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Abstract. In this manuscript, we suggest a three-step iterative scheme for finding approximate numer-

ical solutions to boundary value problems (BVPs) in a Banach space setting. The underlying strategy

of the scheme is based on embedding Green’s function into the three-step M-iterative scheme, which

we will call in the paper M-Green’s iterative scheme. We assume certain possible mild conditions to

prove the convergence and stability results of the suggested scheme. We also prove numerically that

our M-Green iterative scheme is more effective than the corresponding Mann-Green and Khan-Green

iterative schemes. Our results improve and extend some recent results in the literature of Green’s

function based iteration schemes.

1. Introduction

Let V = (V, ||.||) be a normed vector space and A : V → V be a self operator. In this case, A is

called a contraction operator on X if for any two elements v , w ∈ V , one has a constant 0 ≤ c < 1

with the following property:

||Av − Aw || ≤ c ||v − w ||. (1.1)
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The operator A is called nonexpansive on V if (1.1) is holds for the value c = 1. For contraction

operators, Banach [1] proved the following well-known result:

Theorem 1.1. [1] Let V be a Banach space and A : V → V be a contraction operator. Then the

following conditions are true:

(a) A admits a unique fixed point, namely, v∗ ∈ V .
(b) For each v0 ∈ V , the Picard iteration, vn+1 = Avn (n = 0, 1, 2, 3, ...) converges to v∗.

In 1965, as many know, Browder [2] was the first to prove a fixed point theorem for nonexpansive

operators. However, unlike the Banach result above, the Browder result does not suggest the Picard

iteration for nonexpansive operators in general [3–12]. Precisely, there are many nonexpansive oper-

ators for which Picard iteration does not work. Another drawback of Picard [13] iterative scheme is

that its rate of convergence is slow. In 1953, Mann [14] introduced a new iterative scheme, which is a

one-step iteration like the Picard iteration [13] for computing fixed points of nonexpansive operators.

In 1975, Ishikawa [15] introduced a two-step iterative scheme that is more general than the Picard [13]

and Mann [14] iterative schemes. In 2012, Khan [16] combined the Picard [13] and Mann [14] iteration

which is also a two-step iteration. Khan [16] proved that this new iteration is essentially independent

of but faster than the Picard [13], Mann [14] and Ishikawa [15] iterative schemes for contraction and

as well as for nonexpansive operators. We know that, three-step iterative schemes are essentially

better than the one and two-step iterative schemes in many cases. For example, in [17], Glowinski

and Le Tallec applied a three-step scheme for computing and sought solutions for various problems

and proving that the numerical efficiency of the these schemes is far better than the corresponding

one-step and two-steps iterative schemes. Similarly, in [18], Haubruge et al. improved and extended

some main outcome of Glowinski and Le Tallec [17] and noticed that the three-step schemes suggests

high parallelized schemes when some appropriate assumptions are available. Eventually, we conclude

that three-step iterative schemes should be used whenever they are available.

On the other hand, a new three-step iterative scheme was developed by Ullah and Arshad [19] which

they called it as M-iterative scheme. This scheme reads as follows:
v0 ∈ V,
wn = (1− an)vn + anAvn,

un = Awn,

vn+1 = Aun, (n = 0, 1, 2, 3, ...),

(1.2)

where an ∈ (0, 1).

Although, many authors proved convergence of the Picard [13], Mann [14], Ishikawa [15], Khan [16]

and M-iterative scheme of Ullah and Arshad [19] for different classes of nonlinear mappings. On the

other side, Khuri and Sayfy [20] introduced a novel setting for Picard and Ishikawa iterative schemes.
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Actually these authors modified the so-called schemes and named them as Picard-Green’s and Mann-

Green’s iterative schemes. After that, Khuri and Louhichi [21] modified the Ishikawa iterative scheme

using Green’s function and obtained the Ishikawa–Green’s iterative scheme. They noticed that this

new Ishikawa-Green’s iterative scheme is better than the Mann-Green’s iterative scheme for a broad

class of BVPs. Very recently, Ali et al. [22] considered the Khan iterative scheme using Green’s

function approach and obtained the Khan-Green’s iterative scheme. They proved the Khan-Green’s

iterative scheme is eventually better than the Picard-Green’s, Mann-Green’s and Ishikawa-Green’s

iterative schemes. Motivated by above work, we modify the M-iterative scheme using the Green’s

function approach and prove its convergence to a solution of certain BVP of a broad class. We use

different examples to validate our outcome. Graphs and tables in the last section precisely suggest

the novel M-Green’s iterative approach is high accurate corresponding to the other previous known

approaches.

2. Methodology and Green’s function

This section is essentially divided into two some subsections. In the first subsection, we provide

a brief description of the Green’s function associated with a general BVP of second order. In the

next subsection, we embed this Green’s function into our M-iterative scheme and obtain the desired

M-Green’s iterative scheme.

2.1. A short description of the Green’s function. We start this section with a general BVPs as

follows:

Lt(v) = v ′′ = q(ξ, v , v ′). (2.1)

The notations Lt(v) and q(ξ, v , v ′) are respectively stand for linear and nonlinear terms with the

boundary conditions (BCs) given as follows:

Ba[v ] = α1v(a) + α2v
′(a) = γ,

Bb[v ] = β1v(b) + β2v
′(b) = δ,

}
(2.2)

where a ≤ ξ ≤ b and γ, δ, α1, α2, β1, β2 are some constants.

There are many papers devoted to the existence of solution for Problem (2.1)–(2.2) (see e.g.,

[23–25] and others). However, once the existence of solution for a problem is guaranteed then an

iterative scheme which can approximate the value of this solution is always desirable. Thus in this

paper, our aim is to suggest a new and effective iterative scheme for the so-called problem.

Since our approach is based on the Green’s function, so we may denote the Green’s function simply

by Gf = Gf (ξ, η) to the term Lt(v) and it is known that Gf (ξ, η) attains the following form:

Gf (ξ, η) =

{
a1v1 + a2v2 if a ≤ ξ < η

b1v1 + b2v2 if η < ξ < b,
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where ai , bi , (i = 0, 1) are some constants and vi , (i = 1, 2) are two known linearly independent

solutions for the Lt(v) = 0. It is known that the values of these constants found from the following

axioms of Gf .

(a) Gf agrees with homogeneous BCs, that is,

Ba[Gf (ξ, η)] = Bb[Gf (ξ, η)] = 0. (2.3)

(b) The function Gf is essentially continuous at each ξ = η, that is,

a1v1(η) + a2v2(η) = b1v1(η) + b2v2(η). (2.4)

(c) The function G′f has a unit jump discontinuity at each ξ = η, that is,

a1v
′
1(η) + a2v

′
2(η)− b1v ′1(η)− b2v ′2(η) = −1. (2.5)

Now it is worth mentioning that the particular sought solution of the given Problem (2.1)–(2.2)

can be set using Green’s function as given bellow:

vp =

∫ b

a

Gf (ξ, η)q(η, vp, v
′
p)dη, (2.6)

where vp essentially denotes the particular solution of v ′′ = q(ξ, v , v ′).

2.2. M–Green iterative scheme. The essential aim of the section is to construct a new iterative

scheme that is based on Green’s function, and to achieve the aim, we shall take the following problem:

Lt(v) + Nt(v) = q(ξ, v), (2.7)

and it should be noted that here the notation Lt denotes a linear and the notation Nt stands for linear

term. While q may be linear or nonlinear in the variable v .

To achieve our desired objective, we set the following operator:

Rvp =

∫ b

a

Gf (ξ, η)Lt(vp)dη, (2.8)

and notice that here notation vp essentially represents a particular sought solution as before of (2.7)

and the operator Gf is the Green’s that is relative to the term Lt . Notice that, for the sake of

simplicity, we may assume vp = v . So that from (2.8), it follows that

Rv =

∫ b

a

Gf (ξ, η)[Lt(v) + Nt(v)− q(η, v)− Nt(v) + q(η, v)]dη

=

∫ b

a

Gf (ξ, η)[Lt(v) + Nt(v)− q(η, v)]dη +

∫ b

a

Gf (ξ, η)[q(η, v)− Nt(v)]dη

= v +

∫ b

a

Gf (ξ, η)[Lt(v) + Nt(v)− q(η, v)]dη.
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Accordingly, one can now replace the operator involved in (1.2) with R in order to get the following

new modified form of it as follows:
wn = (1− an)vn + anRvn,

un = Rwn,

vn+1 = Run, (n = 0, 1, 2, 3, ...).

(2.9)

Accordingly, we get
wn = (1− an)vn + an[vn +

∫ b
a Gf (ξ, η)[Lt(vn) + Nt(vn)− q(η, vn)]dη],

un = wn +
∫ b
a Gf (ξ, η)[Lt(wn) + Nt(wn)− q(η, wn)]dη,

vn+1 = un +
∫ b
a Gf (ξ, η)[Lt(un) + Nt(un)− q(η, un)]dη.

(2.10)

Finally, it follows that
wn = vn + an[

∫ b
a Gf (ξ, η)[Lt(vn) + Nt(vn)− q(η, vn)]dη],

un = wn +
∫ b
a Gf (ξ, η)[Lt(wn) + Nt(wn)− q(η, wn)]dη,

vn+1 = un +
∫ b
a Gf (ξ, η)[Lt(un) + Nt(un)− q(η, un)]dη.

(2.11)

3. Convergence theorem

We consider some special assumptions to establish a convergence result of the proposed M–Green’s

(2.11) towards the sought solution of the problem. We offer an example to support the establish result

and to show that the proposed M–Green’s iteration scheme produces high accurate numerical results

as compared the Mann–Green’s and Khan–Green’s iteration schemes. To do that, we assume the

following broad class of BVP:

v ′′(ξ) = q(ξ, v(ξ), v ′(ξ)), (3.1)

subject to the boundary conditions:

v(0) = C, v(1) = D, (3.2)

and here it should be keep in mind that the notations C as well as D essentially denotes constants. The

first target is to find the required Green’s function for the equation v ′′ = 0 that obeys the available BCs

as suggested in (3.2). Now it follows that v ′′ = 0 admits essentially two different linearly independent

sought solutions which we may denote here as v1 = 1 and v2 = ξ. Accordingly, we may observe from

(2.3) that Green’s function attains essentially a form as follows:

Gf (ξ, η) =

{
a1 + a2ξ when a ≤ ξ < η

b1 + b2ξ when η < ξ ≤ b.

Using the axioms of Green’s function, we obtain the values of constant. In this case, Green’s

function becomes

Gf (ξ, η) =

{
η(1− ξ) when a ≤ ξ < η

ξ(1− η) when η < ξ ≤ b.
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To go forward, we shall use (3.1)–(3.2), so that we obtain the M–Green’s iterative scheme as given

in (2.11) in the following new form:

wn = vn + an[
∫ ξ
0 η(1− ξ) (v ′′n (η)− q(η, vn(η), v ′n(η))) dη

+
∫ ξ
1 ξ(1− η)(v ′′n (η)− q(η, vn(η), v ′n(η)))dη],

un = un +
∫ ξ
0 η(1− ξ) (w ′′n (η)− q(η, wn(η), w ′n(η))) dη

+
∫ ξ
1 ξ(1− η)(w ′′n (η)− q(η,wn(η), w ′n(η)))dη,

vn+1 = un +
∫ ξ
0 η(1− ξ) (u′′n(η)− q(η, un(η), u′n(η))) dη

+
∫ ξ
1 ξ(1− η)(u′′n(η)− q(η, un(η), u′n(η)))dη.

(3.3)

It follows that 
wn = vn + an[

∫ 1
0 Gf (ξ, η) (v ′′n (η)− q(η, vn(η), v ′n(η))]dη,

un = wn +
∫ 1
0 Gf (ξ, η) (w ′′n (η)− q(η, wn(η), w ′n(η)) dη,

vn+1 = un +
∫ 1
0 Gf (ξ, η) (u′′n(η)− q(η, un(η), u′n(η)) dη.

(3.4)

Notice that we take the initial point v0(ξ) that satisfies v ′′ = 0 and the BCs (3.2). Thus, we have

v0(ξ) = (D − C)ξ + C.
Now we can set the operator AGf : C[0, 1]→ C[0, 1] by

AGf v = v +

∫ 1
0

Gf (ξ, η)(v ′′(ξ)− q(η, v(η), v ′′(η))))dη. (3.5)

Hence, the iteration scheme (3.4) attains the following form:
wn = (1− an)vn + anAGf vn,

un = AGf wn,

vn+1 = AGf un.

(3.6)

Now, the iterative scheme (3.6) is our proposed M-Green’s iteration. As we know that V = C[0, 1]

form a Banach space with the supremum norm. Hence we can now prove the following main theoretical

result of our paper using our M-Green’s iterative scheme (3.6) for solution of the Problem (3.1)–(3.2).

Theorem 3.1. Set AGf : V → V be the operator defined in (3.5) and {vn} be the sequence of M–

Green’s iterative scheme (3.6). If
√
3
12 ×sup[0,1]×R3

∣∣∣∂q∂v ∣∣∣ < 1 and suppose one of the following condition

holds:

(i)
∑
an =∞

(ii) 0 < a ≤ an for some a.

Then {vn} converges the unique fixed point of AGf and hence to the unique sought solution of the

given Problem (3.1) and (3.2).

Proof. Put
√
3
12 × sup[0,1]×R3

∣∣∣dqdv ∣∣∣ = c , it follows that AGf is a c-contraction on V . Hence by Theorem

1.1(a), AGf has a unique fixed point in V = C[0, 1], namely, v∗ which is the unique solution for the

given problem (3.1) and (3.2).
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If the condition (i) is hold, that is,
∑
an = ∞, then we prove that the sequence of M–Green’s

iterative converges strongly to v∗. To see this, we have

||wn − v∗|| = ||(1− an)vn + anAGf vn − v
∗||

≤ (1− an)||vn − v∗||+ an||AGf vn − v
∗||

= (1− an)||vn − v∗||+ an||AGf vn − AGf v
∗||

≤ (1− an)||vn − v∗||+ anc ||vn − v∗||

= [1− an(1− c)]||vn − v∗||.

Hence subsequently from the above, we have

||wn − v∗|| ≤ [1− an(1− c)]||vn − v∗||. (3.7)

Now using (3.7), one has

||vn+1 − v∗|| = ||AGf un − v
∗|| = ||AGf un − AGf v

∗||

≤ c ||un − v∗|| = c ||AGf wn − v
∗||

= c ||AGf wn − AGf v
∗|| ≤ c2||wn − v∗||

≤ c2([1− an(1− c)]||vn − v∗||).

Accordingly, we get

||wn+1 − v∗|| ≤ c2([1− an(1− c)]||vn − v∗||)

≤ c4[1− an(1− c)][1− an−1(1− c)]||vn−1 − v∗||

≤ c6[1− an(1− c)][1− an−1(1− c)][1− an−2(1− c)]||vn−2 − v∗||.

Inductively, we obtain

||vn+1 − v∗|| ≤ c(2n+2)Πnm=0[1− am(1− c)]||v0 − v∗||. (3.8)

We know from the literature that 1− v ≤ e−v for all v ∈ [0, 1]. Using this with (3.8), we get

||vn+1 − v∗|| ≤ c(2n+2)e−(1−c)
∑n

m=0 am||v0−v∗||. (3.9)

As supposed
∑
an =∞ and “c” lies in (0, 1), it follows from (3.9) that

lim
n→∞

||vn+1 − v∗|| = 0.

Accordingly, {vn} converges to the unique fixed point v∗ of AGf which is the unique solution of the

problem (3.1) and (3.2). The case when condition (ii) is hold, that is, 0 < a ≤ an, is straightforward
and hence omitted. �
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4. Stability theorem

The stability of an iterative scheme in the setting of numerical approximations means that a stable

iterative scheme should produce if small change in initial approximation does not effect significantly the

numerical approximations [26]. Hence a stable iterative scheme does not show excessive sensitivity to

small changes in input data or initial approximations. In other words, it should produce solutions that

converge towards a consistent outcome as the number of iterations increases, rather than diverging

or oscillating wildly. Stability is an important consideration in various computational schemes, such

as solving differential equations, optimization problems, or numerical simulations, as it ensures the

accuracy and predictability of the results, ultimately leading to the successful and dependable execution

of computational tasks. For more details; see [27–31].

This section aims to present a stability theorem for the iterative scheme under consideration. The

concept of stability in fixed point iterations can be traced back to the basic work of Urabe [32], which

laid the initial foundation. Building upon Urabe’s contributions, Harder and Hicks [33] developed a

precise mathematical definition for stability. To provide our main result of this section, it is essential

to revisit some fundamental concepts, which will be briefly reviewed below.

Definition 4.1. [33] Suppose we have a mapping A defined on a Banach space V . Consider a

sequence of iterates {vn} ⊆ V with the mapping A as given below:{
v0 ∈ V,
vn+1 = Ω(A, vn),

(4.1)

where the the function Ω is associated with mapping A and {vn}. If {vn} is strongly convergent to

the given fixed point v∗ of the mapping A, then {vn} is known as stable if

lim
n→∞

||v̂n+1 −Ω(A, v̂n)|| = 0 implies lim
n→∞

v̂n = v∗,

where {v̂n} is arbitrary sequence of elements of the Banach space V .

Next, we give the definition of equivalent sequences in Banach spaces.

Definition 4.2. [34] Two given sequences, namely, {vn} and {v̂n} are called equivalent to each other

if and only if limn→∞ ||vn − v̂n|| = 0.

In contrast to the notion of arbitrary sequences, Timis [35] introduced the concept of equivalent

sequences to derive a novel mathematical definition of stability. This innovative form of stability is

referred to as “w2-stability” and its formal definition is presented below.

Definition 4.3. [35] The sequence of iterates {vn} produced by (4.1) convergent to a fixed point v∗

of the mapping A is called weak w2-stable when for any choice of equivalent sequence {v̂n} ⊆ V of

the sequence {vn}, we have

lim
n→∞

||v̂n+1 −Ω(A, v̂n)|| = 0 implies lim
n→∞

v̂n = v∗.
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Using the above weak concept of stability, we now want to show that M-Green’s iterative scheme

(3.6) is weak w2 stable.

Theorem 4.1. Suppose that V , AGf and {vn} are same as given in Theorem 3.1. Then, the conver-

gence of the sequence of iterates {vn} is weak w2–stable with respect to AGf .

Proof. Assume that we have an equivalent sequence {v̂n} of {vn}, that is limn→∞ ||v̂n− vn|| = 0. Put

εn = ||v̂n+1 − AGf ûn]||,

where ûn = AGf ŵn and ŵn = (1− αn)v̂n + αnAGf v̂m.

Let limn→∞ εn = 0. We first find ||ŵn − wn||. For this,

||ŵn − wn|| = ||[(1− αn)v̂n + αnAGf v̂n]− [(1− αn)vn + αnAGf vn]||

= ||[(1− αn)(v̂n − vn) + αn(AGf v̂n − AGf vn]||

≤ (1− αn)||v̂n − vn||+ αn||AGf v̂n − AGf vn||

≤ (1− αn)||v̂n − vn||+ αnc ||v̂n − vn||

≤ [1− αn(1− c)]||v̂n − vn||.

Hence

||ŵn − wn|| ≤ [1− αn(1− c)]||v̂n − vn||. (4.2)

Keeping (4.2) in mind, we can proceed as follows:

||v̂n+1 − v∗|| ≤ ||v̂n+1 − vn+1||+ ||vn+1 − v∗||

≤ ||v̂n+1 − AGf ûn||+ ||AGf ûn − vn+1||+ ||vn+1 − v
∗||

= εn + ||FG ûn − vn+1||+ ||vn+1 − v∗||

≤ εn + c ||ûn − un||+ ||vn+1 − v∗||

= εn + c ||AGf ŵn − AGf wn||+ ||vn+1 − v
∗||

≤ εn + c2||ŵn − wn||+ ||vn+1 − v∗||

≤ εn + c2[1− αn(1− c)]||v̂n − vn||+ ||vn+1 − v∗||.

Subsequently, we obtained

||v̂n+1 − v∗|| ≤ εn + c2[1− αn(1− c)]||v̂n − vn||+ ||vn+1 − v∗||. (4.3)

Now, as assumed, limn→∞ εn = 0 and limn→∞ ||v̂n − vn|| = 0. Moreover, limn→∞ ||vn+1 − v∗|| = 0

due to the convergence of {vn} towards v∗. Subsequently, from (4.3), limn→∞ ||v̂n − v∗|| = 0. It

follows that {vn} produced by (3.6) is weak w2-stable with respect to the mapping AGf . �
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5. Numerical experiments

Now we suggest some examples of second order BVPs and connect our M-Green’s, Khan-Green’s

and Mann-Green’s iterative schemes with it. In the form of tables and graphs, we provide our final

findings. In these tables and graphs, one can see the high accuracy of our new so-called M-Green’s

iterative scheme.

Example 5.1. To show the numerical efficiency of our proposed M-Green’s iterative scheme, we

consider the following BVP:

v ′′(ξ) + ξv(ξ)− ξ3 − 2 = 0, (5.1)

with BCs as follows:

v(0) = 0, v(1) = 1, (5.2)

where ξ ∈ [0, 1]. It follows that the unique solution of Problem (5.1)–(5.2) is v(ξ) = ξ2. It should be

noted that starting iterate v0(ξ) in this case follows from v ′′(ξ) = 0 and its BCs, as v0(ξ) = ξ.

Now, using Example 5.1, our proposed M-Green’s iterative scheme takes the following form:

wn = vn + an
∫ ξ
0 η(1− ξ)[v ′′n (η) + ηvn(η)− η3 − 2]dη,

+an
∫ 1
ξ ξ(1− η)[v ′′n (η) + ηvn(η)− η3 − 2]dη,

un = wn +
∫ ξ
0 η(1− ξ)[w ′′n (η) + ηwn(η)− η3 − 2]dη,

+
∫ 1
ξ ξ(1− η)[w ′′n (η) + ηwn(η)− η3 − 2]dη,

vn+1 = un +
∫ ξ
0 η(1− ξ)[u′′n(η) + ηun(η)− η3 − 2]dη,

+
∫ 1
ξ ξ(1− η)[u′′n(η) + ηun(η)− η3 − 2]dη.

(5.3)

The iterative scheme (5.3) is now our proposed M-Green’s iterative scheme. The graph of the Green’s

involved in the scheme is given as Figure 1. Now for an = 1
2 , we choose different cases for ξ and we

see that in each case, in Table 1 and 2, our proposed M-Green’s iterative scheme converges to the

sought solution of the problem (5.1)–(5.2). The graphical view in this in Figure 2.

Figure 1. Plot of Green’s function for Example 5.1.
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Table 1. Numerical values generated by M-Green’s iteration for different choices of ξ.

n ξ = 0.1 ξ = 0.2 ξ = 0.3 ξ = 0.4

0 0.1000000 0.2000000 0.3000000 0.400000

1 0.0100886 0.0401752 0.0902546 0.160319

2 0.0100001 0.0400003 0.0900004 0.160000

3 0.0100000 0.0400000 0.0900000 0.160000

4 0.0100000 0.0400000 0.0900000 0.160000

5 0.0100000 0.0400000 0.0900000 0.160000

Table 2. Numerical values generated by M-Green’s iteration for different choices of ξ.

n ξ = 0.5 ξ = 0.6 ξ = 0.7 ξ = 0.8 ξ = 0.9

0 0.500000 0.600000 0.700000 0.800000 0.900000

1 0.250359 0.360364 0.490329 0.640252 0.810137

2 0.250001 0.360001 0.490000 0.640000 0.810000

3 0.250000 0.360000 0.490000 0.640000 0.810000

4 0.250000 0.360000 0.490000 0.640000 0.810000

5 0.250000 0.360000 0.490000 0.640000 0.810000
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Figure 2. Behaviors of M-Green’s iterations for different choices of ξ.

Now, we choose an = 0.9, we obtain the absolute errors given in the Table 3, for different values

of ξ. Clearly our proposed scheme converges fast to the solution. The graphical view is provided in

the Figure 3.
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Table 3. Absolute errors comparison of different iterative schemes.
ξ Exact solution Mann-Green Khan-Green M-Green

0.1 0.01 4.5701× 10−6 9.89994× 10−10 4.05925× 10−16

0.2 0.04 8.84515× 10−6 1.95814× 10−9 8.11851× 10−16

0.3 0.09 0.0000126001 2.84931× 10−9 1.16573× 10−15

0.4 0.16 0.0000155043 3.57659× 10−9 1.47105× 10−15

0.5 0.25 0.0000171762 4.03244× 10−9 1.60982× 10−15

0.6 0.36 0.000017254 4.10819× 10−9 1.66533× 10−15

0.7 0.49 0.0000154828 3.72156× 10−9 1.44329× 10−15

0.8 0.64 0.0000118068 2.84858× 10−9 1.22125× 10−15

0.9 0.81 6.45478× 10−6 1.55255× 10−9 6.66134× 10−16
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Figure 3. Speed of convergence comparison of different iterative schemes.

Example 5.2. We now offer a new example to show once again the high accuracy of our scheme on

the other iterative schemes of the literature.

v ′′(ξ)−
3

2
v(ξ)2 = 0, (5.4)

v(0) = 4 and v(1) = 1. (5.5)

In this case, the exact solution of the Problem (5.4)–(5.5) is given by v(ξ) = 4
(1+ξ)2

. This problem is

solved numerically by Khuri and Louhichi [21] by using Mann-Green’s and Ishikawa Green’s iterative

schemes. We now improve their findings by our M-Green’s iterative scheme. By choosing v0(ξ) =

4− 3ξ, and the results are displayed in the next table.
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Now, using Example 5.2, our proposed M-Green’s iterative scheme takes the following form:

wn = vn + an
∫ ξ
0 η(1− ξ)[v ′′n (η)− 32vn(η)2]dη,

+an
∫ 1
ξ ξ(1− η)[v ′′n (η)− 32vn(η)2]dη,

un = wn +
∫ ξ
0 η(1− ξ)[w ′′n (η)− 32wn(η)2]dη,

+
∫ 1
ξ ξ(1− η)[w ′′n (η)− 32wn(ξ)2]dη,

vn+1 = un +
∫ ξ
0 η(1− ξ)[u′′n(η)− 32un(η)2]dη,

+
∫ 1
ξ ξ(1− η)[u′′n(η)− 32un(η)2]dη.

(5.6)

Now, we choose an = 0.5, then again, we see that our scheme (5.6) converges faster to the solution

of the Problem (5.4)–(5.5) as compared the other two schemes, see Table 4 and Figure 4.

Table 4. Absolute errors comparison of different iterative schemes.
ξ Exact solution Mann-Green Khan-Green M-Green

0.1 3.30579 0.002034250 6.4303× 10−6 3.89832× 10−7

0.2 2.77778 0.001486440 0.0000117717 7.15245× 10−7

0.3 2.36686 0.000447975 0.0000154153 9.39372× 10−7

0.4 2.04082 0.000360256 0.0000171661 1.04929× 10−6

0.5 1.77778 0.000758254 0.0000171076 1.04871× 10−6

0.6 1.56250 0.000780165 0.0000154865 9.51631× 10−7

0.7 1.38408 0.000546944 0.0000126278 7.77381× 10−7

0.8 1.23457 0.000217887 8.87776× 10−6 5.47131× 10−7

0.9 1.10803 0.000027884 4.56883× 10−6 2.81581× 10−7
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Figure 4. Speed of convergence comparison of different iterative schemes.
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6. Conclusion

We provided a new iterative scheme for approximating solutions of BVPs based on Green’s function,

so-called an M-Green’s iterative scheme. We assumed also some possible mild conditions and proved

the convergence and stability of this scheme in the setting of Banach space. An example is suggested

and proved that its M-Green’s iterative scheme suggests high accurate results as compared the Mann-

Green’s and Khan-Green’s iterative schemes. Also this is the first paper which suggested a three-step

iterative scheme based on Green’s function opposed to the one-step and two-step iterative schemes

studied by former authors. Hence, our results improved and extended many previous results such as

Ali et al. [22] and Khuri–Louhichi [21].
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