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Abstract. In this work, we investigate the generalised Hyers-Ulam stability of additive functional in-

equality in modular spaces with ∆2-conditions and in β-homogeneous Banach spaces.

1. Introduction and Preliminaries

Nakano established the theory of modulars on linear spaces and the related theory of modular linear

spaces in 1950 [10]. After a while, many mathematicians have worked hard to develop this theory,

for example, Amemiya [1], Yamamuro [15], Orlicz [11], Mazur [8], Musielak [9], Luxemburg [6], and

Turpin [14]. The study of interpolation theory [5, 7] and various Orlicz spaces [11] has up till now

made extensive use of the notion of modulars and modular spaces.

Now, we will define the modular space and its properties.

Definition 1.1 ( [10]). Let Y be an arbitrary vector space. A functional ρ : Y → [0,∞) is called a

modular if for arbitrary x, y ∈ Y ;

(1) ρ(x) = 0 if and only if x = 0.

(2) ρ(αx) = ρ(x) for every scalar α with |α| = 1.
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(3) ρ(αx + βy) ≤ ρ(x) + ρ(y) if and only if α+ β = 1 and α, β ≥ 0.

If (3) is replaced by:

(4) ρ(αx + βy) ≤ αρ(x) + βρ(y) if and only if α+ β = 1 and α, β ≥ 0, then we say that ρ is a

convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space Yρ given by:

Yρ = {x ∈ Y : ρ(λx)→ 0 as λ→ 0}.

A function modular is said to be satisfy the ∆2-condition if there exist τ > 0 such that ρ(2x) ≤ τρ(x)

for all x ∈ Yρ.

Definition 1.2. Let {xn} and x be in Yρ. Then:

(1) The sequence {xn}, with xn ∈ Yρ, is ρ-convergent to x and write: xn → x if ρ (xn − x) → 0

as n →∞.

(2) The sequence {xn}, with xn ∈ Yρ, is called ρ-Cauchy if ρ (xn − xm)→ 0 as n : m →∞.

(3) Yρ is called ρ-complete if every ρ-Cauchy sequence in Yρ is ρ-convergent.

Proposition 1.1. In modular space,

• If xn
ρ→ x and a is a constant vector, then xn + a

ρ→ x + a.

• If xn
ρ→ x and yn

ρ→ y then αxn + βyn
ρ→ αx + βy , where α+ β ≤ 1 and α, β ≥ 1.

Remark 1.1. Note that ρ(x) is an increasing function, for all x ∈ X. Suppose 0 < a < b, then

property (2.3) of Definition 1.1 with y = 0 shows that ρ(ax) = ρ
(a
b
bx
)
≤ ρ(bx) for all x ∈ Y .

Morever, if ρ is a convexe modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x).

In general, if λi ≥ 0, i = 1, . . . , n and λ1, λ2, . . . , λn ≤ 1 then ρ(λ1x1 + λ2x2 + · · · + λnxn) ≤
λ1ρ(x1) + λ2ρ(x2) + · · ·+ λnρ(xn).

If {xn} is ρ-convergent to x , then {cxn} is ρ-convergent to cx , where |c | ≤ 1. But the ρ-convergent

of a sequence {xn} to x does not imply that {αxn} is ρ-convergent to αxn for scalars α with |α| > 1.

If ρ is a convex modular satisfying ∆2 condition with τ = 2, then ρ(x) ≤ τρ(
1

2
x) ≤

τ

2
ρ(x) for all x .

Hence ρ = 0. Consequently, we must have τ ≥ 2 if ρ is convex modular.

In 1940, Ulam [12] raised the first stability problem concerning the existence of an exact solution

near to the function satisfiyng the equation or inequation approximattely . He proposed a question, if

there exists an exact homomorphism near an approximate homomorphism. Hyers [3] found an answer

in Banach space and then many authors have investigated the stability problems.

This paper consist of 4 sections. In section 2, we show the stability of the following inequation in

modular space satisfying ∆2-condition with τ = 2.

ρ(f (x + y)− f (x)− f (y)) ≤ ρ
(
f

(
x + y

2

)
−

1

2
f (x)−

1

2
f (y)

)
for all x, y ∈ X.



Int. J. Anal. Appl. (2023), 21:117 3

In section 3, we obtain a like result in β-homogeneous complex Banch space of the following inequation,

using the control of Gavruta

‖f (x + y)− f (x)− f (y)‖ ≤
∥∥∥∥f (x + y

2

)
−

1

2
f (x)−

1

2
f (y)

∥∥∥∥ . (1.1)

In section 4, we show the stability of the following inequation associated with the Jordan triple deriva-

tion in fuzzy Banach algebra

N(f (x + y)− f (x)− f (y)) ≥ N
(
f (
x + y

2
)−

1

2
f (x)−

1

2
f (y), t

)
. (1.2)

2. Additive Functional Inequalities in Modular Space

Throughout this section, assume that X is a linear space, and that Yρ is a ρ-complete modular

sapace.

Lemma 2.1. Let f : X → Yρ be a mapping such that

ρ(f (x + y)− f (x)− f (y)) ≤ ρ
(
f

(
x + y

2

)
−

1

2
f (x)−

1

2
f (y)

)
for all x, y ∈ X. (2.1)

Then f is additive.

Proof. Letting x = y = 0 in (2.1), we get:

ρ(f (0)) ≤ 0.

So

f (0) = 0.

Letting y = −x in (2.1), we get:

ρ(f (x) + f (−x)) ≤ ρ
(

1

2
(f (x) + f (−x))

)
≤

1

2
ρ(f (x) + f (−x)) for all x ∈ X.

Hence f (−x) = −f (x) for all x ∈ X.
Letting x = y in (2.1), we get: ρ(f (2x) − 2f (x)) ≤ 0, and so f (2x) = 2f (x) for all x ∈ X. Thus

f
(x

2

)
=

1

2
f (x) for all x ∈ X. It follows from (2.1) that:

ρ(f (x + y)− f (x)− f (y)) ≤ ρ
(

1

2
f (x + y)−

1

2
f (x)−

1

2
f (y)

)
≤

1

2
ρ(f (x + y)− f (x)− f (y))

and so

f (x + y) = f (x) + f (y) for all x, y ∈ X.

Now, we prove the Hyers-Ulam stability of the additive functional inequality (2.1) in modular spaces.

�
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Theorem 2.1. Let X be a linear space, ρ be a convexe modular satisfying ∆2-condition with τ = 2

and Yρ be a ρ-complete modular space. Let ϕ : X2 → [0,∞) be a function with:

ψ(x, y) =

∞∑
j=1

1

2j
ϕ
(

2j−1x, 2j−1y
)
<∞, (2.2)

and

ρ(f (x + y)− f (x)− f (y)) ≤ ρ
(
f

(
x + y

2

)
−

1

2
f (x)−

1

2
f (y)

)
+ ϕ(x, y) (2.3)

for all x, y ∈ X. Then there exists a unique additive mapping: h : X → Yρ such that:

ρ(f (x)− h(x)) ≤ ψ(x, x). (2.4)

Proof. Letting y = x in (2.3), we get: ρ(f (2x)− 2f (x)) ≤ ϕ(x, y) for all x ∈ X. So

ρ

(
1

2
f (2x)− f (x)

)
≤

1

2
ϕ(x, x). (2.5)

Then by induction, we write:

ρ

(
f
(

2kx
)

2k
− f (x)

)
≤

k∑
j=1

1

2j
ϕ
(

2j−1x, 2j−1x
)

(2.6)

for all x ∈ X and all positif integer k . Indeed, the case k = 1 follows from (2.5). Assume that (2.6)

holds for k ∈ N. Then we have the following inequality

ρ

(
f
(

2k+1x
)

2k+1
− f (x)

)
= ρ

(
1

2

(
f
(

2k · 2x
)

2k
− f (2x)

)
+

1

2
f (2x)− f (x)

)

≤
1

2
ρ

(
f
(

2k · 2x
)

2k
− f (2x)

)
+

1

2
ρ(f (2x)− 2f (x))

≤
1

2

k∑
j=1

1

2j
(

2jx, 2jx
)

+
1

2
ϕ(x, x)

=

k+1∑
j=1

1

2j
ϕ
(

2j−1x, 2j−1x
)
.

Hence (2.6) holds for every k ∈ N.
Let m and n be nonnegative integers with n > m. By (2.6), we have

ρ

(
f (2nx)

2n
−
f (2mx)

2m

)
= ρ

(
1

2m

(
f
(

2n−m · 2mx
)

2n−m
− f (2mx)

))

≤
1

2m
·
n−m∑
j=1

1

2j
ϕ
(

2j−1 · 2mx, 2j−1 · 2mx
)
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=

n−m∑
j=1

1

2j+m
ϕ
(

2m+j−1x, 2m+j−1x
)

=

n∑
k=m+1

1

2k
ϕ
(

2k−1x, 2k−1x
)
. (2.7)

Then by (2.2) and (2.7) we conclude that
{
f (2nx)
2n

}
is a ρ-Cauchy sequence in Yρ. The ρ-completeness

of Yρ guarantees its ρ-convergence. Hence, there exists a mapping h : X → Yρ defined by:

h(x) = ρ− limit
f (2nx)

2n
; x ∈ X. (2.8)

Moreover, letting m = 0 and passing the limit n →∞ in (2.7), we get (2.4).

Now, we prove that h is additive. We note that:

ρ

(
f (2n(x + y))

2n+2
−
f (2nx)

2n+2
−
f (2ny)

2n+2

)
≤

1

2n+2
ρ (f (2n(x + y))− f (2nx)− f (2ny))

≤
1

2n+2
ρ

(
f

(
2n(x + y)

2

)
−

1

2
f (2nx)−

1

2
f (2ny)

)
+

1

2n+2
ϕ (2nx, 2ny)

≤
1

2
ρ

1

2

 f
(
2n(x+y)
2

)
2n

− 1

4
×
f (2nx)

2n
−

1

4
×
f (2ny)

2n


+

1

2n+2
ϕ (2nx, 2ny) .

Hence

ρ

(
1

4
h ((x + y))−

1

4
h (x)−

1

4
f (y)

)
≤

1

2
ρ

(
1

2

(
h

(
x + y

2

))
−

1

4
h (x)−

1

4
h (y)

)
≤

1

4
ρ

(
h

(
x + y

2

)
−

1

2
h (x)−

1

2
h (y)

)
.

And so

ρ (h ((x + y))− h (x)− h (y)) ≤ 4ρ

(
1

4
h(x + y)−

1

4
h (x)−

1

4
h (y)

)
≤ ρ

(
h

(
x + y

2

)
−

1

2
h(x)−

1

2
h(x)

)
.

Then by Lemma 2.1, h is additive.

We see that:

ρ

(
h(2x)− 2h(x)

22

)
= ρ

(
1

22

(
h (2x)−

f
(

2n+1x
)

2n

)
+

1

2

(
f (2n+1x)

2n+1
− h(x)

))

≤
1

22
ρ

(
h (2x)−

f
(

2n+1x
)

2n

)
+

1

2
ρ

(
f (2n+1x)

2n+1
− h(x)

)
(2.9)
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for all x, y ∈ X. By (2.8), the right hand side of (2.9) tends to 0 as n → ∞. Therefore, it follows

that

h(2x) = 2h(x), x ∈ X.

Finally, to show the uniqueness of h, assume that h1 and h2 are additive mapping satisfying (2.4).

�

Then we write:

ρ

(
h1(x)− h2(x)

2

)
= ρ

(
1

2

(
h1
(

2kx
)

2k
−
f
(

2kx
)

2k

)
+

1

2

(
f (2kx)

2k
−
h2
(

2kx
)

2k

))

≤
1

2
ρ

(
h1
(

2kx
)

2k
−
f (2kx)

2k

)
+

1

2
ρ

(
f
(

2kx
)

2k
−
h2
(

2kx
)

2k

)

≤
1

2
·

1

2k
{
ρ
(
h1
(

2kx
)
− f

(
2kx
))

+ ρ
(
h2
(

2kx
)
− f

(
2kx
))}

≤
1

2k
ψ
(

2kx, 2ky
)
−→ 0 as k →∞.

This implies that h1 = h2.

Now, we have the classical Ulam stability of (2.1) by putting ϕ = ε > 0.

Corollary 2.1. Let X be a linear space, ρ be a convexe modular and Yρ be a ρ-complete modular space

satisfying ∆2-condition with τ = 2. Assume f : X → Yρ is a mapping such that f (0) = 0 and:

ρ(f (x + y)− f (x)− f (y)) ≤ ρ
(
f

(
x + y

2

)
−

1

2
f (x)−

1

2
f (y)

)
+ ε

for all x, y ∈ X. Then there exists a unique additive mapping h : X → Yρ such that

ρ(f (x)− h(x)) ≤ ε, x ∈ X.

Corollary 2.2. Let X be a normed linear space, ρ be a convex modular and Yρ be a ρ-complete modular

space. Let θ > 0 and 0 < p < 1 real numbers. Assume that f : X → Yρ is a mapping ratifying:

ρ(f (x + y)− f (x)− f (y)) ≤ ρ
(
f

(
x + y

2

)
−

1

2
f (x)−

1

2
f (y)

)
+ θ (‖x‖p + ‖y‖p) (2.10)

for all x, y ∈ X. Then there exists a unique additive mapping T : X → Yρ such that:

ρ(f (x)− h(x)) ≤
2θ‖x‖p

2− 2p
. (2.11)

Proof. Replacing (x, y) with (x, x) in (2.10), we have:

ρ(f (2x)− 2f (x)) ≤ 2θ‖x‖p.

Hence

ρ

(
1

2
f (2x)− f (x)

)
≤ θ‖x‖p. (2.12)
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Then by induction, we write:

ρ

(
f
(

2kx
)

2k
− f (x)

)
≤

k∑
j=1

1

2j−1
(

2j−1
)p
θ‖x‖p

=

k∑
j=1

2(p−1)(j−1)θ‖x‖p (2.13)

for all x ∈ X, and all positive integer k .

Indeed, the case k = 1 follows from (2.12). Assume that (2.13) holds for h ∈ N. Then we have

the following inequality

ρ

(
f
(

2k+1x
)

2k+1
− f (x)

)
= ρ

(
1

2

(
f
(

2k · 2x
)

2k
− f (2x)

)
+

1

2
f (2x)− f (x)

)

≤
1

2
ρ

(
f
(

2k · 2x
)

2k
− f (2x)

)
+

1

2
ρ(f (2x)− 2f (x))

≤
1

2

k∑
j=1

2(p−1)(j−1)θ · 2p‖x‖p + θ‖x‖p

=

k∑
j=1

2(p−1)jθ‖x‖+ θ‖x‖p

=

k+1∑
j=1

2(p−1)(j−1)θ‖x‖p

Hence (2.13) holds for every k ∈ N. Let m and n be nonnegative integers with n > m. By (2.10), we

have:

ρ

(
f (2nx)

2n
−
f (2mx)

2m

)
= ρ

(
1

2m

(
f
(

2n−m · 2mx
)

2n−m
− f (2mx)

)

≤
1

2m

n−m∑
j=1

2(p−1)(j−1)θ ‖2mx‖p

= 2m(p−1)θ‖x‖p
1− 2(p−1)(n−m)

1− 2p−1
(2.14)

It follows from (2.14) that the sequence
{
f (2nx)

2n

}
is a Cauchy sequence for all x ∈ X. Since

Yρ is ρ-complete modular space, the sequence
{
f (2nx)
2n

}
converges. So one can define the mapping

h : X → Yρ by:

h(x) = ρ− limit
{
f (2nx)

2n

}
for all x ∈ X.

Moreover, letting m = 0 and passing to the limit n → ∞ in (2.14), we get (2.11). The rest of the

proof is similar to the proof of Theorem 2.1. �



8 Int. J. Anal. Appl. (2023), 21:117

3. Stability of (2.1) in β-Homogeneous Spaces

In 2016, C. Park [13] proved the generalised Hyer-Ulam-Rassias stability of additive ρ-functional

inequalities in β-homogeneous complex Banach space.

In this section, we prove the generalised Hyers-Ulam stability of (1.1) from linear space to β-

homogeneous complex Banach space, using the control of Gavruta.

Definition 3.1. Let X be a linear space over C. An F -norm is a function ‖ · ‖ : X → [0,∞) such that

:

(1) ‖x‖ = 0 if and only if x = 0,

(2) ‖λx‖ = ‖‖x‖ for every x ∈ X and every λ with |λ| = 1,

(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ X,
(4) ‖λnx‖ → 0 provided λn → 0,

(5) ‖λxn‖ → 0 provided xn → 0.

(X, d) is a metric space by letting d(x, y) = ‖x − y‖. It is called an F -space if d is complete.

If, in addition, ‖tx‖ = tβ‖x‖ for all x ∈ X and t ∈ C, then ‖ · ‖ is called β-homogeneous (β > 0). A

β-homogeneous F -space is called a β-homogeneous complex Banach space.

Remark 3.1. For an s-convex modular ρ, if we define

‖x‖p = inf
{
αs > 0; ρ

( x
α

)
≤ 1
}
, x ∈ Yρ.

Then ‖ · ‖p is an F -norm on Yρ such that ‖λx‖ρ = |λ|s‖x‖ρ. Hence, ‖ · ‖ρ is s-homogeneous. For

s = 1, this norm is called the luxemburg norm.

Now, we prove the generalised Hyers-Ulam Gavruta stability of (1.1) from linear spaces to β-

homogeneous Banach spaces.

Theorem 3.1. Let X be a linear space, Y be a β-homogeneous complex Banach space (0 < β ≤ 1),

and ϕ : X2 → [0,∞) be function with

ψ(x, y) =
1

2β

n∑
j=1

1

2(j−1)β
ϕ
(

2j−1x, 2j−1y
)
<∞ (3.1)

for all x, y ∈ X. Assume that f : X → X is a mapping satisfying f (0) = 0 and

‖f (x + y)− f (x)− f (y)‖ ≤
∥∥∥∥f (x + y

2

)
−

1

2
f (x)−

1

2
f (y)

∥∥∥∥+ ϕ(x, y) (3.2)

for all x, y ∈ X. Then there exists a unique additive mapping h : X → Y such that:

‖f (x)− h(x)‖ ≤ ψ(x, x) (3.3)

for all x ∈ X.
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Proof. Letting y = x in (3.2), we get: ‖f (2x)− 2f (x)‖ ≤ ϕ(x, x) and so∥∥∥∥1

2
f (2x)− f (x)

∥∥∥∥ ≤ 1

2β
ϕ(x, x). (3.4)

By induction on k ∈ N, using (3.4) it is easy to see that:∥∥∥∥∥ f
(

2kx
)

2k
− f (x)

∥∥∥∥∥ ≤ 1

2β

k∑
j=1

1

2(j−1)β
ϕ
(

2j−1x, 2j−1x
)

x ∈ X. (3.5)

for all k ∈ N. Let m and n be nonnegative integers with n > m. Then by (3.5), we have∥∥∥∥ f (2nx)

2n
−
f (2mx)

2m

∥∥∥∥ =

∥∥∥∥ 1

2m

(
f (2nx)

2n−m
− f (2mx)

)∥∥∥∥
≤

1

2mβ
·

1

2β

n−m∑
j=1

1

2(j−1)β
ϕ
(

2j+m−1x, 2j+m−1x
)

=
1

2β

n−m∑
j=1

1

2(j+m−1)β
ϕ
(

2j+m−1x, 2j+m−1x
)

=
1

2β

n∑
k=m+1

1

2(k−1)β
ϕ
(

2k−1x, 2k−1x
)
. (3.6)

Since the last expression (3.6) goes to 0 by (3.1), it follows that, for every x ∈ X, the sequence{
f (2nx)
2n

}
is a Cauchy sequence in X.

Since X is complete, we know that the sequence is convergent. Hence, there exists a mapping:

h : X → Y defined by

h(x) = lim
n→∞

f (2nx)

2n
, x ∈ X.

Letting m = 0 and passing the limit n → ∞ in (3.6), we obtain (3.3). In order to show that T is

additive, we write

‖h(x + y)− h(x)− h(y)‖ = lim
n→∞

∥∥∥∥ f (2n(x + y))

2n
−
f (2nx)

2n
−
f (2ny)

2n

∥∥∥∥
= lim
n→∞

1

2nβ
‖f (2n(x + y))− f (2nx)− f (2ny)‖

≤ lim
n→∞

1

2nβ

∥∥∥∥f (2n(x + y)

2

)
−

1

2
f (2nx)−

1

2
f (2ny)

∥∥∥∥
+

1

2nβ
ϕ (2nx, 2ny)

≤
∥∥∥∥h(x + y

2

)
−

1

2
h(x)−

1

2
h(y)

∥∥∥∥ .
Then by [13, Lemma 2.1.], T is additive.
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Now, let h : X → X be another additive mapping satisfying (3.2). Then we have:

‖h1(x)− h2(x)‖ =
1

2βn
‖h1(2nx)− h2(2nx)‖

≤
1

2βn
(‖h1(2nx)− f (2nx)‖+ ‖h2 (2nx)− f (2nx)‖)

≤
2

2βn
ψ (2nx, 2nx)

≤
2

2βn
·

1

2β

∞∑
=1

1

2j−1β
ϕ
(

2j+n−1, 2j+n−1x
)

≤ 21−β
∞∑
j=1

1

2β(j+n−1)
ϕ
(

2j+n−1x, 2j+n−1x
)

= 21−β
∞∑

k=n+1

1

2β(k−1)
ϕ
(

2k−1x, 2k−1x
)
−→ 0 as k →∞,

for all x ∈ X, from which it follows that h1 = h2. �

Letting ϕ = ε > 0 in Theorem 3.1, we obtain a result on classical Ulam stability of the additive

functional inequality.

Corollary 3.1. Let X be a linear space and X be a β-homogeneous complete Banach space with

0 < β ≤ 1.

If f : X → X is a mapping satisfying f (0) = 0 and

‖f (x + y)− f (x)− f (y)‖ ≤
∥∥∥∥f (x + y

2

)
−

1

2
f (x)−

1

2
f (y)

∥∥∥∥+ ε

for all x, y ∈ X, then there exists a unique additive mapping h : X → Y such that:

‖f (x)− h(x)‖ ≤
ε

2β − 1
.

4. Stability of (1.2) in Fuzzy Banach Algebras

Let X be a real algebra, and D : X → X is an additive mapping:

(1) D is called a derivation if

D(xy) = D(x)y + xD(y), x, y ∈ X

(2) D is called a Jordan derivation if

D(x2) = D(x)x + xD(x), x ∈ X

(3) In addition, D is called a Jordan triple derivation in the sens from [2] if

D(xyx) = D(x)yx + xD(y)x + xyD(x), x, y ∈ X

if an additive mapping is a derivation, so it is a Jordan derivation, and if D is a Jordan

derivation, so it is a Jordan triple derivation.
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However, the converse implication is note true in general.

Theorem 4.1. Let (X,N) be a fuzzy Banach algebra, and ϕ : X2 → [0,∞) be a function such that

ϕ(0, 0) = 0 and there exists an 0 < L < 1 satisfying

ϕ(x, y) ≤ 2Lϕ
(x

2
,
y

2

)
for all x, y ∈ X.

Assume f : X → X is a mapping satisfies:

(a) N(f (x + y)− f (x)− f (y)) ≥ min

{
N

(
f (
x + y

2
)−

1

2
f (x)−

1

2
f (y), t

)
,

t

t + ϕ(x, y)

}
(b)

N(f (xyx)− f (x)yx − xf (y)x − xyf (x), t) ≥
t

t + ϕ(x, y)
(4.1)

for all x, y ∈ X, t > 0.

Then there exists a unique jordan triple derivation h : X → X such that:

N(f (x)− h(x), t) ≥
(2− 2L)t

(2− 2L)t + ϕ(x, x)
, x ∈ X, t > 0.

The mapping T is defined by

h(x) = N − lim
n→∞

1

2n
f (2nx), x ∈ X.

Proof. By [4, Theorem 2.4], the mapping h is additive. Replace (x, y) with (2nx, 2ny) in (4.1), we

get

N

(
1

23n
f (23nxyx)−

1

23n
22nf (2nx)yx −

1

23n
22nxf (2ny)x −

1

23n
22nxyf (2nx), t

)
= N(f (23nxyx)− 22nf (2nx)yx − 22nxf (2ny)x − 22nxyf (2nx), 23nt)

≥
23nt

23nt + ϕ (2nx, 2ny)

≥
23nt

23nt + (2L)nϕ(x, y)

=
t

t +

(
L

4

)n
ϕ(x, y)

Then

h(xyx) = h(x)yx + xh(y)x + xyh(x), x, y ∈ X. (4.2)

Therefore, h is a Jordan triple derivation. �

Let A an algebra. If whenever aAa = {a} for a ∈ A, implies a = 0, then A is called semiprime. All

C∗-Algebra are examples of semiprime algebras. Let R be a ring. If 2r = 0 implies r = 0 for r ∈ R,
then R is said to be 2-torsion free. Now, we show that the mapping f in Theorem 4.1 is a derivation

if the algebra is semiprime.
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Theorem 4.2. Let (X,N) be a unital 2-torsion free semiprime fuzzy Banach algebra.

Let ϕ : X2 → [0,∞) be a function such that ϕ(0, 0) = 0 and there exists an 0 < L < 1 satisfying:

(a) ϕ(x, y) ≤ 2Lϕ
(x

2
,
x

2

)
,

(b)
{

1

2n
ϕ
(
x,
y

2n

)
\n ∈ N

}
is bounded,

Assume f : X → X is a mapping such that

(c) N(f (x + y)− f (x)− f (y)) ≥ min

{
N

(
f (
x + y

2
)−

1

2
f (x)−

1

2
f (y), t

)
,

t

t + ϕ(x, y)

}
,

(d)

N(f (xyx)− f (x)yx − xf (y)x − xyf (x), t) ≥
t

t + ϕ(x, y)
. (4.3)

Then f is an additive derivation.

Proof. We know that: h(x) = N − limn→∞
1

2n
f (2nx), x ∈ X is an additive Jordan triple derivation.

Replacing (x, y) with (2nx, y) in (4.3), we get

N

(
1

22n
f (22nxyx)−

1

22n
2nf (2nx)yx −

1

22n
22nxf (y)x −

1

22n
2nxyf (2nx), t

)
= N(f (22nxyx)− 2nf (2nx)yx − 22nxf (y)x − 2nxyf (2nx), 22nt)

≥
22nt

22nt + ϕ (2nx, y)

≥
22nt

22nt + (2L)nϕ(x,
y

2n
)

=
t

t +

(
L

2

)n
ϕ(x,

y

2n
)

from wich we have:

h(xyx) = h(x)yx + xf (y)x + xyh(x) (4.4)

for all x, y ∈ X. Comparing (4.4) and (4.2), we get:

xh(y)x = xf (y)x for all x ∈ X.

Letting x = 1, we conclude thqt T = f . Then f is a Jordan triple derivation. By [2, Theorem 4.3], we

conclude that f is an additive derivation (Every Jordan triple derivation on a 2-torsion free semiprime

ring is a derivation.) �

5. Conclution

In this work, we have proved the Hyers-Ulam stability of additive functional inequality, using the

direct method, ftrom linear spaces to modular spaces satisfuing ∆2-condition with τ = 2.

We have also proved the same result for β-homogeneous Banach spaces.
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Finally, we have shown the stability of the functional equation associated with the Jordan triple

derivation in fuzzy Banach algebra by a fixed point method.
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