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Abstract. Persistent homology is a tool from a set of methods called Topological data analysis, showing

until nowadays a lot of success when it comes to application in biology since this latest uses metrics

only for measuring similarities, Embedding the geometric details and focusing on the global shape is

the key point making the success of persistent homology, this will be investigated in the paper since

enormous work already done in the field and results seems to be endless, as an efficient topological data

analysis tool. In this work we will be confirming the latest assumption (topology embeds geometry) by

displaying the structure of COILED SERINE which is a protein estimated to constitute 3-5 percent of

the encoded residues in most genomes, and giving a substitute of the optimal characteristic distance

that can be used in the flexibility-rigidity index, a classic method used to simulate molecule movements

and flexible behavior, when it comes to atomic rigidity functions. We will also analyze interesting

patterns in the binding site of the beta sheet generated from the pdb file 2JOX. We will be detecting

and giving a simple description of different patterns generated by using javaplex generating barcodes

and linear statistical results as a summary statistics.

1. Introduction

Giving interpretation of statistical summaries is being the main building block of any conclusion of

an applied mathematical result, the paradigm of a well defined figure reflecting the starting hypothesis

is the key point to any valuable scientific work, for that reason we will be investigating recent works
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on topological data analysis since this latest is until nowadays being considered as the perfect tool on

the two levels, algorithmic and axiomatic to be approaching a convincing answer. We will be dealing

with the following points to survey our hypothesis:

• categories : parametric vs non parametric in TDA.

• parametric models: 1st methodology in TDA: Modeling and replicating statistical topology.

• Space of persistence diagrams, first definition, wasserstein distance measure.

• KERNEL DENSITY ESTIMATOR.

• point cloud, filtration parameter.

• statistical tests.

• Norm of a persistent diagram.

Different exploitations of TDA in molecular biology can be resumed in the following points:

• protein structure prediction.

• protein structure analysis.

• protein-ligand binding : integration of "element specific persistent homology" also called

"multicomponent persistent homology" for protein-ligand binding affinity prediction.

• protein binding site analysis.

And different statistical methods can be summarized in :

• linear statistical approach using persistent homology.

• element specific persistent homology (ESPH).

• atom specific persistent homology (ASPH).

• Electrostatic persistence (EP).

• multi component persistence homology (MCPH).

• multi level persistent homology (MLPH).

• Electrostatic persistence.

• topological descriptors for an unsupervised learning approach.

A linear statistical approach for persistent homology is known to be the best way for none mathematical

theoreticians to be deriving interesting results in the field of protein structure prediction and analysis,

the first time TDA was used for such purpose is via persistent homology [1], with a comparison between

topological and geometrical methods through a construction of different physical methods Xia, K and

collaborators gives interesting results giving itself a confirmation to the well defined paradigm of

topology-function rather than the geometry-function one, a detailed description of the method using

persistent landscapes as the statistical summary was giving in [2] for the analysis of a "protein binding",

the introduction of that tool comes from the restricted theoritical frame of barcodes to be defining

a statistical observation since the statistical study involves calculating frechet means and a bijection

between a frechet means and the set of barcodes seems to clearly be difficult to realize, barcodes are

known to be the popularized statistical summary of persistent homology, using accumulated bar length
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is another interesting way where persistent homology can be exploited as shown in [3] to figure out

exponential kernel of molecular dynamic simulations, highlighting topological signature of an atom in

a macro molecule or " weighted persistent homology" [4] (ASPH) can even be more precise on the

macromolecular level.

1.1. Persistent homology, clustering an atoms point cloud. Until nowadays a protein is defined to

be as the main building component of all cellular tissues in all living organisms, this definition holds

thanks to Anfinsen’s dogma [5] but facing a real challenge regarding the complexity of the folding

path of a protein, Analysis of protein structure and development of summary statistics to find an

accurate structure-function relationship have made an evolutionary steps during last decades thanks

to the enormous available data generated from Xray crystallography, the availability of data gives birth

to a new paradigm wich is "the complexity of data" and computational topology seems to perfectly

answer a lot of questions [6], We can be sure from the XYZ distribution since all the configurations

follow physical laws, but we need a better way to link between atoms in a macroscopic level in order

to catch up the other aspects of a protein —involving persistent homology in detection and analysis

of protein folding path was investigated using topological feature vector [7] The choice of persistent

homology comes from its capacity of neglecting metric details and capturing void, cavities and holes

at different scales by using a filtration parameter [8] [9] which is the truly demanded function from

the mathematical tools used in the analysis of protein structure and binding sites. The majority of

the mathematical models used to study protein characteristics such as flexibility, folding and structure

are geometrically based ones which level up the complexity of the algorithms, we mention several

methods to compute those network metrics such as VisANT [10], CentiScaPe [11], CentiLib [12] and

Visone [2], but all these models and tools can’t catch up the dynamical nature of the protein which is

done perfectly when using the filtration parameter [13].

As already mentioned we will analyze the topology structure of COILED SERINE, and giving a clear

response of how a substitute of the optimal characteristic distance that can be used in the flexibility-

rigidity index (a classic method used to simulate molecule movements and flexible behavior, when it

comes to atomic rigidity functions) can be replaced by a simple topological descriptors. We will also

analyze interesting patterns in the binding site of the beta sheet generated from the pdb file 2JOX

and will be detecting and giving a simple description of different patterns generated by using javaplex

generating barcodes and linear statistical diagrams as a summary statistics. We will witness through

the results, the dynamical nature of this parameter, the protocol starts with a point cloud, topology

gives us the ability to hide the algebraic invariant which comes out with a final shape, the elements

we will be filtering are called homology groups, two shapes or in a better axiomatic way a main level

of the previously defined (protein) called secondary structure is investigated, in a first sight "the beta

sheet" and the "alpha helix" will be reconstructed, the observations we will be using statistics on to

visualize a previously theoretically justified parameter (FRI) are the (x, y) couples indicating the life

time of each homology group, we will reduce dimensions until getting our XY graph.
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This paper is organized in four sections: firstly an introduction see section 1. Secondly, in section 2

we summarize the mathematical material required, especially the persistent homology tools. In section

3, we present all details of our topological approach to analyze the COILED SERINE protein structure.

Finally, in section 4 we make some conclusions and discuss some further possible research issues.

2. Mathematical Background

As mentioned here above, in this section we will summarize the tools that will be used in our

topological view point to approach the structure of the previously defined molecule. We will give the

keynotes of the notion of simplicial homology, and give more details about persistent homology. For

more details about simplicial homology we refer the reader to [14]. The reference [15] and [16] are

considered, by almost all topological data analysts, elementary and unavoidable to learn more about

persistent homology.

2.1. Simplicial homology. Homology is the branch of algebraic topology making the computing part

of it a true realization, the main application is dimentionality reduction via interesting tools such as

persistent homology.

Definition 2.1. A p−dimensional simplex (or p−simplex σp = [e0, e1, ..., ep] is the smallest convex

set in a Euclidean space Rm containing the p + 1 points e0, ..., ep:

∆p = {(t0, ..., tp) ∈ Rp+1 :

p∑
i=0

ti = 1 and ti ≥ 0 for all i = 0, ..., p}

Figure 1. Illustration of p-simplices for p= 0, 1, 2, 3.

Definition 2.2. Any simplex spanned by a subset of e0, ..., ep is called face of the p − simplex

from the previous figure, a face of a tetrahedron is a triangle, it can also be the union of triangles.

Definition 2.3. A simplicial complex K is a finite set of simplices satisfying the following conditions:

(1) For all simplices A ∈ K with α a face of A, we have α ∈ K.
(2) A,B ∈ K ⇒ A,B are properly situated.
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Figure 2. collection of simplices that do not form a simplicial complex

Figure 3. A well defined simplicial complex

Definition 2.4. A p-chains is a formal sum

c =

Np∑
i=1

ciσ
p
i

where σpii are p-simplicies in K and ci ∈ Z.

We define (cp + bp)(σp) = cp(σp) + bp(σp), this induces over the set of p − chains the structure

of a free abelien groupe denoted Cp(K)

Definition 2.5. The boundary operator is a homomorphism

∂p : Cp(K)→ Cp−1(K)

well defined as level of generator as follows: For any p-simplex, σ = [e0, e1, · · · , ep], we associate the

(p − 1)-chain

∂σ =

p∑
i=0

(−1)i [e0, e1, ..., êi , ..., ep]

where êi is omitted.

Thus, we obtain this chain complex

0
i
↪→ Cp(K)

∂p−→ Cp−1(K)
∂p−1−→ ...

∂1−→ C0(K)
∂0−→ 0

where ↪→ denotes the inclusion map. Elements of Zp(K) = ker ∂p are called the p-cycles, while those

of Bp(K) = Im∂p+1 are called boundaries. The following fundamental result states the any boundary

is a cycle. Indeed:
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Theorem 2.1. The boundary of a boundary vanishes, that is,

∂p ◦ ∂p+1 = 0

so we have Im(∂) ⊂ Ker(∂)

The p-th simplicial homology group is defined to be the quotient group

Hp(K) = Zp/Bp.

It measures the obstruction for a cycle to be a boundary. The p − th Betti number is its rank:

βp = rank(Hp).

For any topological space X, one way to define its homology is the following: Firstly one have to

call a p-simplex of X, any continuous map

σ : ∆p → X.

Then denote Kp(X) the Z-module spanned by this p-simplicies. By this approach, one may associate

to any topological space X, a simpicial complex K(X), unique up to homoemorphism. Secondly, one

have to define the faces

λp : ∆p → ∆p−1,

by putting

λp[e0, e1, . . . , ei , . . . , ep] = [e0, e1, . . . , êi , . . . , ep],

where êi is omitted. And finally one have to define the boundaries on ∂pKp(X) → Kp−1(X), as

follows:

∂pσ := σ ◦ λp.

Hence the simplicial homology of X, none other than that of Kp(X). Mathematically speaking

Hp(X) := Hp(Kp(X)).

The simplicial homology of topological space is known to be a homotopical invariant, In other word

two homotopic topological spaces, have the same homology. The inverse is known to be in general

false, however it can be used to prove that two topological space are not homotopic, whenever the

have not the same homology. The key contribution of the simplicial homology is to compute the

number of holes of a given dimension for a topological spaces. Connected components is the case of

dimension 0. For example

• for a point : H0(pt) = Z, while Hp(pt) = 0 for p > 0;

• for a sphere : H0(Sn) = Hn(Sn) = Z, while Hp(Sn) = 0 for all other p;

• for a torus : H0(T ) = Z, H1(T ) = Z⊕ Z, H2(T ) = Z, while Hp(Sn) = 0 for all other p.
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2.2. Persistent homology. Theoretically, the term persistence is for the first time introduced in

[11]. It was describing an abstract definition as a natural extension of homology on filtered simplicial

complexes. For applied purposes persistent homology is working as a statistical tool destined to rebuild

the manifold supporting the point cloud already mentioned in the introduction, the manifold is the

hidden space from which data has been extracted. the result making computing part a true realization

is that persistent homology of filtered complex is nothing but the regular homology of a graded module

over a polynomial ring [17]. Another interesting and explicit description of persistent homology via

visualization of barcodes can be found in [18]. We suggest here a concise precise definition via

classification theorem :

Remark 2.1 (Persistence modules). We apply the "homology functor" to the filtered chain complexes

[2], so we get our "homology groups" category, which can be viewed as :

0
i
↪→ Hp(K)

∂p−→ Hp−1(K)
∂p−1−→ ...

∂1−→ H0(K)
∂0−→ 0

where ↪→ denotes the inclusion map.

Theorem 2.2. For a finite persistence module C with filed F coefficients

H∗(C;F ) ∼= ⊕ix ti .F [x ]⊕ (⊕jx rj .(F [x ]/(xSj .F [x ]))),

that are the quantification of the filtration parameter over a field. A clear description can be found

in [13].

Definition 2.6. The p-persistence k-th homology group

Hl ,pk = Z lk/(Bl+pk ∩ Z lk)

well defined since Bl+pk and Z lk are subgroups of C l+pk

To visualize efficiently the method one need to use metrics, for that aim let’s define a metric on

our topological space :

Definition 2.7. The open vietoris-rips complex

V Rr (X)

is the simplicial complex with vertices the points of X and p − simpl icies the subsets of X with

diameter less than r .
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Figure 4. A vietoris Rips illustration

The lifetime of each homology group, which means the algebraic length of intervals (l , p) together

with the values of k can be summarized and visualized using barcodes, since R is the perfect set to

be describing an interval for analytical purposes, one needs to define homology on vector spaces to be

able to use a field F , this may gives a clear definition ready to be exploited for applied purposes.

Definition 2.8. A barcode is a multiset of intervals in R, filling the previous description.

Figure 5. illustration of the birth and the death of a data through barcodes visualization

If our topological space X is a totaly bounded metric, one can write the barcode as : barcV Rk (X, F )

to separate interleaving components one also needs to calculate distance between barcodes, this gives

the following definition:

Definition 2.9. Giving the decomposition :

⊕Ix := (b(x), d(x))

of the persistent module, the set of R2 points (b(x), d(x))

is the persistent diagram of the barcode (l , p)

To be able to reattach intervals so the continuous property of the filtration can be filled, one needs

to use a distance on the set of persistence diagrams, one way to do it is by using Wasserstein distance.
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Figure 6. A persistent diagram as shared by software

As we can remark from the figure 5 each barcode can be represented by a persistent diagramme.

Definition 2.10. Giving two diagrams Dgmk(F ) and Dgmk(G) the (p, q)-Wasserstein distance is:

W(p, q)(Dgmk(F ), Dgmk(G)) = infM(
∑

x∈Dgmk(K(F ))

((|x −M(x)|))p,q)
p
q

where M is a bijection defined on the points of the diagonal.

The data often comes with noise since we sample from an unknown space (a probability distribution),

for that reason an interesting proposition to survey and correct final results when comes the computing

part is the stability theorem

Theorem 2.3. Let f , g : K −→ R be monotone functions. Then

Wp(Dgmk(f ), Dgmk(g)) ≤ |f − g|p

for a homology dimension k we have:

Wp(Dgmk(f ), Dgmk(g))p ≤
∑

dim(σ)∈k,k+1

|f (σ)− g(σ)|p

One reason the previous theorem is called stability theorem is the contractibility of the Wasserstein

distance, this guarantee theoretically the mapping between data and associated persistent diagrams is

a well defined homeomorphism.
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3. Topological data analysis of the protein

The most popular way Topological data analysis (TDA in short) is exploited is for clustering purposes

through persistent homology since this was the immediate extension of applied statistics in TDA. This

comes from the intrinsic property of a point cloud, even said the axiomatic presentation seems to hide

greater strategies [19]. The field of application making until nowadays a great success is molecular

biology since this latest doesn’t fit into geometric representations when comes serious investigations

or interesting behaviors such as flexibility and folding of proteins, plus the extremely expensive and

complicated computation power needed, an interesting application is the protein binding analysis [20].

Before we present parameters used to generate a suitable filtration one needs to comprehend in depth

the notion of a protein, what is making it such an interesting concept and how modern models has been

shaped through accumulation of interesting results and surveys. We have to mention that with the

evolution in mathematical tools and computation power a lot of theoretical hypothesis made it to a well

defined quantified results. The first step to protein structure definition and analysis start with a Nobel

prize in 1972 for his work on the connection between the amino acid sequence and the biologically

active conformation. Christian ANFINSEN gives to this conformation the first and last definition of

a protein as a concept as well as a hypothesis to be investigated, which means all the researches

made in proteins analysis are about questioning between the amino acid sequence and the active

conformation. We must wait until 1994 when critical assessment of structure prediction becomes

a true valued enterprise, the challenge starts when the relation structure prediction takes place, the

only way to do the calculations was through quantum mechanics which is not a sustainable way. For

that reason after gathering an interesting amount of data the only way to complete databases was

through dealing with the structure prediction question, this demanded a comprehension of the folding

path, then naturally rises the works and results on protein flexibility and rigidity using mathematical

statistical methods rather than experimental geometric ones. For more enlightenment Let’s consider

the geometric representation shown in the figure below, This is the best of what how the visualization

of a protein can be made, clearly a lot of complicated patterns even with the heavy costly computing

demanded power, which also mean no real geometric representation for at least a well folded protein,

we conclude since a protein shape dictates its function, one can tell from the figure why the paradigm

of geometry.function is not a practical way to be adopted for a learning process purposes, being said

rises the question of how the transition to the theoretically confirmed topology.function paradigm can

take place so naturally we can be sure from the learning process.
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Figure 7 Figure 8

Figure 9 Figure 10

Figure 11. Representation of a folded protein with 1IJ3 ID

3.0.1. Topological descriptors of an already defined beta sheet. This section is devoted to an appli-

cation part : the protocol is statistical inference for observations that are barcodes. We will be using

existing data from the freely protein data bank existing on the net, then we will smoothly be reading

results as any statistical study, rearranging data will take place when barcodes seems noisy and difficult

to compute. We will consider the Gaussian noise to set up our point cloud data set contained in R3.700

Let’s illustrate the visualization part by a simple example, our point cloud is the set of atoms lying

in a 3 dimensional space downloaded from a pdb file with 1COS ID, each atom is associated with the

same radius in the distance based filtration. The stream will be constructed for the point cloud data

which is the xyz coordinates of the all atom representation. The size is not too large to choose a

landmark selector, so we will simply build a Vietoris-Rips stream. We can choose a better filtration but

for the limited computation power we stick with the value of 8. In this case a Vietoris-Rips simpicial

complex is largely sufficient to decipher the topological descriptors (a small data set) so their is no

need to use a landmark selector.

We obtain the topological representation of our data in the form of a barcode, which can be called

a topological descriptors.
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Figure 12. alpha helix related topological descriptors

As we can decipher from the resulted barcodes, The β0 bars reveal the bond length information,

the filtration starts by identifying connected components, growing balls continue until they intersect

leaving behind them the bond length information, starting then by identifying the 1-dimensional holes.

Physically, for protein molecule, the bond length is between 1 to 2 Å, in order to get an adequate

filtration the bond length is reflected in the distance based filtration. The two first betti numbers

are describing the loop, hole and void type of structures, clearly with less clarity because of the high

level of high level of the topological information. To detect more topological details of the alpha

carbon point cloud used from the Alpha helix identity 1COS, we utilize the AC with each amino acid

represented by its Cα atom. The simplices are constructed which is helpful for the detection of the

helix structure So the corresponding barcode is simplified. As the last construction a Vietoris-Rips

stream is largely sufficient to decipher the topological features of our data which is an 18 points in a

3-dimensional space.
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Figure 13. descriptors of alpha carbon distribution of an alpha helix generated from a

protein of pdb ID 1COS

As we have already mentioned in the literature, all these barcodes are significant they can hide a

tremendous information about our level of structure or the result of a particular configuration. It is

up to us to catch the topological meaning of these bars in order to find accurate statistical tests.

For the alpha carbon model we consider only the alpha carbon atoms, to catch up the structure of

the backbone we will be constructing a Vietoris-Rips stream.

As it is naturally described, the filtration begins which makes around each Cα atom a topological 3

dimentional sphere, spheres start to overlap which form one dimensional loop, this is exactly our one

dimensional simplex, then the first betti number is calculated and depicted in the barcode as a four

little bars from 0.2 to 1.5 Angstrom.

As mentioned in the literature. We assume that the four levels are well defining the full structure

of the main building component (protein).

3.0.2. Parameters used to generate a suitable filtration. different probabilistic methods and tools are

used to simulate molecular behaviour emerging from atomistic level, we mention that no theoritical

frame is giving, which also means only with a learning process we can find and interpret results, a clear

description can be found in [21].
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Figure 14. beta sheet all atom point cloud related topological descriptors

3.0.3. Description of the folding process. Proteins possess an intrinsic flexibility that allows them

to function through molecular interactions within the cell, among cells and even between organisms.

Many powerful models have been proposed such as the molecular non-linear dynamic (MND) and

flexibility-rigidity index (FRI) to analyze protein main propreties such as folding and flexibility, the

fundamental assumption of these methods is only through Physical laws and immediately following

the mathematical description which is a truly demanding and complicated way one can achieve a

model to be computed, being said, we have through the accumulated results tremendous data to be

simplified into creative statistical tools, we will be using the main models MND and FRI to confirm

the latest view point, which immediately means providing correlation matrix based filtration for the

persistent homology analysis of proteins, An easy example defining the distance matrices for persistent

homology uses can be found in [7]. One of the techniques that are utilized in the flexibility analysis

is Molecular non-linear dynamics : we denote the coordinates of atoms in the molecule studied as

r1, r2, . . . , ri , . . . , rN , where ri ∈ R3 is the position vector of the j th atom. The Euclidean distance

between i th and j th atom ri j can be calculated. We can easily construct our topological connectivity

matrix serving as the input point cloud for our "barcode statistical inference" with monotonically
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Figure 15. beta sheet alpha carbon point cloud related topological descriptors

decreasing radial basis functions. The general form is:

ci j = ωi jΦ(ri j , ηi j)

where ωi j is associated with atomic types, ηi j is the atomic-type related characteristic distance and

Φ(ri j , ηi j) is a radial basis correlation kernel.

A generalized exponential kernel has the form

Φ(r, η) = e−(r/η)
k

, k > 0.

and the Lorentz type of kernels is:

Φ(r, η) =
1

1 + (r/η)ν

, ν > 0.

The parameters k , ν, and η are adjustable. We usually search over a certain reasonable range

of parameters to find the best fitting result by comparing with experimental B-factors [6]. It is

assumed that each particle in a protein can be viewed as a non-linear oscillator and its dynamics can

be represented by a non-linear equation. The interactions between particles are represented by the

correlation matrix (ci j). Therefore, for the whole protein of N particles, we set a non-linear dynamical

system as:
du

dt
= F (u) + Eu
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Where u = (u1, u2, ..., ui , ..., uN)T is an array of state functions for N non-linear oscillators (T denotes

the transpose),

uj = (uj1, uj2, ..., uj i , ..., ujN)

is an n-dimensional non-linear function for the j th oscillator, F (u) = (F (u1), F (u2), ..., F (uN)T is an

array of non-linear functions of N oscillators, and

E = εC
⊗

Γ

Here, ε is the overall coupling strength, C = Ci j i ,j=1,2,...,N is an NN correlation matrix, and Γ is an

n × n linking matrix.

Obviously the transverse stability of the MND system gradually increases during the protein folding

from disorder conformations to their well-defined natural structure.

Figure 16. Behaviour of the folding process through filtration

3.1. Persistent homology analysis of the characteristic distance. We consider a folding protein

that constitutes N particles and has the spatio-temporal complexity of R3N ∗ R+. We Assume that

our system can be described as a set of N nonlinear oscillators of dimension RnN ∗ R+, where n

is the dimensionality of a single nonlinear oscillator. As shown in equations. Φ(r, η) = e−(r/η)
k
and

Φ(r, η) = 1
1+(r/η)ν . Persistent homology can provide a quantitative prediction of optimal characteristic

distances in MND and FRI. The optimal characteristic distance varies from protein to protein. An

adequate filtration process is the essence of persistent homology analysis, for that a filtration matrix

based on a modification of the correlation matrix of MND is proposed:

Mi j =

{
1−Φ(ri j , ηi j) if i 6= j

0 if i = j.
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Where 0 6 Φ(ri j , ηi j) 6 1 is defined previously .with using the exponential kernel with parameter

K = 2. We slightly vary the filtration parameter of the AC point cloud for the Alpha helix from the

1COS identity, the formation of simplicial complex or topological connectivity changes too.

Figure 17 Figure 18

Figure 19 Figure 20

Figure 21. Connectivity patterns of the alpha carbon point cloud

4. Conclusion and discussion

This work is showing an easy application of persistent homology, with the main focus of presenting

a road map to get familiarized with the axiomatic idea, yet with a spectacular result, it was out of the

scope of this proposition to theoretically justify the use of statistical tests on the set of barcodes, but

the application shows clearly that the method can surpass a simple statistical approach, and instead

of conducting a molecular dynamic simulation it is easier to use existing information from models

to construct a quantified sequence of barcodes then to look for its convergence limit, we can find

interesting productions in the literature but none exploited fully persistent homology far from being a

statistical tool, an interesting attempt by using dynamical distances was made by Peter Bubenik and

collaborators, but couldnt theoretically justify barcodes as a statistical observation, instead it gives

birth to a new functional tool wich is persistent landscapes.
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