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Abstract. The novelty of the paper is to investigate the nature of conformal Ricci-Yamabe soliton

on almost pseudo symmetric, almost pseudo Bochner symmetric, almost pseudo Ricci symmetric and

almost pseudo Bochner Ricci symmetric Kähler manifolds. Also, we explore the harmonic aspects of

conformal η-Ricci-Yamabe soliton on Kähler spcetime manifolds with a harmonic potential function f

and deduce the necessary and sufficient conditions for the 1-form η, which is the g-dual of the vector

field ξ on such spacetime to be a solution of Schrödinger-Ricci equation.

1. Introduction

It is well-known that the symmetric spaces play a crucial role in differential geometry. Let (Mn, g)

be an n-dimensional Riemannian manifold with the metric g and the Levi-Civita connection ∇. An

(Mn, g) is called locally symmetric if ∇R=0; where R is the Riemannian curvature tensor of (Mn, g).

The class of Riemannian symmetric manifolds is a natural generalization of the class of manifolds

of constant curvature. The notion of locally symmetric manifolds has been studied by many authors

in several ways to a different extent such as conformally symmetric manifolds [7], semi-symmetric
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manifolds [24], pseudo symmetric manifolds [5, 13], weakly symmetric manifolds [25] and almost

pseudo concircularly symmetric manifolds [11] etc.

A non-flat (Mn, g) is said to be an almost pseudo symmetric (briefly, A(PS)) manifold [11] if its

curvature tensor satisfies the condition

(∇ER)(F ,G,H,W) = [A(E) + B(E)]R(F ,G,H,W) +A(F)R(E ,G,H,W)

+ A(G)R(F , E ,H,W) +A(H)R(F ,G, E ,W) (1.1)

+ A(W)R(F ,G,H, E),

where A, B are two non-zero 1-forms defined by

g(E , %) = A(E), g(E , ρ) = B(E), (1.2)

for all vector fields E , ∇ denotes the operator of covariant differentiation with respect to the metric g.

The 1-forms A and B are called the associated 1-forms. If A = B, then an A(PS) manifold reduces

to a pseudo symmetric manifold, introduced by Chaki [5]. If A = B = 0, then the manifold reduces

to a symmetric manifold in the sense of Cartan [9].

A non-flat (Mn, g) whose Ricci tensor S of type (0, 2) satisfies the condition

(∇ES)(F ,G) = [A(E) + B(E)]S(F ,G) +A(F)S(E ,G) +A(G)S(F , E) (1.3)

is known as almost pseudo Ricci symmetric (briefly, A(PRS)) manifold. Since the notion of pseudo

symmetry in the sense of Chaki [5] is different from that of Deszcz [10] and to be noted that an

A(PRS) manifold is not a particular case of a weakly symmetric manifold introduced by Tamassy and

Binh [25]. Tamassy, De and Binh [26] derived a lot of results on weakly symmetric and weakly Ricci

symmetric Kähler manifolds in 2000. About a decade ago, the authors Narain and Yadav studied

weak concircular symmetries of Lorentzian concircular structure manifolds [3]. In 2010, Shaikh et

al. [23] studied and contributed some remarkable results on quasi-conformlly flat almost pseudo Ricci

symmetric manifolds.

The present paper is organized as follows: After preliminaries in section 2 we recall the fundamental

results of Kähler manifolds and conformal η-Ricci-Yamabe solitons (briefly, CERYS). In section 3 we

study an A(PS) Kähler manifold admitting CRYS and deduce some appreciable results. Section 4,

concern with the investigation of an A(PBS) Kähler manifold admitting CRYS. In section 5, we also

study A(PRS) Kähler manifolds admitting CRYS. Next, in section 6 we consider A(PBRS) Kähler

manifolds admitting CRYS and prove that if the Bochner Ricci tensor ZB is of codazzi type then the

manifold is an Einstein manifold. Also, the harmonic aspects of CERYS on Kähler spcetime manifold

with a harmonic potential function f are also studied in section 7. Finally, we light up some applications

of CERYS, which is based on Theorem 7.1 in section 8.
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2. Kähler Manifolds

A Kähler manifold is an n(= 2m)-dimensional manifold, with a complex structure J and a positive

definite metric g satisfying the conditions

J 2 = −I, g(J E ,JF) = g(E ,F), (∇EJ )(F) = 0, (2.1)

where ∇ denotes the Levi-Civita connection.

In a Kähler manifold we have [2]:
(i) R(J E ,JF) = R(E ,F),

(i i) S(E ,F) = S(J E ,JF),

(i i i) S(J E ,F) = −S(E ,JF).

(2.2)

A Kähler manifold is called an almost pseudo Bochner symmetric (briefly, A(PBS)) manifold if its

Bochner curvature tensor Bc of type (0, 4) is not zero and satisfies the condition

(∇EBc)(F ,G,H,W) = [A(E) + B(E)]Bc(F ,G,H,W) +A(F)R(E ,G,H,W)

+ A(G)Bc(F , E ,H,W) +A(H)R(F ,G, E ,W) (2.3)

+ A(W)Bc(F ,G,H, E),

where A, B are two non zero 1-forms and Bochner curvature tensor Bc of type (0, 4) is defined as

Bc(E ,F ,G,H) = R(E ,F ,G,H)−
1

2n + 4
[g(F ,G)S(E ,H)− g(F ,H)S(E ,G)

+ g(JF ,G)S(J E ,H)− g(JF ,H)S(J E ,G) + g(E ,H)S(F ,G)

− g(E ,G)S(F ,H) + g(J E ,H)S(JF ,G)− g(J E ,G)S(JF ,H) (2.4)

− 2S(FJ E)g(JG,H)− 2S(JG,H)g(J E ,F)]

+
τ

(2n + 2)(2n + 4)
[g(F ,G)g(E ,H)− g(E ,G)g(F ,H)

+ g(JF ,G)g(J E ,H)− g(J E ,G)g(JF ,H)− 2g(J E ,F)g(JG,H)].

A Kähler manifold is called almost pseudo Bochner Ricci symmetric (briefly, A(PBRS)) manifold

if its Bochner Ricci tensor ZB of type (0, 2) is not identically zero and satisfies the condition

(∇EZB)(F ,G) = [A(E) + B(E)]ZB(F ,G) +A(F)ZB(E ,G) +A(G)ZB(F , E), (2.5)

where A, B are nowhere vanishing 1-forms and ZB is given by

ZB(F ,G) =
n

2n + 4
[S(F ,G)−

τ

2(n + 1)
g(F ,G)]. (2.6)

The idea of conformal Ricci flow as a generalization of classical Ricci flow on an (Mn, g) is defined

by [14]
∂g

∂t
= −2(S +

g

n
)− pg, τ(g) = −1, (2.7)
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where p defines a time dependent non-dynamical scalar field (also called the conformal pressure), g is

the Riemannian metric, τ and S represent the scalar curvature and the Ricci tensor ofMn, respectively.

The term -pg plays a role of constraint force to maintain τ in the above equation.

The conformal Ricci soliton on (Mn, g) is defined by [4]:

LEg + 2S =

{
1

n
(pn + 2)− 2µ

}
g, (2.8)

where LE represents the Lie derivative operator along the smooth vector field E on Mn and µ ∈ R (R
is the set of real numbers).

A new class of geometric flows called Ricci-Yamabe flow of type (κ, l), which is scalar combination

of Ricci and Yamabe flows and is defined by [15]

∂

∂t
g(t) = −2κS(g(t))− lτ(t)g(t), g(0) = g0, (2.9)

for some scalars κ and l .

An (Mn, g) is said to have Ricci-Yamabe solitons (RYS) if [12, 20,21,28]:

LEg + 2κS + (2µ− lτ)g = 0, (2.10)

where l , κ, µ ∈ R.
Recently, the authors in [19,27] studied conformal Ricci-Yamabe soliton (CRYS) and is defined on

(Mn, g) by

LEg + 2κS +

{
2µ− lτ −

1

n
(pn + 2)

}
g = 0. (2.11)

An (Mn, g) is said to have CERYS if [16]

LEg + 2κS +

{
2µ− lτ −

1

n
(pn + 2)

}
g + 2λη ⊗ η = 0, (2.12)

where l , κ, µ, λ ∈ R and η is a 1-form on (Mn, g). If E is the gradient of a smooth function f on Mn,

then the equation (2.12) is called the gradient conformal η-Ricci-Yamabe soliton (briefly, gradient

CERYS) and it turns to

∇2f + κS +

{
µ−

lτ

2
−

1

2
(p +

2

n
)

}
g + λη ⊗ η = 0, (2.13)

where ∇2f is said to be the Hessian of f . A CRYS (or gradient CRYS) is said to be shrinking, steady

or expanding if µ < 0, = 0 or > 0, respectively. Thus, a CERYS (or gradient CERYS) reduces to

(i) conformal η-Ricci soliton if κ = 1, l = 0, (i i) conformal η-Yamabe soliton if κ = 0, l = 1, and

(i i i) conformal η-Einstein soliton if κ = 1, l = −1.
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3. A(PS) Kähler manifolds admitting CRYS

Let (Mn, g) be an A(PS) Kähler manifold admitting CRYS. By taking the covariant derivative of

(2.2)(i), we have

(∇ER)(JF ,JG,H,W) = (∇ER)(F ,G,H,W). (3.1)

In view of (1.1) and (2.2)(i), equation (3.1) takes the form

A(F)R(E ,G,H,W) +A(G)R(F , E ,H,W)

= A(JF)R(E ,JG,H,W) +A(JG)R(JF , E ,H,W), (3.2)

which by contracting gives

S(E ,W) = 0. (3.3)

Therefore, we can state

Theorem 3.1. Every A(PS) Kähler manifold is Ricci flat.

With reference to [5], we state

Corollary 3.1. Every A(PS) Kähler manifold can not be conformally flat.

Using (3.3) in (2.11), we have

(LEg)(F ,G) +

{
2µ− lτ −

1

n
(pn + 2)

}
g(F ,G) = 0. (3.4)

Replacing F = G = ei , where {ei} is an orthonormal basis of the tangent space at each point of the

manifold and summing over i(1 ≤ i ≤ n), we find

div(E) +

{
nµ−

nlτ

2
−

1

2
(pn + 2)

}
= 0. (3.5)

If we assume that E is solenoidal, then div(E)=0. Thus (3.5) reduces

µ =
1

2n
[lτn + (pn + 2)]. (3.6)

Next, we assume that the vector field E is of gradient type, i.e., E=grad(f ), where f is a smooth

function on Mn. Thus we can state:

Corollary 3.2. If the metric g of an n-dimensional A(PS) Kähler manifold be a CRYS (g, E , κ, l , µ),

where E is the gradient of a smooth function f , then

∇2f = −
{
nµ−

nlτ

2
−

1

2
(pn + 2)

}
.

Corollary 3.3. If an A(PS) Kähler manifold admits a CRYS and E is solenoidal, then the soliton is

expanding, steady or shrinking according as p T −(lτ + 2
n ).
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Corollary 3.4. If an A(PS) Kähler manifold admits a CRYS and the vector field E is solenoidal, then

we have
Types of sol i ton Conditions for the solitons to be expanding, steady and shrinking

conformal Ricci soliton p T −2n
conformal Yamabe soliton p T −(τ + 2

n )

conformal Einstein soliton p T (lτ − 2n )

A vector field E is said to be a conformally Killing if and only if the following relation holds:

(LEg)(F ,G) = 2ψg(F ,G), (3.7)

where ψ is some function. Moreover, if ψ is not constant then E is said to be proper. Also when

ψ is constant, then E is called homothetic vector field; and if ψ(6= 0), then E is said to be proper

homothetic vector field. If ψ=0, then E is called Killing vector field. Thus, from (3.4) and (3.6), we

notice that the vector field E is killing vector field. Now we state the result:

Theorem 3.2. Let (g, E , κ, l , µ) be a CRYS in an A(PS) Kähler manifold, then the vector field E is

killing.

4. A(PBS) Kähler manifolds admitting CRYS

Let (Mn, g) be an A(PBS) Kähler manifold. Then in view of (2.1),(2.2)(i),(2.3) and (2.4), we

have

(∇EBc)(JF ,JG,H,W) = (∇EBc)(F ,G,H,W). (4.1)

Using (2.3) in (4.1), we get

A(F)Bc(E ,G,H,W) +A(G)Bc(F , E ,H,W) (4.2)

= A(JF)Bc(E ,JG,H,W) + Bc(JG)R(JF , E ,H,W).

After suitable contraction, we get

ZB(E ,W) = 0. (4.3)

By virtue of (4.3), equation (2.6) have the form

S(E ,W) =
τ

2(n + 1)
g(E ,W). (4.4)

Thus, we can state

Theorem 4.1. An A(PBS) Kähler manifold is an Einstein manifold.

Now, by using (4.4) in (2.11), we have

(LEg)(F ,G) +

{
κτ

(n + 1)
+ 2µ− lτ −

1

n
(pn + 2)

}
g(F ,G) = 0. (4.5)
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By putting F = G = ei , where {ei} is an orthonormal basis of the tangent space at each point of the

manifold and summing over i (1 ≤ i ≤ n), we obtain

div(E) +

{
τnκ

2(n + 1)
+ nµ−

nlτ

2
−

1

2
(pn + 2)

}
= 0. (4.6)

If we suppose that E is solenoidal, then div(E)=0. Thus the equation (4.6) gives

µ =
1

2n
[lτn + (pn + 2)−

τnκ

(n + 1)
]. (4.7)

Again, we suppose that the vector field E is of gradient type, i.e, E=grad(f ), where f is a smooth

function on Mn. Then, we state the following:

Corollary 4.1. If the metric g of an A(PBS) Kähler manifold be a CRYS (g, E , κ, l , µ), where E is the

gradient of a smooth function f . Then

∇2f = −
{

τnκ

2(n + 1)
+ nµ−

nlτ

2
−

1

2
(pn + 2)

}
.

Corollary 4.2. If an A(PBS) Kähler manifold admits a CRYS and E is solenoidal, then the soliton is

expanding, steady or shrinking according as p T −(lτ + 2
n −

τκ
n+1).

Corollary 4.3. If an A(PBS) Kähler manifold admits a RYS and E is solenoidal, then the soliton is

expanding, steady or shrinking according as (n + 1)l T κ.

Corollary 4.4. If an A(PBS) Kähler manifold admits a CRYS and the vector field E is solenoidal, then
Types of sol i ton Conditions for the solitons to be expanding, steady and shrinking

conformal Ricci soliton p T −(2n −
τ
n+1)

conformal Yamabe soliton p T −(τ + 2
n )

conformal Einstein soliton p T (lτ − 2n + τκ
n+1)

Now, let the Bochner Ricci tensor ZB is of codazzi type, that is,

(∇EZB)(F ,G) = (∇EZB)(F ,G). (4.8)

In view of (1.3), (4.8) yields

(∇EZB)(F ,G) = [A(E) + B(E)]ZB(F ,G) +A(F)ZB(E ,G) +A(G)ZB(E ,F). (4.9)

On the other hand, from (2.2)(i i) we have

(∇EZB)(JF ,JG) = (∇EZB)(F ,G). (4.10)

If we put

(∇EZB)(F ,G) = T(E ,F ,G),

where T is symmetric in pairs (E ,F),(F ,G) and (G, E). Since ZB is of codazzi type, then in view of

(4.10), one can find T(E ,F ,G)=0. Thus from (4.9) we get

[A(E) + B(E)]ZB(F ,G) +A(F)ZB(E ,G) +A(G)ZB(E ,F) = 0, (4.11)
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which by contracting gives

ZB(F ,G) = 0. (4.12)

With the help of (4.12), equation (2.6) can be written as

S(F ,G) =
τ

2(n + 1)
g(F ,G). (4.13)

Thus, we can state

Theorem 4.2. If an A(PBS) Kähler manifold admits Codazzi type Bochner Ricci tensor, then the

manifold is an Einstein manifold.

Also, using (4.13) in (2.8), we obtain

(LEg)(F ,G) +

{
κτ

(n + 1)
+ 2µ− lτ −

1

n
(pn + 2)

}
g(F ,G) = 0. (4.14)

Replacing F = G = ei , where {ei} is an orthonormal basis of the tangent space at each point of the

manifold and summing over i(1 ≤ i ≤ n), we obtain

div(E) +

{
τnκ

2(n + 1)
+ nµ−

nlτ

2
−

1

2
(pn + 2)

}
= 0. (4.15)

If E is solenoidal, then div(E)=0. Therefore, equation (4.15) gives

µ =
1

2n
[lτn + (pn + 2)−

τnκ

(n + 1)
]. (4.16)

Thus, we have results

Corollary 4.5. If an A(PBS) Kähler manifold with Codazzi type Bochner Ricci tensor admits a CRYS

and E is solenoidal, then the soliton is expanding, steady or shrinking according as p T −(lτ+ 2n−
τκ
n+1).

Corollary 4.6. If the metric g of an A(PBS) Kähler manifold with Codazzi type Bochner Ricci tensor

be a CRYS (g, E , κ, l , µ), where E is the gradient of a smooth function f . Then we have

∇2f = −
{

τnκ

2(n + 1)
+ nµ−

nlτ

2
−

1

2
(pn + 2)

}
.

Corollary 4.7. If an A(PBS) Kähler manifold with Codazzi type Bochner Ricci tensor admits a RYS

and E is solenoidal, then the soliton is expanding, steady or shrinking according as (n + 1)l T κ.

Corollary 4.8. If an A(PBS) Kähler manifold with Codazzi type Bochner Ricci tensor admits a CRYS,

then the vector field E is killing.

Corollary 4.9. If an A(PBS) Kähler manifold with Codazzi type Bochner Ricci tensor admits a CRYS

and the vector field E is solenoidal, then
Types of sol i ton Conditions for the solitons to be expanding, steady and shrinking

conformal Ricci soliton p T −(2n −
τ
n+1)

conformal Yamabe soliton p T −(τ + 2
n )

conformal Einstein soliton p T (lτ − 2n + τκ
n+1)
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5. A(PRS) Kähler manifolds admitting CRYS

We suppose that (Mn, g) be an A(PRS) Kähler manifold. Then from (1.3) and (2.2)(i i), we get

(∇ES)(JF ,JG) = (∇ES)(F ,G). (5.1)

In view of (1.3), equation (5.1) can be written as

A(JF)S(E ,JG) +A(JG)S(JF , E) = A(F)S(E ,G) +A(G)S(F , E), (5.2)

which by contracting gives

S(E ,G) = 0. (5.3)

Therefore, we can state

Theorem 5.1. An A(PRS) Kähler manifold is Ricci flat.

Likewise section 3, we state the following:

Corollary 5.1. Every A(PRS) Kähler manifold can not be conformally flat.

Corollary 5.2. If the metric g of an A(PRS) Kähler manifold be a CRYS (g, E , κ, l , µ), where E is

the gradient of a smooth function f , then we have

∇2f = −
{
nµ−

nlτ

2
−

1

2
(pn + 2)

}
.

Corollary 5.3. If an A(PRS) Kähler manifold admits a CRYS and E is solenoidal, then the soliton is

expanding, steady or shrinking according as p T −(lτ + 2
n ).

Corollary 5.4. If an A(PRS) Kähler manifold admits a CRYS and the vector field E is solenoidal, then
we have

Types of sol i ton Conditions for the solitons to be expanding, steady and shrinking

conformal Ricci soliton p T −2n
conformal Yamabe soliton p T −(τ + 2

n )

conformal Einstein soliton p T (lτ − 2n )

Theorem 5.2. Let (g, E , κ, l , µ) be a CRYS in an A(PRS) Kähler manifold, then the vector field E is

killing.

Next, we suppose that the Ricci tensor S is of codazzi type [1, 22], that is,

(∇ES)(F ,G) = (∇ES)(F ,G). (5.4)

In view of (1.3), equation (5.4) can be written as

(∇ES)(F ,G) = [A(E) + B(E)]S(F ,G) +A(F)S(E ,G) +A(G)S(E ,F). (5.5)
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Also from (2.2)(i i), we have

(∇ES)(JF ,JG) = (∇ES)(F ,G). (5.6)

In particular, if we put

(∇ES)(F ,G) = T(E ,F ,G),

where T is symmetric in pairs (E ,F),(F ,G) and (G, E). Since S is of codazzi type, then in view of

(5.6), one can find T(E ,F ,G)=0. Thus from (5.5), we get

[A(E) + B(E)]S(F ,G) +A(F)S(E ,G) +A(G)S(E ,F) = 0, (5.7)

which by contracting over F and E gives

S(F ,G) = 0. (5.8)

Thus we have the following result:

Theorem 5.3. An A(PRS) Kähler manifold admitting Codazzi type Ricci tensor is Ricci flat.

Also, using (5.8) in (2.8), we obtain

(LEg)(F ,G) +

{
2µ− lτ −

1

n
(pn + 2)

}
g(F ,G) = 0. (5.9)

Replacing F = G = ei , where {ei} is an orthonormal basis of the tangent space at each point of the

manifold and summing over i(1 ≤ i ≤ n), we obtain

div(E) +

{
nµ−

nlτ

2
−

1

2
(pn + 2)

}
= 0. (5.10)

If E is solenoidal, then div(E)=0. Therefore, equation (5.10) gives

µ =
1

2n
[lτn + (pn + 2)]. (5.11)

Let E=grad(f ), where f is a smooth function on Mn. Then from equation (5.11), we get

∇2f = −
{
µ−

lτ

2
−

1

2n
(pn + 2)

}
. (5.12)

Therefore, we can state:

Theorem 5.4. If an A(PRS) Kähler manifold with Codazzi type Ricci tensor admits a CRYS and E is

solenoidal, then the soliton is expanding, steady or shrinking according as p T −(lτ + 2
n ).

Corollary 5.5. If the metric g of an A(PRS) Kähler manifold with Codazzi type Ricci tensor admits

a CRYS (g, E , κ, l , µ), where E is the gradient of a smooth function f , then we have

∇2f = −
{
µ−

lτ

2
−

1

2n
(pn + 2)

}
.
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Corollary 5.6. If an A(PRS) Kähler manifold with Codazzi type Ricci tensor admits a CRYS and the

vector field E is solenoidal, then we have
Types of sol i ton Conditions for the solitons to be expanding, steady and shrinking

conformal Ricci soliton p T −2n
conformal Yamabe soliton p T −(τ + 2

n )

conformal Einstein soliton p T (lτ − 2n )

Corollary 5.7. If an A(PRS) Kähler manifold with Codazzi type Ricci tensor admits a CRYS, then

the vector field E is killing.

6. A(PBRS) Kähler manifolds admitting CRYS

Let (Mn, g) be an A(PBRS) Kähler manifold, then we obtain

ZB(JF ,JG) = ZB(F ,G). (6.1)

After taking the covariant derivative of (6.1), we get

(∇EZB)(JF ,JG) = (∇EZB)(F ,G). (6.2)

Using (6.2) in (2.3), we yields

A(JF) + ZB(J E ,G) +A(JG)ZB(JF , E) = A(F)ZB(E ,G) +A(G)ZB(F , E), (6.3)

which by a suitable contaction leads to

ZB(E ,G) = 0. (6.4)

With the help of (6.4), equation (2.6) takes the form

S(E ,G) =
τ

2(n + 1)
g(E ,G). (6.5)

We conclude the result as follows:

Theorem 6.1. An A(PBRS) Kähler manifold is an Einstein manifold.

Likewise section 4, we state the followings:

Corollary 6.1. If the metric g of an A(PBRS) Kähler manifold be a CRYS (g, E , κ, l , µ), where E is

the gradient of a smooth function f . Then we have

∇2f = −
{

τnκ

2(n + 1)
+ nµ−

nlτ

2
−

1

2
(pn + 2)

}
.

Corollary 6.2. If an A(PBRS) Kähler manifold admits a CRYS and E is solenoidal, then the soliton

is expanding, steady or shrinking according as p T −(lτ + 2
n −

τκ
n+1).

Corollary 6.3. If an A(PBRS) Kähler manifold admits a RYS and E is solenoidal, then the soliton is

expanding, steady or shrinking according as (n + 1)l T κ.
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Corollary 6.4. If an A(PBRS) Kähler manifold admits a CRYS, then the vector field E is killing.

Corollary 6.5. If an A(PBRS) Kähler manifold admits a CRYS and the vector field E is solenoidal,

then
Types of sol i ton Conditions for the solitons to be expanding, steady and shrinking

conformal Ricci soliton p T −(2n −
τ
n+1)

conformal Yamabe soliton p T −(τ + 2
n )

conformal Einstein soliton p T (lτ − 2n + τκ
n+1)

7. Harmonic Aspect of CERYS on Kähler spacetime manifolds

A 4-dimensional Kähler manifold has general relativistic perfect fluid spacetime such type of manifold

is called Kählerian spacetime manifold. Let η be a g-dual 1-form of the given vector field ξ, considering

g(E , ξ) = η(E) and g(ξ, ξ) = −1. Then ξ is called a solution of the Schrödinger-Ricci equation if it

satisfies

div(Lξg) = 0, (7.1)

where (Lξg) is Lie derivative for the vector field ξ. In [8], Chow et al. studied the divergence of the

Lie derivative and has the form

div(Lξg) = (Γ + S)(ξ) + d(div(ξ)), (7.2)

where Γ denote the Laplace-Hodge operator with respect to the metric g and S is the Ricci tensor.

Now we recall the notion of CERYS

Lξg + 2κS +

{
2µ− lτ − (p +

1

2
)

}
g + 2λη ⊗ η = 0. (7.3)

Taking trace of equation (7.3), we get

div(ξ) + (κ− 2l)τ + 4µ− 2(p +
1

2
) + λ|ξ|2 = 0. (7.4)

Also, by direct calculation, we obtain

div(η ⊗ η) = div(ξ)η +∇ξη. (7.5)

By taking the divergence of (7.3) and using (7.5) we have

div(Lξg) + (κ− 2l)d(τ) + 2λ[div(ξ)η +∇ξη] = 0. (7.6)

For the Schrödinger-Ricci soliton, we mention that a 1-form π is a solution of the Schrödinger-Ricci

equation if

(Γ + S)(π) + d(div(π)) = 0. (7.7)

Hence, we have next results.
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Theorem 7.1. A conformal η-Ricci-Yamabe soliton of type (κ, l) in a Kählerian spacetimes (M4, g)

with η the g-dual of the vector field ξ. Then η is the solution of the Schrödinger-Ricci equation if

and only if

d(τ) =
2λ

(κ− 2l)
[{(κ− 2l)τ + 4µ− (p +

1

2
) + λ|ξ|2}η +∇ξη]. (7.8)

Proof. With the help of (7.4), (7.7) and using the fact that 2div(S)=(κ− 2l)d(τ), it follows that η

is a solution of the Schrödinger-Ricci equation if and only if (7.8) holds. �

8. Some applications

As an application, we obtain the following results which is based on Theorem 7.1 for the conformal

η-Ricci-Yamabe soliton, conformal η-Yamabe soliton, and conformal η-Einstein soliton (κ = 1, l = 0,

κ = 0, l = 1, and κ = 1, l = −1) (cf. [6], [17], [18]).

Corollary 8.1. A conformal η-Ricci soliton in a Kählerian spacetime (M4, g) with η the g-dual of the

vector field ξ. Then η is the solution of the Schrödinger-Ricci equation if and only if

d(τ) = 2λ[τ + 4µ− 2(p +
1

2
) + λ|ξ|2}η +∇ξη].

Corollary 8.2. A conformal η-Yamabe soliton in a Kählerian spacetime (M4, g) with η the g-dual of

the vector field ξ. Then η is the solution of the Schrödinger-Ricci equation if and only if

d(τ) = λ[2τ − 4µ+ 2(p +
1

2
)− λ|ξ|2}η −∇ξη].

Corollary 8.3. A conformal η-Einstein soliton in a Kählerian spacetime (M4, g) with η the g-dual of

the vector field ξ. Then η is the solution of the Schrödinger-Ricci equation if and only if

d(τ) =
2λ

3
[3τ + 4µ− 2(p +

1

2
) + λ|ξ|2}η +∇ξη].

9. Conclusions

The conformal η-Ricci-Yamabe soliton on Riemannian manifolds (or, pseudo-Riemannian mani-

folds) is of great importance in the area of differential geometry, especially in Riemannian geometry

and in special relativistic physics as well. In essence, Ricci-Yamabe flow is the most prominent

flagship of modern physics. The conformal η-Ricci-Yamabe soliton is a brand-new concept that

deals geometric and physical applications with mathematical physics, general relativity, quantum

cosmology, quantum gravity, and black hole theory in addition to the differentiable manifold field. As

far as our knowledge goes, the properties of conformal η-Ricci-Yamabe soliton in an almost pseudo

symmetric Kähler manifolds have been studied in this paper.
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