Fuzzy Approximation Space, Int. J. Approx. Reason.

52 (2011), 281–296. https://doi.org/10.1016/j.ijar.2010.08.013.

[15] W. Song, X. Ming, Z. Wu, B. Zhu, A Rough TOPSIS Approach for Failure Mode and Effects Analysis in Uncertain

Environments, Qual. Reliab. Engng. Int. 30 (2013), 473–486. https://doi.org/10.1002/qre.1500.

[16] S. Vijayabalaji, P. Balaji, Rough Matrix Theory and Its Decision Making, Int. J. Pure Appl. Math. 87 (2013),

845–853. https://doi.org/10.12732/ijpam.v87i6.13.

[17] S. Vijayabalaji, P. Balaji, Construction of QRM using Dense Factor in Quadtree, Asian J. Res. Soc. Sci. Human. 6

(2016), 2573–2581. https://doi.org/10.5958/2249-7315.2016.00764.4.

[18] S. Vijayabalaji, P. Balaji, Best’11 Strategy in Cricket Using MCDM, Rough Matrix and Assignment Model, J. Intell.

Fuzzy Syst. 39 (2020), 7431–7447. https://doi.org/10.3233/jifs-200784.

[19] J. Wang, S.Y. Liu, J. Zhang, Roughness of a Vague Set, Int. J. Comput. Cognition. 3 (2005), 83–87.

[20] X. Wang, Y. Zhang, G. Shen, An Improved FMECA for Feed System of CNC Machining Center Based on

ICR and DEMATEL Method, Int. J. Adv. Manuf. Technol. 83 (2015), 43–54. https://doi.org/10.1007/

s00170-015-7551-y.

[21] Z.L. Wang, J.X. You, H.C. Liu, S.M. Wu, Failure Mode and Effect Analysis Using Soft Set Theory and COPRAS

Method, Int. J. Comput. Intell. Syst. 10 (2017), 1002. https://doi.org/10.2991/ijcis.2017.10.1.67.

[22] L.A. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.

https://doi.org/10.1016/j.mcm.2011.07.042
https://doi.org/10.1016/j.mcm.2011.07.042
https://doi.org/10.1007/s10845-014-0915-6
https://doi.org/10.1080/00207721.2012.760669
https://doi.org/10.1016/j.cie.2014.07.018
https://doi.org/10.1016/j.cie.2014.07.018
https://doi.org/10.1002/qre.1633
https://doi.org/10.1002/qre.1633
https://doi.org/10.1007/bf01001956
https://doi.org/10.1016/s0165-0114(85)80029-4
https://doi.org/10.1016/s0165-0114(85)80029-4
https://doi.org/10.1007/s10845-014-0880-0
https://doi.org/10.1016/j.ijar.2010.08.013
https://doi.org/10.1002/qre.1500
https://doi.org/10.12732/ijpam.v87i6.13
https://doi.org/10.5958/2249-7315.2016.00764.4
https://doi.org/10.3233/jifs-200784
https://doi.org/10.1007/s00170-015-7551-y
https://doi.org/10.1007/s00170-015-7551-y
https://doi.org/10.2991/ijcis.2017.10.1.67
https://doi.org/10.1016/s0019-9958(65)90241-x

	1. Introduction
	2. Preliminaries
	3. The Suggestive FMEA Paradigm
	4. An Example
	References

