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Abstract. This study aims to investigate the refining relation between two vector general fuzzy au-

tomata (VGFA) and prove that refining relation is an equivalence relation. Moreover, Also, we prove

that if there exists a refining equivalence between two VGFA, then they have the same language. After

that, by considering the notion of refining equivalence, we present the quotient of VGFA. In particular,

we show that any quotient of a given VGFA and the VGFA itself have the same language. Furthermore,

using the quotient VGFA, we obtain a minimal VGFA with the same language.

1. Introduction

The notion of fuzzy set as a method for representing uncertainty has been introduced by Zadeh in

1965 [36]. Fuzzy set theory has become more and more mature in many fields such as fuzzy relation,

fuzzy logic, fuzzy decisionmaking, fuzzy classification, fuzzy pattern recognition, fuzzy control, fuzzy

optimization, and fuzzy automata.

Automata have a long history both in theory and application. Automata are the prime example of

general computational systems over discrete spaces [6]. Fuzzy finite automata were introduced by

Wee [35] and Santos [27, 28] in the late 1960s. Subsequently, the fundamentals of fuzzy language

theory were established by Lee and Zadeh [12] and by Thomason and Marinos [34]. Fuzzy finite

automata have practical applications in environments where uncertainty is naturally present, including

Received: Jul. 11, 2023.

2020 Mathematics Subject Classification. 03E72.
Key words and phrases. general fuzzy automata; refining equivalence; minimal automata; vector general fuzzy

automata.

https://doi.org/10.28924/2291-8639-21-2023-92
ISSN: 2291-8639

© 2023 the author(s).

https://doi.org/10.28924/2291-8639-21-2023-92


2 Int. J. Anal. Appl. (2023), 21:92

fuzzy discrete event systems [24], fault diagnosis, clinical monitoring [26], artificial intelligence , and

model checking [15].

Amongst these studies, the most influential works are related to a study by Das [4] which focuses

on the fuzzy topological characterization of a fuzzy automaton. In their paper, P. Li and Y.M.

Li [13] also studied and investigated the algebraic properties of languages and automata. In another

study, Jin and his coworkers [9] carried out the algebraic study of fuzzy automata based on po-

monoids. Further, Kim, Kim and Cho [11] developed the algebraic notion of fuzzy automata theory

and Mockor [17–19] investigated the use of categorical concepts in the study of fuzzy automata

theory. Qiu [20–23] also studied the algebraic, topological and categorical concept of fuzzy automata

theory based on residuated lattices. In his study, Li [14] clearly examined a categorical approach to

lattice-valued fuzzy automata. Shamsizadeh and her coworkers studied the graph concept for general

fuzzy automata [25, 33], and studied and investigated on the minimization of fuzzy multiset finite

automaton [31,32]. Doostfatemeh and Kremer [5] introduced the concept of general fuzzy automata

to emphasize the insufficiency of the current literature to deal with the applications which in turn

depend on fuzzy automata as a modeling tool, assigning membership values to active states of a fuzzy

automaton. In general, general fuzzy automata provide an attractive systematic way for generalizing

discrete applications [5]. Moreover, general fuzzy automata are able to create capabilities which are

hardly achievable by other tools. On the other hand, the contribution of GFA to neural networks has

been considerable, and dynamical fuzzy systems are becoming more and more popular and useful. In

2022, Shamsizadeh and her coworkers [29], present the notion of general fuzzy automata over a field

(vector general fuzzy automata). General fuzzy automaton over a field are used for generation of

linear codes, detection and correction of errors, construction of testing sequence, and generation of

pseudo-random sequences of numbers. They are also used in experiments that require Mote Carlo

methods, in the protection of data stored in computer systems and radiolocation.

The minimization concept is a fundamental problem in automaton theory. There are plenty of studies

conducted on the minimization problem of fuzzy finite automaton. For example, minimization of the

mealy type of fuzzy finite automaton is discussed in [3], minimization of fuzzy finite automaton with

crisp final states without outputs is studied in [2], and minimization of deterministic finite automaton

with fuzzy (final) states in [16]. For more information see [1, 7, 8, 10,30].

Refining equivalences have been widely used in many areas of computer science to model equivalence

between various systems, and to reduce the number of states of these systems, whereas uniform fuzzy

relations have recently been introduced as a means to model the fuzzy equivalence between elements

of two possible different sets. Here we use the concept of refining equivalences as a powerful tool in the

study of equivalence between fuzzy automata and reduce the number of states of vector general fuzzy

automata. The main aim of this paper is to present the concept of refining equivalence to provide

a very powerful tool in the study of equivalence between vector general fuzzy automata, as well as
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between some related structures. And, we want to demonstrate the minimization way of looking at

this issue by presenting quotient vector general fuzzy automata.

The present paper is organized as folllows: In Section 2, we recall some concepts of vector general

fuzzy automaton (VGFA), max-min VGFA and the language of VGFA. In Section 3, we present a

refining equivalence on two VGFAs and prove that refining equivalence is an equivalence relation.

After that, we prove that the union of all refining equivalences is a refining equivalence, too. Also,

by considering the notion of refining equivalence, we give the quotient of VGFA and show that this

automaton is a minimal VGFA.

2. Preliminaries

In this section, we review some notions which are needed in the next section.

Definition 2.1. [37] A fuzzy finite state automaton (FFA) is a six-tuple denoted by F̃ =

(Q,X,R,Z, δ, ω), where

• Q = {q1, q2, ..., qn} is a finite set of states,

• X = {a1, a2, ..., am} is a finite set of input symbols,

• R is the start state of F̃ ,

• Z = {b1, b2, ..., bk} is a finite set of output symbols,

• δ : Q×X ×Q→ [0, 1] is the fuzzy transition function which is used to map a state (current

state) into another state (next state) upon an input symbol, attributing a value in the interval

[0, 1],

• ω : Q→ Z is the output function.

In an FFA, as can be seen, associated with each fuzzy transition a membership value in [0, 1]. We call

this membership value, the value of the transition.

As usual X∗ denotes the set of all words of elements of X of finite length, including the empty word

Λ in X∗ and |x | denotes the length of x , for any x ∈ X∗.

Definition 2.2. [5] A general fuzzy automaton (GFA) F̃ is an eight-tuple machine denoted by F̃ =

(Q,X, R̃, Z, δ̃, ω, F1, F2), where

• Q = {q1, q2, ..., qn} is a finite set of states,

• X = {a1, a2, ..., am} is a finite set of input symbols,

• R̃ ⊆ P̃ (Q) is the set of fuzzy start states, where the fuzzy power set of Q denoted as P̃ (Q).

• Z = {b1, b2, ..., bk} is a finite set of output symbols,

• δ̃ : (Q× [0, 1])×X ×Q→ [0, 1] is the augmented transition function,

• ω : Q→ Z is the output function,

• F1 : [0, 1] × [0, 1] → [0, 1] is called the membership assignment function. The function

F1(µ, δ), as is seen, is motivated by two parameters µ and δ, where µ is the membership value
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of a predecessor and δ is the value of a transition. In this definition, the process that takes

place upon the transition from state qi to qj on an input ak is represented as

µt+1(qj) = δ̃((qi , µ
t(qi)), ak , qj) = F1(µ

t(qi), δ(qi , ak , qj)).

• F2 : [0, 1]∗ → [0, 1] is called the multi-membership resolution function. The multi-membership

resolution function resolves the multi-membership active states and assigns a single non-

membership value to them.

[0, 1]∗ is the set of elements in [0, 1]. The multi-membership resolution function F2, is a

function which specifies the strategy, that resolves the multi-membership active states and

assigns a single mv to them.

Definition 2.3. [29] Let F be a field and n ∈ N0. By Fn we denote the vector space of column

vectors of dimension n over F . A vector general fuzzy automaton(VGFA) is an automaton F̃v =

(Q,X, R̃, Z, δ̃, ω̃, F1, F2, F3, F4) with the following properties:

(i) There exists a field F and integers k,m, r ∈ N0 such that

1. Q = Fk is a nonempty finite set of states, Q = {u1, u2, u3...}, where u1 =

(u
(1)
1 , u

(2)
1 , ..., u

(k)
1 ) ∈ Fk ,

2. X = Fm is a finite set of input symbols, X = {a1, a2, a3...}, where a1 =

(a
(1)
1 , a

(2)
1 , ..., a

(m)
1 ) ∈ Fm,

3. R̃ ⊆ P (Q̃) is the set of L-fuzzy starts symbols, where the fuzzy power set of Q denoted

as P (Q̃),

4. Z = Fr is a finite set of output symbols, Z = {z1, z2, z3...}, where z1 =

(z
(1)
1 , z

(2)
1 , ..., z

(r)
1 ) ∈ Fr ,

(ii) There exist a k × k matrix A, a k ×m matrix B, and a r × k matrix C, all over F such that

1. δ̃ : (Q× [0, 1])×X×Q→ [0, 1] is the augmented transition function, where δ(u, a, Au+

Ba) ∈ ∆, Since A is a k × k matrix, B is a k ×m matrix, u ∈ F k and a ∈ Fm.
2. ω̃ : (Q× [0, 1])× Z → [0, 1] is the augmented output function.

3. F1 : [0, 1] × [0, 1] → [0, 1] is called the membership assignment function. The function

F1(µ, δ), as is seen, is motivated by two parameters µ and δ, where µ is the membership

value of a predecessor and δ is the value of a transition. In this definition, the process

that takes place upon the transition from state ui to uj on an input ak is represented as

µt+1(uj) = δ̃((ui , µ
t(ui)), ak , uj) = F1(µ

t(ui), δ(ui , ak , uj)).

Which means that membership value (MV) of the state uj at time t + 1 is computed by

function F1 using both the membership value of ui at time t and the membership value

of the transition. There are many options which can be used for the function F1(µ, δ).

For example, it can be max{µ, δ},min{µ, δ}, µ+δ2 or any other applicable mathematical

function.
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4. F2 : [0, 1]× [0, 1]→ [0, 1] is called the membership assignment output function. F2(µ,ω)

as is seen, is motivated by two parameters µ and ω, where µ is the membership value of

present state and ω is the membership value of an output function. Then

ω̃((u, µti (u)), z) = F2(µ
ti (u), ω(u, z)),

Notice that, ω(u, z) > 0 if and only if z = Cu.

5. F3 : [0, 1]∗ → [0, 1] is called the multi-membership resolution function. The multi-

membership resolution function resolves the multi-membership active states and assigns

a single membership value to them.

6. F4 : [0, 1]∗ → [0, 1] is called the multi-membership resolution output function. The multi-

membership resolution output function resolves the output multi-membership active state

and assigns a single output membership value to it

We let the set of all transitions of F̃v is denoted by ∆. Now, suppose that Qact(ti) be the set of

all active states at time ti , for all i ≥ 0. We have Qact(t0) = R̃ and

Qact(ti) = {(Au + Ba, µti (Au + Ba))
∣∣∃u ∈ Qact(ti−1),∃a ∈ X, δ(u, a, Au + Ba) ∈ ∆},

where ∆ = {δ(u, a, Au + Ba)|u ∈ Q, a ∈ X} for every i ≥ 1. Since Qact(ti) is a fuzzy set, to show

that a state u belongs to Qact(ti) and T is a subset of Qact(ti), we write u ∈ Domain(Qact(ti)).

Hereafter, we denote these notations by

u ∈ Qact(ti) and T ⊆ Qact(ti).

Definition 2.4. [29] Let F̃v = (Q,X, R̃, Z, δ̃, ω̃, F1, F2, F3, F4) be a VGFA. We define the max-min

vector general fuzzy automaton F̃ ∗v = (Q,X, R̃, Z, δ̃∗, ω̃, F1, F2, F3, F4) such that δ̃∗ : Qact×X∗×Q→
[0, 1]× [0, 1], where Qact = {Qact(t0), Qact(t1), Qact(t2), ...} and for every i ≥ 0,

δ̃∗((u1, µ
ti (u1)),Λ, u2) =

1 if u1 = u2

0 otherwise
. (2.1)

Also for every i ≥ 0, δ̃∗((u1, µ
ti (u1)), ai+1, u2) = δ̃((u1, µ

ti (u1)), ai+1, u2) and recursively,

δ̃∗((u1, µ
t0(u1)), a1a2...an−1, un) = ∨{δ̃((u1, µ

t0(u1)), a1, u2) ∧ δ̃((u2, µ
t1(u2)), a2, u3) ∧ ...

∧ δ̃((un−1, µ
tn−2(un−1), an−1, un)

∣∣u2 ∈ Qact(t1), ..., un−1 ∈ Qact(tn−1)}, (2.2)

in which ai ∈ X for every 1 ≤ i ≤ n − 1, and assume that ai+1 is the entered input at time ti , for

every 0 ≤ i ≤ n − 2.

Actually, the fact that the vector GFA acts in discrete time we will also use the notation

ut+1 = Aut + Bat , (2.3)

ωut = Cut , (2.4)
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where ut ∈ Qact(t), at ∈ X,ωqt ∈ Z for t ∈ N0.

Since field F and matrices A,B and C entirely characterize the vector gen-

eral fuzzy automaton(VGFA), we shall also denote automaton by 13-tuple machine

(F,Q,X,A,B, C, R̃, Z, δ̃, ω̃, F1, F2, F3, F4).

Definition 2.5. [29] Let F̃ = (F,Q,X,A,B, C, R̃, Z, δ̃, ω̃, F1, F2, F3, F4) be a max-min VGFA. The

language with threshold α, α ∈ [0, 1], recognized by F̃ is a subset of F ∗m defined by

Lα(F̃ ) = {x ∈ F ∗m|δ̃∗((u, µt0(u)), x, v) ∧ ω̃((v , µt0+|x |(v)), z) > α, for some u, v ∈ Fk , z ∈ Z, for i = 1, ..., n}.

3. Refining equivalence on vector general fuzzy automata

Definition 3.1. Let F̃v i = (F i , Qi , X, Ai , Bi , Ci , R̃i = (ui , 1), Zi , δ̃i , ω̃i , F1, F2, F3, F4) be two VGFAs

over field F i , where i = 1, 2. Let ∼= be a binary relation on Q1 ×Q2. For D ⊆ Q1, define

S∼=(D) = {u ∈ Q2
∣∣∃u′ ∈ D, u ∼= u′}.

The relation ∼= can be extended to subsets of Q1 and Q2. For D ⊆ Q1 and E ⊆ Q2 we have

D ∼= E ⇔ D ⊆ S∼=(E) and E ⊆ S∼=(D)

⇔ (∀u ∈ Q1) (∃u′ ∈ Q2)u ∼= u′ and (∀u′ ∈ Q2)(∃u ∈ Q1)u ∼= u′.

Definition 3.2. Let F̃v i = (F i , Qi , X, Ai , Bi , Ci , R̃i = (ui , 1), Zi , δ̃i , ω̃i , F1, F2, F3, F4) be two VGFAs.

Then relation ∼= is called a refining relation if the following hold:

1. u10 ∼= u20 ,

2. u1 ∼= u2 implies that if there exists u′1 ∈ Q1 such that δ̃1((u1, µ
ti (u1)), a, u′1) > 0, then there

exists u′2 ∈ Q2 such that δ̃2((u2, µ
ti (u2)), a, u′2) > 0 and u′1 ∼= u′2, where a ∈ X,

3. u1 ∼= u2 implies that if there exists z1 ∈ Z1 such that z1 = C1u1, then there exists z2 ∈ Z2
such that z2 = C2u2 and vice versa.

Let F̃v i = (F i , Qi , X, Ai , Bi , Ci , R̃i = (ui , 1), Zi , δ̃i , ω̃i , F1, F2, F3, F4), i = 1, 2, 3, be three VGFAs.

Then

1. Clearly, if ∼= is a refining relation between F̃v1 and F̃v2, then its reverse is a refining relation

between F̃v1 and F̃v2. So, relation ∼= is a symmetric relation between Q1 and Q2.

2. if ∼=1 is a refining relation between F̃v1 and F̃v2 and ∼=2 is a refining relation between F̃v2 and

F̃v3, then their composition

∼==∼=1 ◦ ∼=2= {(u, v)
∣∣∃w, u ∼= w and w ∼= v},

is a refining relation between F̃v1 and F̃v3 and it implies that the relation ∼= is a transitive

relation between Q1 and Q3.
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Theorem 3.1. Let F̃v i = (F i , Qi , X, Ai , Bi , Ci , R̃i = (ui , 1), Zi , δ̃i , ω̃i , F1, F2, F3, F4), i = 1, 2, be two

VGFAs and ∼= be a refining relation between F̃v1 and F̃v2. Let u ∼= u′. If there exists u1 ∈ Q1 such
that δ̃1((u, µti (u)), x, u1) > 0, then there exists u′1 ∈ Q2 such that δ̃2((u′, µti (u′)), x, u′1) > 0 and

u1 ∼= u′1, where x ∈ X∗.

Proof. We prove the claim by induction on |x | = n. Let u ∼= u′ and n = 0. Then we have x = Λ.

So, by Definition 2.4, δ̃1((u, µti (u)),Λ, u) > 0 and δ̃2((u′, µti (u′)),Λ, u′) > 0 and u ∼= u′. Now, let

the claim holds, for every y ∈ X∗, such that |y | = n − 1 and n ≥ 2. Let u ∼= u′ and x = ya,

where y ∈ X∗, a ∈ X and |x | = n. Then by induction hypothesis if there exists u1 ∈ Q1 such that

δ̃1((u, µti (u)), y , u1) > 0, then there exists u′1 ∈ Q2 such that δ̃2((u′, µti (u′)), y , u′1) > 0 and u1 ∼= u′1.

Since u1 ∼= u′1 and by Definition 3.2, if there exists u2 ∈ Q1 such that δ̃1((u1, µ
ti+1(u1)), a, u2) > 0,

then there exists u′2 ∈ Q2 such that δ̃2((u′1, µ
ti+1(u′1)), a, u′2) > 0 and u2 ∼= u′2. Therefore, we can

show that if there exists u2 ∈ Q1 such that δ̃1((u, µti (u)), ya, u2) > 0, then there exists u′2 ∈ Q2 such
that δ̃2((u′, µti (u′)), ya, u′2) > 0 and u2 ∼= u′2. �

Theorem 3.2. Let F̃v i = (F i , Qi , X, Ai , Bi , Ci , R̃i = (ui0, 1), Zi , δ̃i , ω̃i , F1, F2, F3, F4), i = 1, 2, be two

VGFAs and ∼= be a refining relation between F̃v1 and F̃v2. Then they are equivalent.

Proof. Let x ∈ L(F̃v1). Then there exist u1 ∈ Q1 and z ∈ Z1 such that

δ̃∗1((u10 , µ
t0(u10)), x, u1) ∧ ω̃1((u1, µ

t0+|x |(u1)), z) > 0.

So, δ̃∗1((u10 , µ
t0(u10)), x, u1) > 0 and ω̃1((u1, µ

t0+|x |(u1)), z) > 0. Therefore, µt0(u10) > 0 and u10 ∼= u20 ,

so by Theorem 3.1, there exists u′1 ∈ Q2 such that δ̃∗2((u20 , µ
t0(u20)), x, u′1) > 0 and u1 ∼= u′1. Since

ω1(u1, z) > 0, then z = Cu1. By Definition 3.2,there exists z ′ ∈ Z2 such that z ′ = Cu′1 and

ω2(u
′
1, z
′) > 0. Therefore, x ∈ L(F̃v2). So, L(F̃v1) ⊆ L(F̃v2). Similarly, L(F̃v2) ⊆ L(F̃v1). Hence,

the claim holds. �

Suppose that |F̃v | denote the cardinality of states of VGFA F̃v = (F,Q,X,A,B, C, R̃ = (u0, 1), Z, δ̃,

ω̃, F1, F2, F3, F4).

Definition 3.3. Let F̃v be a VGFA. If |F̃v | ≤ |F̃ ′v |, for every VGFA F̃ ′v , then F̃v is called a minimal

VGFA.

A refining equivalence between a VGFA and itself is called a refining equivalence on VGFA.

Theorem 3.3. Let F̃v be a VGFA andM be the set of all refining equivalences on F̃v . Then the union

of all refining equivalences inM is a refining equivalence on F̃v and also it is a equivalence relation on

Q.

Proof. Let {∼=i

∣∣i ∈ I} be a nonempty set of refining equivalence between F̃v1 and F̃v2. Consider
∼== ∪i∈I ∼=i . u10 ∼=i u

2
0 becouse of I is nonempty. Then u10 ∼= u20 . Let u ∼= u′. Then u ∼=i u

′, for some
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i ∈ I. If there exists u1 ∈ Q1 such that δ̃∗1((u, µti (u)), x, u1) > 0, then there exists u′1 ∈ Q2 such that

δ̃∗2((u′, µti (u′)), x, u′1) > 0 and u1 ∼=i u
′
1, for some i ∈ I. So, u1 ∼= u′1. Also, Let u ∼= u′. Then u ∼=i u

′,

for some i ∈ I. If z1 ∈ Z1 such that z1 = C1u, then there exists z2 ∈ Z2 such that z2 = C2u
′ and vice

versa. Then it is proved that the union of all refining equivalences inM is a refining equivalence on

F̃v . On the other hand it is symmetric and transitive. Therefore, the union of all refining equivalences

is an equivalence relation on Q. �

Let ≈ be the union of all refining equivalences on F̃v and M ⊆ Q. Define

(1) [E] = {F
∣∣E ≈ F},

(2) ∼= {(E, [E])
∣∣E ∈ Q},

(3) M ′ = {[E]
∣∣E ∈ M}.

Definition 3.4. Let F̃v = (F,Q,X,A,B, C, R̃ = (u0, 1), Z, δ̃, ω̃, F1, F2, F3, F4) be a VGFA and ≈ be

the union of all refining equivalences on F̃v . Define F̃ ′v = (F,Q′, X, A,B, C, R̃′, Z, δ̃′, ω̃′, F1, F2, F3, F4)

the quotient of VGFA F̃v , where Q′ = {[E]|E ∈ Q}, R′ = [u0], µt0([u0]) = 1, δ′ : Q′×X×Q′ → [0, 1]

by δ′([E], a, [F ]) = ∨{δ(E′, a, F ′)
∣∣E ≈ E′, F ≈ F ′}, ω′([E], z) = ∨{ω(E′, z ′)

∣∣E ≈ E′, for some z ′ ∈
Z}. Clearly, δ′ and ω′ are well-defined.

Example 3.1. Let F̃v = (F,Q,X,A,B, C, R̃, Z, δ̃, ω̃, F1, F2, F3, F4) be a VGFA defined over field F =

Q2 of integers modulo 2 such that A =

[
1 0

0 1

]
, B =

[
1

1

]
, C =

[
1 1

]
, Q = {u1 =

[
0

0

]
, u2 =[

1

0

]
, u3 =

[
0

1

]
, u4 =

[
1

1

]
} R̃ = (

[
0

0

]
, 1), X = {a = [0], b = [1]}, Z = {

[
0
]
,
[

1
]
} and δ and ω are

as follows:

δ(

[
0

0

]
,
[

0
]
,

[
0

0

]
) = 0.4, δ(

[
0

0

]
,
[

1
]
,

[
1

1

]
) = 0.6,

δ(

[
1

0

]
,
[

0
]
,

[
1

0

]
) = 0.6, δ(

[
1

0

]
,
[

1
]
,

[
0

1

]
) = 0.7,

δ(

[
0

1

]
,
[

0
]
,

[
0

1

]
) = 0.7, δ(

[
0

1

]
,
[

1
]
,

[
1

0

]
) = 0.9,

δ(

[
1

1

]
,
[

0
]
,

[
1

1

]
) = 0.8, δ(

[
1

1

]
,
[

1
]
,

[
0

0

]
) = 0.4,
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ω(

[
0

0

]
,
[

0
]

) = 0.4, ω(

[
1

0

]
,
[

1
]

) = 0.7,

ω(

[
0

1

]
,
[

1
]

) = 0.2, ω(

[
1

1

]
,
[

0
]

) = 0.5.

Then we have the quotient of VGFA F̃v as follows: Q′ = {[

[
0

0

]
], [

[
1

0

]
]}, R̃′ = ([

[
0

0

]
], 1), and δ′ and

ω′ are as follows:

δ(

[
0

0

]
,
[

0
]
,

[
0

0

]
) = 0.8, δ(

[
0

0

]
,
[

1
]
,

[
1

1

]
) = 0.6,

δ(

[
1

0

]
,
[

0
]
,

[
1

0

]
) = 0.7, δ(

[
1

0

]
,
[

1
]
,

[
0

1

]
) = 0.9,

ω(

[
0

0

]
,
[

0
]

) = 0.5, ω(

[
1

0

]
,
[

1
]

) = 0.7.

Theorem 3.4. Let F̃v be a VGFA as Definition 3.4, and F̃ ′v be the quotient VGFA of F̃v . Then ∼ is

a refining equivalence between F̃v and F̃ ′v .

Proof. Clearly, u0 ∼ [u0]. Let u1 ∼ [u2]. Then u1 ≈ u2. So, if there exists u′1 ∈ Q1 such that

δ̃1((u1, µ
ti (u1)), a,

u1) > 0, then there exists u′2 ∈ Q1 such that δ̃1((u2, µ
ti (u2)), a, u′2) > 0. Therefore,

δ̃′1(([u2], µ
ti ([u2])), a, [u′2]) > 0, such that u′1 ≈ u′2 ∼ [u′2]. On the other hand, if there exists [u′2] ∈ Q′

such that δ̃′1(([u2], µ
ti ([u2])), a, [u′2]) > 0, then by Definition 3.4, there exists u ≈ u2 and u′ ≈ u′2,

such that δ̃1((u, µti (u)), a, u′) > 0. Since, u1 ≈ u2 ≈ u, then there exists u′1 ∈ Q1, such that

δ̃1((u1, µ
ti (u1)), a, u′1) > 0, where u′1 ≈ u′ ≈ u′2. So, u′1 ∼ [u′2].

Now, let u1 ∼ [u2]. Then u1 ≈ u2. If there exists z1 ∈ Z such that z1 = Cu1, then there exists

z2 ∈ Z such that z2 = Cu2. Therefore, ω(u2, z2) > 0. So, by Definition 3.4, there exists z3 ∈ Z such

that ω′([u2], z3) > 0 and z3 = C[u2]. On the other hand if there exists z3 ∈ Z such that z3 = C[u2],

then ω′([u2], z3) > 0. So, there is u ∈ Q and z2 ∈ Z such that u ≈ u2 and ω(u, z2) > 0, where

u ≈ u2. Since u ≈ u2 ≈ u1, then there exists z ∈ Z in which ω(u1, z) > 0 and the claim hold. �

Theorem 3.5. Let F̃v be a VGFA and F̃ ′v be the quotient of F̃v defined in Definition 3.4. Then they

have the same behavior.

Proof. By Theorems 3.2 and 3.4, clearly, F̃v and F̃ ′v have the same behavior. �

Theorem 3.6. The only refining equivalence on the quotient VGFA F̃ ′v is the identity relation.



10 Int. J. Anal. Appl. (2023), 21:92

Proof. Let ≡ be a refining equivalence on F̃ ′v and let [u] ≡ [u′], but [u] 6= [u′]. Now, let ∼ ◦ ≡ ◦(∼)−1,

where (∼)−1 is the inverse of ∼. Then u ∼ [u] ≡ [u′] ∼ u′. So, u ≈ u′, that is a contradiction. Hence
≡ is the identity relation. �

Definition 3.5. Let F̃v be a VGFA. Then u ∈ Q is called accessible if there exists x ∈ X∗ such that

δ̃∗((u0, µ
t0(u0)),

x, u) > 0.

Theorem 3.7. Let F̃v be a VGFA with no inaccessible sates and ≡ be the greatest refining equivalence

on Q. Then the quotient VGFA F̃ ′v is the minimal VGFA.

Proof. It is suffice to show that for every VGFA F̃v2 with no inaccessible states that there is a refining

equivalence between F̃v and F̃v2, any refining equivalence between F̃ ′v and F̃ ′v2 gives a one-to-one

correspondence between the states of F̃ ′v and F̃ ′v2, where F̃
′
v2 is the quotient VGFA F̃v2 according

to greatest refining equivalence ≡. Let ≈ be a refining equivalence between F̃ ′v and F̃ ′v2. Suppose

that every states F̃ ′v2 is related to at least one state of F̃ ′v and every state F̃ ′v is related to at most

one states F̃v2. So, the composition ≈ with its inverse would not be the identity of F̃ ′v , which is a

contradiction with Theorem 3.6. Therefore, ≈ gives a one-to-one correspondece between the states

of F̃ ′v and F̃ ′v2. �

4. Conclusion

In fact, general fuzzy automaton over a field processing has appeared frequently in various areas of

mathematics. General fuzzy automaton over a field are used for generation of linear codes, detection

and correction of errors, construction of testing sequence, and generation of pseudo-random sequences

of numbers. They are also used in experiments that require Mote Carlo methods, in the protection of

data stored in computer systems and radiolocation.

The current study aimed at investigating the refining equivalence between two VGFAs. Moreover,

it was shown that the union of all refining equivalences is a refining equivalence, too. A connection

between the refining equivalence and the quotient VGFA was then introduced and it was shown that

any quotient of a given VGFA and the VGFA itself have the same language. By using the equivalence

classes, a minimal VGFA was then introduced and studied. In particular, it was shown that any quotient

of a given VGFA and the VGFA itself have the same language.
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