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Abstract. The Shortest Path Problem is a core problem in network optimization, with applications in

various scientific and engineering fields, such as communication, transportation, routing, scheduling,

and computer networks. Many studies and algorithms have been proposed to solve the traditional

shortest path problem, but they often fail to provide optimal solutions when dealing with the uncer-

tainties and vagueness that exist in real-world situations. This study aims to address the Bi-objective

Shortest Path Problem using intuitionistic fuzzy arc numbers. The main goal is to find the path that

minimizes both cost and time between a given source node and destination node. To handle the

complexities introduced by trapezoidal intuitionistic fuzzy numbers, an accuracy function is used. The

study suggests a simple yet effective method to solve this problem and shows its efficiency through a

numerical example. The research tries to offer innovative solutions for optimizing paths in scenarios

where cost and time factors are important, navigating the complex landscape of uncertainty inherent

in practical applications.

1. Introduction

The Shortest Path Problem represents a highly captivating research area spanning fields like engi-

neering, robotics, networking, and transportation. Its core objective is to pinpoint the most efficient

route from a source node to a destination node within a network, taking into account factors such

as cost, time, safety, distance, and more. However, real-life scenarios often introduce measurement
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inaccuracies due to natural circumstances. To address this inherent uncertainty, researchers turn to

fuzzy set theory, a powerful tool adept at managing the vagueness that arises.

In 1965, Lofti A. Zadeh proposed the groundbreaking Fuzzy Set (FS) theory in his seminal work [3],

igniting the exploration of various properties within fuzzy set theory. Extending the generalization of

fuzzy sets, Atanassov introduced the Intuitionistic Fuzzy Set (IFS) [4], characterized by its membership

and non-membership functions. Notably, the degree of the non-membership function complements

the membership function, enhancing its expressiveness.

While many researchers delve into the Fuzzy Shortest Path Problem, its introduction by Dubois [7]

laid the foundation for subsequent investigations. Okada’s work [6] analyzes labeling algorithms for

fuzzy multi-criteria shortest paths. Kelin presented an algorithm [8] aiming to find the optimal path

length and minimum arc weights, followed by Okada et al. [10] discussing the optimization of paths

considering degrees of possibility within the arcs.

Addressing a limitation in path length determination, Chuang and Kung [9] introduced an innova-

tive approach to discover optimal paths within network structures. Mahdavi [11] extended algorithmic

techniques, implementing dynamic programming for the shortest chains while considering fuzzy dis-

tances for each edge. A comparative study for the fuzzy shortest path problem is proposed by Vidhya

et al. [19].

The Intuitionistic Fuzzy Shortest Path Problem has garnered significant attention, leading to the de-

velopment of various methods [12]- [14]. Arana et al. [15] proposed mixed-integer linear programming

for a fully fuzzy version of the problem.

In this study, we tackle the Intuitionistic Fuzzy Shortest Path (IFSP) problem by formulating it

and proposing an innovative method to optimize for minimum-maximum cost and time. The study

culminates in the attainment of optimal results, contributing to this dynamic research domain.

The structure of the paper unfolds as follows: Section 2 provides an exploration of fundamental

concepts and definitions pertinent to the topic. Section 3 delves into the mathematical formulation of

IFSPP. Section 4 presents the novel method proposed for solving IFSPP, offering a practical approach

to address the problem. In Section 5, the proposed method is put into action through the resolution

of a numerical example, demonstrating its real-world applicability. The paper concludes in Section 6,

summarizing the findings and providing a thoughtful conclusion to the study

2. Preliminaries

This section discusses the basic definition and the notion of fuzzy sets, intuitionistic fuzzy numbers,

and Accuracy functions.

Definition 2.1. [3] Let X be the universal set, where a fuzzy set F̃ in X is described as follows:

F̃ = {〈x, µF̃ (x)〉 : x ∈ X} (2.1)

where µF̃ (x) ∈ [0, 1] signifies the membership degree of each element x ∈ X.
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Definition 2.2. [2] Let X denote the universal set. An intuitionistic fuzzy set (IFS), denoted as Ã,

in X is defined as a collection of ordered triples:

Ã = {〈x, µÃ(x), νÃ(x)〉 : x ∈ X} (2.2)

Here, the functions µÃ(x) : X → [0, 1] and νÃ(x) : X → [0, 1] represent the membership and non-

membership degrees, respectively. These functions are subject to the constraint that for each element

x ∈ X, it satisfies 0 ≤ µÃ(x) + νÃ(x) ≤ 1. For any given IFS Ã and an element x ∈ X, the degree of

hesitation of x towards Ã is defined as πÃ(x) = 1− µÃ(x)− νÃ(x).

Definition 2.3. [5] An intuitionistic fuzzy set (IFS) Ã = 〈x, µÃ(x), νÃ(x)〉 : x ∈ R over the real

numbers R is classified as an intuitionistic fuzzy number (IFN) when it exhibits the following essential

properties:

(1) Ã is considered intuitionistic fuzzy normal if there exists x0 ∈ R such that µÃ(x0) = 1 (implying

νÃ(x0) = 0).

(2) The membership function µÃ(x) defines a convex set: µÃ(λx1 + (1 − λ)x2) ≥
min

(
µÃ(x1), µÃ(x2)

)
∀x1, x2 ∈ R, λ ∈ [0, 1] for all x1, x2 ∈ R and λ ∈ [0, 1].

(3) The non-membership function νÃ(x) represents a concave set:

νÃ(λx1 + (1 − λ)x2) ≤ max
(
µÃ(x1), µÃ(x2)

)
∀x1, x2 ∈ R, λ ∈ [0, 1] for all x1, x2 ∈ R and

λ ∈ [0, 1].
(4) The membership function µÃ is upper semi-continuous, and the non-membership function νÃ

is semi-lower continuous.

(5) The support of Ã, denoted as {Supp(Ã) = x ∈ R : νÃ(x) < 1}, is bounded.

Definition 2.4. A Trapezoidal Intuitionistic Fuzzy Number (TrIFN) denoted as Ã can be represented as

Ã = (a1, a2, a3, a4; a
′1, a′2, a′3, a′4). In this context, it is classified as an Intuitionistic Fuzzy Number

(IFN), and it is characterized by its membership and non-membership functions defined as follows:

µÃ(x) =



x−a1
a2−a1 , a1 < x ≤ a2

1, a2 < x ≤ a3,
a4−x
a4−a3 , a3 ≤ x ≤ a4

0, otherwise
and

νÃ(x) =



a′2−x
a′2−a′1

, a′1 < x ≤ a′2
0, a′2 < x ≤ a′3,
x−a′3
a′4−a′3

, a′3 ≤ x ≤ a′4
1, otherwise

where a′1 ≤ a1 ≤ a′2 ≤ a2 ≤ a3 ≤ a′3 ≤ a4 ≤ a′4
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Definition 2.5. [5] Let Ã = (a1, a2, a3, a4; a′1, a
′
2, a
′
3, a
′
4) and B̃ = (b1, b2, b3, b4; b

′
1, b
′
2, b
′
3, b
′
4) is

defined as Ã+ B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4; a′1 + b
′
1, a
′
2 + b

′
2, a
′
3 + b

′
3, a
′
4 + b

′
4).

Definition 2.6. [5]“ “ For Ã = (a1, a2, a3, a4; a′1, a
′
2, a
′
3, a
′
4), the accuracy function is defined as follows

H(Ã) =
(a1 + a2 + a3 + a4) + (a

′
1 + a

′
2 + a

′
3 + a

′
4)

8
(2.3)

Proposition 2.1. Consider two trapezoidal intuitionistic fuzzy numbers Ã =

(a1, a2, a3, a4; a
′
1, a
′
2, a
′
3, a
′
4) and B̃ = (b1, b2, b3, b4; b

′
1, b
′
2, b
′
3, b
′
4) then,

(1) H(Ã) > H(B̃) then Ã � B̃
(2) H(Ã) < H(B̃) then Ã ≺ B̃
(3) H(Ã) = H(B̃) then Ã ∼ B̃

3. Mathematical Formulation

This section introduces the mathematical model for the shortest path problem with intuitionistic

fuzzy arc weights.

We consider a directed network represented byG = (V, E), where V is the set of nodes with

elements 1, 2, . . . , n, and E is the set of arcs (edges), consisting of ordered pairs (i,j), where i and

j are elements of V, and i is not equal to j. This network represents the source node, denoted

by ‘s’, and the destination node, denoted by ‘t’. A path, denoted by Pi j is a sequence of arcs

{(i , i1), (i1, i2, ......(ik , j))}, where the initial node of each arc matches the final node of the previous

arc in the sequence.

The main goal of the shortest path problem is to find an optimal path from source node ‘s’ to

destination node ‘t’, considering non-negative weightsc̃i j and t̃i j associated with each arc, representing

the cost and time related to that arc, respectively.

The main goal of the shortest path problem involves bi-objective functions, namely, minimizing the

maximum costs and minimizing the maximum travel time. This work proposes the use of intuitionistic

fuzzy numbers to represent uncertain parameters, thus converting the problem into an Intuitionistic

Fuzzy Shortest Path Problem (IFSPP).

An IFSPP problem with uncertainty and vaguness for the cost and time can be formulated as

minmax
x

n∑
i=1

n∑
j=1

{c̃i j , t̃i j}

Subject to
n∑
j=1

xi j −
n∑
k=1

xki =


1 i = 1

0 i 6= 1, n

−1 i = n

x ≥ 0, i , j = 1, 2....n

x ∈ Zn

(3.1)
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If the arc (i,j) is in the path then xi j = 1 else xi j = 0. Let Pst denotes the set of all paths from source

node s to destination node t. Zn is the set of integer vectors of dimension n.

4. Proposed Algorithm

In this section, we introduce a minimax mixed linear integer optimization problem with bi-objective

weights designed to address the IFSPP. The minimax approach is a powerful technique that aims to

minimize the maximum values of decision variables, primarily used to mitigate potential significant

losses in worst-case scenarios.

In the context of the IFSPP, our objective is to find the most efficient path from a source node ’s’

to a destination node ’t’ within a directed graph while considering the intuitionistic fuzzy parameters,

which are modeled as trapezoidal in nature. Specifically, we represent these parameters as c̃ i j and t̃ i j ,

characterized by trapezoidal intuitionistic fuzzy numbers. These fuzzy numbers are defined by eight

values, allowing us to capture the uncertainty and imprecision in the problem’s parameters:

c̃ i j is represented as (c̃ i j, 1, c̃ i j, 2, c̃ i j, 3, c̃ i j, 4, c̃ ′i j, 1, c̃ ′i j, 2, c̃ ′i j, 3, c̃ ′i j,4).

t̃ i j is represented as (t̃ i j, 1, t̃ i j, 2, t̃ i j, 3, t̃ i j, 4, t̃ ′i j, 1, t̃ ′i j, 2,, t̃ ′i j, 3, t̃ ′i j,4). The IFSPP is thus framed as a

problem where the goal is to minimize the maximum values while taking these trapezoidal intuitionistic

fuzzy parameters into account.

Mathematically, we formulate this as a bi-objective integer linear problem for the MATLAB minmax

solver:

minmax
x
{c̃i j , t̃i j}

subject to:

Ax = b

x ∈ Zn

(4.1)

In this formulation, ’x’ represents the vector of decision variables, c̃ i j and t̃ i j are the objective functions

to be minimized, ’A’ is the constraint matrix, ’b’ is the constraint vector, and Zn denotes the set of

integer vectors with dimension ’n’.

This mathematical representation allows us to leverage the minmax solver in MATLAB to find the

optimal solution that balances the two objectives (minimizing the maximum cost and minimizing the

maximum time) while considering the trapezoidal intuitionistic fuzzy parameters in the IFSPP.The

accuracy function, denoted as 2.3, plays a crucial role in managing trapezoidal intuitionistic fuzzy

parameters, enhancing the accuracy and precision of calculations in the process.

5. Numerical Example

” In this section, a numerical example is solved using proposed method

Example 1 Let us conisder a numerical example of a network graph [18] with 5 nodes and 8 arcs.
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Figure 1. Graph with Trapezoidal IFSP

Table 1. Arc Values of Trapezoidal Intuitionistic Fuzzy Number

Arc Trapezoidal Intuitionistic Fuzzy cost Trapezoidal Intuitionistic Fuzzy Time

1→ 2 (12, 14, 15, 17; 11, 13, 16, 18) (2, 4, 5, 7; 1, 3, 6, 8)

1→ 3 (8, 10, 11, 13; 7, 9, 12, 14) (2, 4, 5, 7; 1, 3, 6, 8)

1→ 4 (10, 12, 13, 15; 9, 11, 14, 16) (3, 5, 6, 8; 2, 4, 7, 9)

2→ 5 (5, 7, 8, 10; 4, 6, 9, 11) (5, 7, 8, 10; 4, 6, 9, 11)

3→ 2 (3, 5, 6, 8; 2, 4, 7, 9) (4, 6, 7, 9; 3, 5, 8, 10)

3→ 5 (11, 13, 14, 16; 10, 12, 15, 17) (3, 5, 6, 8; 2, 4, 7, 9)

4→ 3 (5, 7, 8, 10; 4, 6, 9, 11) (1, 3, 4, 6; 0, 2, 5, 7)

4→ 5 (8, 10, 11, 13; 7, 9, 12, 14) (3, 5, 6, 8; 2, 4, 7, 9)

Using Equation 2.3 the trapezoidal intuitionistic fuzzy numbers can be converted as
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Table 2. Accuracy value for Trapezoidal Intuitionistic Fuzzy Number

Arc Crisp cost Crisp Time

1→ 2 14.5 4.5

1→ 3 10.5 4.5

1→ 4 12.5 5.5

2→ 5 6.38 7.5

3→ 2 5.5 6.5

3→ 5 13.5 5.5

4→ 3 7.5 3.5

4→ 5 10.5 5.5

using Equation 5 the IFSP problem has been modified as,

minmax 14.5x12 + 10.5x13 + 12.5x14 + 6.38x25 + 5.5x32 + 13.5x35 + 7.5x43 + 10.5x45

minmax 4.5x12 + 4.5x13 + 5.5x14 + 7.5x25 + 6.5x32 + 5.5x35 + 3.5x43 + 5.5x45

such that

x12 + x13 + x14 = 1

− x12 − x32 + x25 = 0

− x13 − x34 + x32 + x35 = 0

− x14 + x34 + x45 = 0

− x25 − x35 − x45 = −1

x12, x13, x14, x25, x32, x35, x43, x45 ≥ 0

(5.1)

To solve the bi-objective integer linear problem 5.1 using MATLAB’s solver-based approach, we fol-

lowed a systematic procedure.

(1) First, we defined the objective functions in MATLAB as follows:

function z = objfun(x)

D = length(x);

f (1) = 14.5 ∗ x(1) + 10.5 ∗ x(2) + 12.5 ∗ x(3) + 6.38 ∗ x(4) + 5.5 ∗ x(5) + 13.5 ∗ x(6) + 7.5 ∗
x(7) + 10.5 ∗ x(8);
f (2) = 4.5∗x(1)+4.5∗x(2)+5.5∗x(3)+7.5∗x(4)+6.5∗x(5)+5.5∗x(6)+3.5∗x(7)+5.5∗x(8);
z = [f (1), f (2)];

end
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(2) Defining the initial point for the proposed algorithm. This point should is a vector or matrix

that matches the dimension of the objective functions.

Set x0 = [0 0 0 0 0 0 0 0];

(3) Defining the constraints for the problem 5.1 according to the proposed algorithm as:

N = 8;

ub = ones(N, 1);

lb = zeros(N, 1);

intcon = 1 : N;

f un = @objf un;

Aeq = [1 1 1 0 0 0 0 0;

− 1 0 0 1 − 1 0 0 0;
0 − 1 0 0 1 1 − 1 0;
0 0 − 1 0 0 0 1 1;
0 0 0 − 1 0 − 1 0 − 1];
beq = [1; 0; 0; 0;−1];

(4) Configure the optimization algorithm settings by specifying the options.

options = optimoptions(’fminimax’,’Display’,’iter’);

options = optimoptions(’fminimax’,’plotFcn’,@optimplotx,@optimplotfval);

(5) By invoking the ’fminimax’ function with the provided input arguments that define the problem,

we obtained the optimal solution, the corresponding objective function values at that solution,

and additional relevant information.

[x, f val , exitf lag, output] = f minimax(f un, x0, [ ], [ ], Aeq, beq, lb, ub, [ ], options);

The optimal solution for the problem 5.1 obtained using the MATLAB fminimax optimization tool is

as follows:

Decision Variables:

x∗12 = 1

x∗13 = 0

x∗14 = 0

x∗25 = 1

x∗32 = 0

x∗35 = 0

x∗43 = 0

x∗45 = 0
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This represents the optimal path 1 → 2 → 5, and the bi-objective Intuitionistic fuzzy cost is

20.8800, while the Intuitionistic fuzzy time is 12.0000.
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Example 2 Conisder a numerical example with 6 nodes and 7 arcs with trapezoidal intuitionistic

fuzzy numbers

Figure 4. Graph with Trapezoidal Intuitionistic Fuzzy Number

Table 3. Arc Values of Trapezoidal Intuitionistic Fuzzy Number

Arc Intuitionistic Fuzzy cost Intuitionistic Fuzzy Time

1→ 2 (4, 7, 6, 8; 6, 8, 7, 9) (3, 4, 5, 6; 5, 8, 9, 11)

1→ 3 (5, 10, 11, 12; 6, 11, 13, 14) (5, 7, 9, 11; 7, 9, 10, 11)

2→ 5 (3, 4, 7, 8; 4, 5, 6, 7) (4, 7, 6, 9; 7, 10, 11, 14)

3→ 4 (6, 7, 8, 9; 7, 8, 9, 10) (3, 6, 9, 10; 4, 5, 8, 10)

4→ 5 (4, 5, 6, 8; 10, 11, 12, 13) (6, 9, 10, 11; 7, 11, 13, 15)

4→ 6 (5, 7, 10, 12; 7, 9, 11, 12) (7, 9, 11, 12; 10, 13, 14, 17)

5→ 6 (3, 5, 6, 8; 5, 8, 9, 11) (5, 8, 10, 12; 6, 7, 9, 11)

Using Equation 2.3 the trapezoidal intuitionistic fuzzy numbers can be converted as

Table 4. Accuracy value for Trapezoidal Intuitionistic Fuzzy Number

Arc Intuitionistic Fuzzy cost Intuitionistic Fuzzy Time

(1, 2) 6.86 6.38

(1, 3) 10.25 8.63

(2,5) 5.5 8.5

(3,4) 8 6.88

(4,5) 8.62 10.25

(4,6) 9.13 11.63

(5,6) 6.86 8.5
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min max 6.86x12 + 10.25x13 + 5.5x25 + 8x34 + 8.62x45 + 9.13x46 + 6.86x56

min max 6.38x12 + 8.63x13 + 8.5x25 + 6.88x34 + 10.25x45 + 11.63x46 + 8.5x56

such that

x12 + x13 = 1

− x12 + x25 = 0;

− x13 + x34 = 0;

− x34 + x45 + x46 = 0;

− x25 − x45 + x56 = 0;

− x56 − x46 = −1;

x12, x13, x25, x34, x45, x46, x56 ≥ 0

(5.2)

To solve the bi-objective integer linear problem 5.2 using MATLAB’s solver-based approach, we

followed a systematic procedure.

(1) First, we defined the objective functions in MATLAB as follows:

f unctionz = objf un2(x)

D = length(x); f (1) = 6.86 ∗ x(1) + 10.25 ∗ x(2) + 5.5 ∗ x(3) + 8 ∗ x(4) + 8.62 ∗ x(5) +
9.13 ∗ x(6) + 6.86 ∗ x(7);
f (2) = 6.38∗x(1)+8.63∗x(2)+8.5∗x(3)+6.88∗x(4)+10.25∗x(5)+11.63∗x(6)+8.5∗x(7);
z = [f (1), f (2)];

end

(2) Defining the initial point for the proposed algorithm. This point should is a vector or matrix

that matches the dimension of the objective functions.

Set x0 = [0 0 0 0 0 0 0];

(3) Defining the constraints for the problem 5.2 according to the proposed algorithm as:

Aeq = [1 1 0 0 0 0 0;

− 1 0 1 0 0 0 0;
0 − 1 0 1 0 0 0;
0 0 0 − 1 1 1 0;
0 0 − 1 0 − 1 0 1;
0 0 0 0 0 − 1 − 1];
beq = [1; 0; 0; 0; 0;−1];
N = 7;
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ub = ones(N, 1);

lb = zeros(N, 1);

intcon = 1 : N;

x0 = [0000000];

f un = @objf un2;

(4) Configure the optimization algorithm settings by specifying the options.

options = optimoptions(’fminimax’,’Display’,’iter’);

options = optimoptions(’fminimax’,’plotFcn’,@optimplotx,@optimplotfval);

(5) By invoking the ’fminimax’ function with the provided input arguments that define the

problem, we obtained the optimal solution, the corresponding objective function values at

that solution, and additional relevant information.

[x, f val , exitf lag, output] = f minimax(f un, x0, [ ], [ ], Aeq, beq, lb, ub, [ ], options);

The optimal solution for the problem 5.2 obtained using the MATLAB fminimax optimization tool is

as follows:

The optimal solution is solved for the above equation5.2 using Matlab fminimax optimization tool

Decision Variables:

x∗12 = 1

x∗13 = 0

x∗25 = 1

x∗34 = 0

x∗45 = 0

x∗46 = 0

x∗56 = 1

This represents the optimal path 1→ 5→ 6 and the Bi-objective Intuitionistic fuzzy cost 19.2200

and Intuitionistic fuzzy time 23.3800.
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6. Conculsion

This study focuses on the examination of the Minimax Bi-objective Shortest Path Problem within

the context of intuitionistic fuzzy arc weights. A novel method has been introduced to address the

minimax objectives while considering intuitionistic fuzzy weights. To facilitate this process, an accuracy

function has been applied, effectively converting trapezoidal intuitionistic fuzzy weights into precise,

well-defined weights. The problem has been transformed into a minmax integer linear programming

model, setting the stage for systematic optimization. To validate the proposed method, a numerical

example has been successfully tackled using the Matlab fminimax optimization tool, yielding optimal

results. Looking ahead, our research endeavors extend to exploring a fully fuzzy minmax integer linear
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programming model in various fuzzy environments. This expansion promises to introduce valuable

insights and further advance the field.
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