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Abstract. In this research paper, the determination of the orientation of a linear interpolation in

an interconnected graph can be achieved by measuring its distance from a group of sonar stations

strategically positioned within the graph. The study utilizes the metric dimension of toeplitz graphs.

Several indices play a crucial role in analyzing motivating activities within such complex structures.

The indices covered in this study include the general connectivity index of the toeplitz graph, zagreb

indices, symmetric division degree index and randic indices, among others.

1. Introduction and Preliminaries

Let p, b1, b2, b3, ..., bm are different +ve integers, with 0 < b1 < b2 < b3 < ... < bm < p. The

finite (undirected) toeplitz graph τp(b1, b2, b3, ..., bm) is a graph with

V ′ = {0, 1, 2, ..., p − 1}, E′ = {i j : |i − j | ∈ B}

The toeplitz graph becomes infinite when |V ′| is infinite[generalization of toeplitz graph paper se]. The
name of that kind of graph class is based on the fact that a toeplitz matrix is its adjacency matrix,

i.e. each of its downwards diagonals is constant, from left to right. Toeplitz matrix is also known

as constant matrix. Obviously, the first row of, such graph, adjacency matrix determines this graph

uniquely, i.e. by a sequence of 0 − 1 where the first element is 0. In general, in the toeplitz graph

τp(b1, b2, b3, ..., bm)
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No of vertices = |V ′(τ)| = p

No of edges of τ = |E′(τ)| =
∑m
i=1 p − bi = C

p
2 =

p(p−1)
2

A topological index (or descriptor of a molecular structure) is a chemical structure-associated

numerical meaning for the association of just a chemical structure with different physical properties,

biological activity or chemical reactivity. It is used to evaluate the quantitative structure-activity

relationships (QSARs) and was proposed by Harlod wiener in 1947. In 1972, Gutman and Trinajstic

established the first and second zagreb indices of graph operations, and in 2016, V.R.KULLI described

the multiplicative hyper-zagreb indices of graphs. In 1975, milan randic proposed the randic index

and Ernesto Estrada described the atom-bond connectivity index. Recently in 2015 Furtula and

Gutman established forgotten index or F − index and corresponding polynomial. Shuxian defined two

polynomials related to the first zagreb index. There are two types of general connectivity index. The

general randic index (or product-connectivity index) was proposed by Bolloba and Erdos and Zhou

and Trinajstic obtained the general sum-connectivity index [On the general sum-connectivity index of

trees]. Now, in this thesis we derived some results on all these "Degree-Based Topological Indices"

for "Teoplitz Graph"

1.1. Teoplitz Matrix. The toeplitz matrices are basically those constant matrices that are parallel

to the main diagonal throughout all diagonals. Since every diagonal has identical elements, a toeplitz

matrix is defined uniquely and therefore easy to memorize from its first row and first column. A matrix

of order p × p is known as teoplitz matrix if ∀1 ≤ k, l ≤ p − 1, such that hk+1l+1. This matrix was

introduced by Otto Teoplitz. Below, an example of a toeplitz matrix is shown.

τ =



0 1 0 2 −2 0 0

1 0 1 0 2 −2 0

0 1 0 1 0 2 −2
3 0 1 0 1 0 2

−1 3 0 1 0 1 0

0 −1 3 0 1 0 1

0 0 −1 3 0 1 0


From its 2p − 1 leading row and column entries, a toeplitz matrix is defined.For a τ toeplitz matrix,

there are two ways to obtain a binary matrix from τ . One is by considering a binary matrix where

entries are the binary indicator values of the corresponding τ entries, and the other one is whose binary

variables are the entries providing the parities of the corresponding τ entries. The binary matrix of

the predictor and the binary matrix of parity of this toeplitz matrix can be seen below. Notice that

the binary matrix indicator only substitutes 1 for each non-zero entry and the binary parity matrix

substitutes its parity for each entry, indicating that if the entry of τ is even then it is substituted by 0

and if entry of τ is odd then it is substituted by 1.
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The indicator binary matrix of τ is

I =



0 1 0 1 1 0 0

1 0 1 0 1 1 0

0 1 0 1 0 1 1

1 0 1 0 1 0 1

1 1 0 1 0 1 0

0 1 1 0 1 0 1

0 0 1 1 0 1 0


The parity binary matrix of τ is

P =



0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

1 0 1 0 1 0 0

1 1 0 1 0 1 0

0 1 1 0 1 0 1

0 0 1 1 0 1 0


The indicator matrix I of τ is symmetric matrix although it is not obtained from a symmetric teoplitz

matrix.

Example In this example we see how a teoplitz matrix is shown by an array of length 2p − 1.

A =



2 3 4 5 6

7 2 3 4 5

8 7 2 3 4

9 8 7 2 3

10 9 8 7 2


Let us observe that in this matrix all the elements in the all diagonals are same. The matrix A has

elements such as;

A[k, l ] = A[k + 1, l + 1].

Sufficient elements of matrix A are 2p−1. A toeplitz matrix A can be determined by its 2p−1 leading
entries of row and column. Now we take an array of size 2p − 1. We use it to represent the teoplitz

matrix. According to matrix A the size of array is 9.

R = 2 3 4 5 6 7 8 9 10

The elements of upper triangular matrix of A are represented in first row and elements of lower

triangular matrix of A are represented in first column. For identifying the elements of teoplitz matrix

A in array R , we use formula.
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Case 1

if k ≤ l
index= l − k
for k = 2 and l = 4

A[2][4] = 4− 2 = 2 = index

Which means that A[2][4] entry is equal to entry of array R at index 2. At index 2 entry is 4. In the

same way, we can find all the elements of upper triangular matrix of A.

Case 2

if k > l

index= p + i − j − 1
for k = 4 and l = 2

A[4][2] = 5 + 4− 2− 1 = 6
Which means that A[4][2] entry is equal to entry of array R at index 6. At index 6 entry is 8. In the

same way, we can find all the elements of lower triangular matrix of A.

1.2. Teoplitz graph. Let H be a toeplitz binary symmetric matrix with all 0 entries in the main diag-

onal. The column numbers with the leading entry 1 are denoted by h1, h2, ..., hm. Then (undirected)

teoplitze graph is symbolized as τp(h1, h2, h3, ..., hm). Which essentially means that the toeplitz

graph, which is undirected, τp(h1, h2, h3, ..., hm) has a vertex set V ′(τ). If V ′ = {1, 2, 3, ..., p}, so
that a vertex k which is contiguous with the vertices k + hl , l = 1, 2, 3, ..., m for k + hl ≤ p. In Figure

1, the toeplitz graph of adjacency matrix I is shown.

Let p, h1, h2, h3, ..., hm are different +ve integers, with 0 < h1 < h2 < h3 < ... < hm < p.

The finite (undirected) toeplitz graph τp(h1, h2, h3, ..., hm) is a graph with

V ′(τ) = {1, 2, 3, ..., p}

E′(τ) = {kl : |k − l | ∈ D}

The toeplitz graph becomes infinite when |V ′| is infinite.(generalization of toeplitz graph paper se)

The name of that kind of graph class is based on the fact that a toeplitz matrix is its adja-

cency matrix, i.e. each of its downwards diagonals is constant, from left to right. Toeplitz matrix is

also known as constant matrix. Obviously, the first row of, such graph, adjacency matrix determines

this graph uniquely, i.e. by a sequence of 0− 1 where the first element is 0. In general, in the toeplitz

graph τp(h1, h2, h3, ..., hm),

No of edges =
∑m
k=1 p − hk

No of Vertices = |V ′(τ)| = p
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Next we discuss the topological indices

42 Balaban et al. included M1(G) and M2(G) among topological indices in a review article and

named them "zagreb indices of the group". Some clarification is required with regard to this. First,

only a handful of topological indices were recognized in the early 1980s and as many of them as possible

were required by the writers of the study. Second, both authors of the paper were representatives of

the theoretical chemistry department of the zagreb institute at that time. The term "zagreb group

index" was soon abbreviated as "zagreb index" and M1G) is now known as the "first zagreb index"

while M2(G) is known as the "second zagreb index". In 1972, the first and second zagreb indices were

established by Gutman and Trinajstic which are the past degree based topological indices of graph. It

is an important molecular descriptor and has been closely correlated with many chemical properties.

Thus, it attracted more and more attention from chemists and mathematicians. The first and second

zagreb indices of graph are important molecular descriptors and have attracted more attention from

chemists and mathematicians.[Degree based topological indices]

The first zagreb index M1(G) is equal to the sum of the squares of the degrees of the vertices for

the (molecular) graph G[1]. It can also be considered as the sum over the edges of G, and M1(G) is

defined as:[The first and second zagreb indices of some graph operations]

M1(G) =
∑

v ′v”∈E′(G)

[deg(v ′) + deg(v”)] (1.1)

The second zagreb index M2(G) is equal to the sum of the products of the degrees of the adjacent

vertices for the pair of vertices for the (molecular) graph G, and M2(G) is defined as resently A.

Asghar et.al[14]:[The first and second zagreb indices of some graph operations]

M2(G) =
∑

v ′v”∈E′(G)

[deg(v ′)deg(v”)] (1.2)

In 1972, the first zagreb index, a very old topological index, was launched and several variants of the

zagreb index were subsequently proposed, e.g. Shirdel et al. described a novel index in 2013 under the

title of ’hyper-zagreb index’ and then it was identified as[2]: [A note on hyper-zagreb index of graph

operations]

HM(G) =
∑

v ′v”∈E′(G)

[deg(v ′) + deg(v”)]2 (1.3)

E. Deutshi and S. Klavzar, in 2015, defined a new polynomial, M-polynomial in the following way, based

on the degree of the vertex[3]:[COMPUTING HYPER ZAGREB INDEX AND M-POLYNOMIALS]

M1(G, y , z) =
∑

v ′v”∈E′(G)

y [deg(v
′)]z [deg(v”)] (1.4)

In Shuxian defined two polynomials related to the first zagreb index as in the form resently Zaib Hassan

Niazi et.al[15]:

M∗1(G, y) =
∑

(v ′∈V ′(G)

deg(v ′).ydeg(v
′) (1.5)
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M0(G, y) =
∑

(v ′)∈V ′(G)

ydeg(v
′) (1.6)

Two zagreb type polynomials are defined as follow resently Mukhtar Ahmad et.al[16]:

Ma,b(G, x) =
∑

v ′v”∈E′(G)

xa(deg(v
′))+b(d(v”)) (1.7)

M ′a,b(G, x) =
∑

v ′v”∈E′(G)

x (a+deg(v
′))(b+deg(v”)) (1.8)

Two updated models of the zagreb index, the first multiplicative zagreb index PM1(G) and the second

multiplicative zagreb index PM2, were introduced, by Todeshine et al. for molecular graph G. Certain

characteristics of both the PM1(G) and PM2(G) indices of particular chemical structures have been

investigated[4].[MULTIPLICATIVE ZAGREB INDICES OF TREES] First multiplicative zagreb index

for molecular graph G defined as follows resently Mukhtar Ahmad et.al[17]:

PM1(G) =
∏

v ′v”∈E′(G)

[deg(v ′) + deg(v”)] (1.9)

Second multiplicative zagreb index for molecular graph G defined as follows:

PM2(G) =
∏

v ′v”∈E′(G)

[deg(v ′)deg(v”)] (1.10)

First multiplicative zagreb polynomial for molecular graph G defined as follows:

PM1(G, y) =
∏

v ′v”∈E′(G)

y [deg(v
′)+deg(v”)] (1.11)

Second multiplicative zagreb polynomial for molecular graph G defined as follows:

PM2(G, y) =
∏

v ′v”∈E′(G)

y [deg(v
′)deg(v”)] (1.12)

The first degree-based topological index was proposed by Milan Randic in 1975[5]:[Degree-Based

Topological Indices]

R(G) =
∑

v ′v”∈E′(G)

1√
deg(v ′)deg(v”)

(1.13)

Atom-bond connectivity index (ABC) is a topological index used in chemistry, environmental sciences

and pharmacology[6]: [Estrada, Torres, Rodriguez, and Gutman, 1998]

ABC(G) =
∑

v ′v”∈E′(G)

√
deg(v ′) + deg(v”)− 2

deg(v ′)deg(v”)
(1.14)

First, second and third reduced zagreb indices[7] are described as follow:

MR1(G) =
∑

v ′v”∈E′(G)

[(deg(v ′)− 1) + (deg(v”)− 1)] (1.15)
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MR2(G) =
∑

v ′v”∈E′(G)

[(deg(v ′)− 1)(deg(v”)− 1)] (1.16)

MR3(G) =
∑

v ′v”∈E′(G)

|(deg(v ′)− 1)− (deg(v”)− 1)| (1.17)

RR(G) =
∑

v ′v”∈E′(G)

1√
(deg(v ′)− 1)(deg(v”)− 1)

(1.18)

The reduced reciprocal randic index[8] is defined as:

RRR(G) =
∑

v ′v”∈E′(G)

√
(deg(v ′)− 1)(deg(v”)− 1) (1.19)

Recently in 2015 Furtula and Gutman [8] introduced another topological index known as forgotten

index or F − index . For more detail on the F − index , we refer to the articles [9]. The forgotten

index of a graph G is defined as[10, 11, 12]:

F (G) =
∑

(v ′v”)∈E(G)

[(deg(v ′))2 + (deg(v”)2] (1.20)

The forgotten polynomial of a graph G is defined as:

F (G, y) =
∑

v ′v”∈E(G)

y [(deg(v
′))2+(deg(v”))2] (1.21)

The symmetric division degree index of a connected graph G is defined as:

SDD(G) =
∑

v ′v”∈E′(G)

mini(deg(v ′), deg(v”))

max(deg(v ′), deg(v”))
+
maxi(deg(v ′), deg(v”))

mini(deg(v ′), deg(v”))
(1.22)

There are two types of general connectivity index. The general Randic index (or product-connectivity

index) was proposed by Bolloba and Erdos and is defined as follows:

PCIλ(G) =
∑

uv∈E′(G)

(deg(v ′)deg(v”))λ (1.23)

where λ is a real number. If λ = −12 , then Zhou and Trinajstic modified the randic index to create

the general sum-connectivity index:[On the general sum-connectivity index of trees]

SCIα(G) =
∑

v ′v”∈E′(G)

(deg(v ′) + deg(v”))α (1.24)

where α is a real number. If α = 1, then the general sum connectivity index becomes the first zagreb

index.
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2. Main Results

In this section, we established some results on degree based topological indices of toeplitz graphs.

Theorem 2.1. Let τ = τp(b1, b2, b3, ..., bm), be the toeplitz graphs. Then, for p ≥ 2, zagreb
indices are

M1(τ) = p
3 − 2p2 + p

M2(τ) =
p(p−1)3
2 .

Proof: The toeplitz graphs τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz graph

τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each vertex in

V ′(τ) is p − 1, i.e.
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2 and

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
Now, by using equations (4.1)− (4.5), we have

M1(G) =
∑
v ′v”∈E′(G)[deg(v

′) + deg(v”)]

M1(τ) =
∑
v ′v”∈E′(τ)[deg(v

′) + deg(v”)]

M1(τ) = |E′(τ)|(p − 1 + p − 1)
M1(τ) =

p(p−1)
2 (2p − 2)

M1(τ) =
p(p−1)
2 (2(p − 1))

M1(τ) = p(p − 1)2

M1(τ) = p(p
2 − 2p + 1)

M1(τ) = p
3 − 2p2 + p

M2(G) =
∑
v ′v”∈E′(G)(deg(v

′)deg(v”))

M2(τ) =
∑
v ′v”∈E′(τ)(deg(v

′)deg(v”))

M2(τ) = |E′(τ)|(p − 1)(p − 1))
M2(τ) =

p(p−1)
2 (p − 1)2

M2(τ) =
p(p−1)3
2 .

Theorem 2.2. Let τ = τp(b1, b2, b3, ..., bm), be the toeplitz graphs, for p ≥ 2. Then
HM(τ) = 2p(p − 1)3

HM(τ, y) = p(p−1)
2 y4(p−1)

2
.

Proof: The toeplitz graphs τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz

graphs τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each

vertex in V ′(τ) is p − 1, i.e.
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
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|E′(τ)| = Cp2 − r , where r = |E′(τ)| = C
p
2

|E′(τ)| = Cp2 − C
p
2

|E′(τ)| = 0
Now, from equation (4.)− (4.), we have HM(τ) =

∑
v ′v”∈E′(τ)[deg(v

′) + deg(v”)]2

HM(τ) = |E′(τ)|(p − 1 + p − 1)2

HM(τ) = p(p−1)
2 (2p − 2)2

HM(τ) = p(p−1)
2 (4(p − 1)2)

HM(τ) = 2p(p − 1)3

HM(τ, y) =
∑
v ′v”∈E′(τ) y

[deg(v ′)+deg(v”)]2

HM(τ, y) = |E′(τ)|y (p−1+p−1)2

HM(τ, y) = p(p−1)
2 y (2p−2)

2

HM(τ, y) = p(p−1)
2 y4(p−1)

2
.

Theorem 2.3. Let τ = τp(b1, b2, b3, ..., bm), be the toeplitz graphs. Then, for p ≥ 2 zagreb

polynomials of Toeplitz graphs are

M1(τ, y) =
p(p−1)
2 y2(p−1)

M2(τ, y) =
p(p−1)
2 y (p−1)

2

M3(τ, y) =
p(p−1)
2

M4(τ, y) =
p(p−1)
2 y2p

2−4p+2

M5(τ, y) =
p(p−1)
2 y2(p−1)

2

M1(τ, y , z) =
p(p−1)
2 y (p − 1)z (p−1)

M∗1(τ, y) = p(p − 1)y (p−1)

M0(τ, y) = py
(p−1)

Ma,b(τ, y) =
n(n−1)
2 y [(a+b)(p−1)]

M ′a,b(τ, y) =
n(n−1)
2 y (ab+(p−1)(a+b+p−1).

Proof: The toeplitz graph τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz graphs

τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each vertex in

V ′(τ) is p − 1, i.e. ,
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2 and

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
Now, by using equations (4.)− (4.), we have

M1(τ, y) =
∑
v ′v”∈E′(τ) y

deg(v ′)+deg(v”)

M1(τ, y) = |E′(τ)|yp−1+p−1

M1(τ, y) =
p(p−1)
2 y (2p−2)

M1(τ, y) =
p(p−1)
2 y2(p−1)
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M2(τ, y) =
∑
v ′v”∈E′(τ) y

deg(v ′)deg(v”)

M2(τ, y) = |E′(τ)|y (p−1)(p−1)

M2(τ, y) = |E′(τ)|y (p−1)
2)

M2(τ, y) =
p(p−1)
2 y (p

2−2p+1)

M3(τ, y) =
∑
v ′v”∈E′(τ) y

|deg(v ′)−deg(v”)|

M3(τ, y) = |E′(τ)|y |(p−1)−(p−1)|

M3(τ, y) =
p(p−1)
2 y0

M3(τ, y) =
p(p−1)
2

M4(τ, y) =
∑
v ′v”∈E′(τ) y

deg(v ′)[deg(v ′)+deg(v”)]

M4(τ, y) = |E′(τ)|y (p−1)[p−1+p−1]

M4(τ, y) =
p(p−1)
2 y (p−1)(2p−2)

M4(τ, y) =
p(p−1)
2 y2(p−1)

2

M4(τ, y) =
p(p−1)
2 y2(p

2−2p+1)

M4(τ, y) =
p(p−1)
2 y2p

2−4p+2)

M5(τ, y) =
∑
v ′v”∈E′(τ) y

deg(v”)[deg(v ′)+deg(v”)]

M5(τ, y) = |E′(τ)|y (p−1)[p−1+p−1]

M5(τ, y) =
p(p−1)
2 y (p−1)(2p−2)

M5(τ, y) =
p(p−1)
2 y2(p−1)

2

M1(τ, y , z) =
∑
v ′v”∈E′(τ) y

[deg(v ′)]z [deg(v”)]

M1(τ, y , z) = |E′(τ)|y (p − 1)z (p−1)

M1(τ, y , z) =
p(p−1)
2 y (p − 1)z (p−1)

M∗1(τ, y) =
∑
(v ′∈V ′(τ) deg(v

′).ydeg(v
′)

M∗1(τ, y) = |V ′(τ)|(p − 1)y (p−1)

M∗1(τ, y) = p(p − 1)y (p−1)

M0(τ, y) =
∑
(v ′)∈V ′(τ) y

deg(v ′)

M0(τ, y) = |V ′(τ)|y (p−1)

M0(τ, y) = py
(p−1)

Ma,b(τ, y) =
∑
v ′v”∈E′(τ) y

a(deg(v ′))+b(d(v”))

Ma,b(τ, y) = |E′(τ)|y [a(p−1)+b(p−1)]

Ma,b(τ, y) =
n(n−1)
2 y [(a+b)(p−1)]

Ma,b(τ, y) =
n(n−1)
2 y [(a+b)(p−1)]

Ma,b(τ, y) =
n(n−1)
2 y [(a+b)(p−1)]

M ′a,b(τ, y) =
∑
v ′v”∈E′(τ) y

(a+deg(v ′))(b+deg(v”))

M ′a,b(τ, y) = |E′(τ)|y (a+p−1)(b+p−1)

M ′a,b(τ, y) = |E′(τ)|y (ab+ap−a+bp+p
2−p−b−p+1)
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M ′a,b(τ, y) = |E′(τ)|y (ab+ap+bp−a−b+p
2−2p+1)

M ′a,b(τ, y) = |E′(τ)|y (ab+p(a+b)−(a+b)+(p−1)
2)

M ′a,b(τ, y) =
n(n−1)
2 y (ab+(a+b)(p−1)+(p−1)

2)

M ′a,b(τ, y) =
n(n−1)
2 y (ab+(p−1)(a+b+p−1).

Theorem 2.4. Let τ = τp(b1, b2, b3, ..., bm), be the toeplitz graphs, for p ≥ 2. Then
PM1(τ) = [2(p − 1)]

p(p−1)
2

PM2(τ) = [p − 1]p(p−1)

PM1(τ, y) = y
p(p−1)2

PM2(τ, y) = y
[ p(p−1)3

2

M2(τ, y , z) = y
p(p−1)3
2 z

p(p−1)3
2 .

Proof: The toeplitz graphs τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz

graphs τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each

vertex in V ′(τ) is p − 1, i.e.
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2 and

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
|E′(τ)| = Cp2 − r , where r = |E′(τ)| = C

p
2

|E′(τ)| = Cp2 − C
p
2

|E′(τ)| = 0
Now, by using equations (4.)− (4.), we have

PM1(τ) =
∏
v ′v”∈E′(τ)[deg(v

′) + deg(v”)]

PM1(τ) = [p − 1 + p − 1]|E
′(τ)|

PM1(τ) = [2p − 2]
p(p−1)
2

PM1(τ) = [2(p − 1)]
p(p−1)
2

PM2(τ) =
∏
v ′v”∈E′(τ)[deg(v

′)deg(v”)]

PM2(τ) = [(p − 1)(p − 1)]|E
′(τ)|

PM2(τ) = [(p − 1)2]
p(p−1)
2

PM2(τ) = [p − 1]p(p−1)

PM1(τ, y) =
∏
v ′v”∈E′(τ) y

[deg(v ′)+deg(v”)]

PM1(τ, y) = y
[p−1+p−1]|E

′(τ)|

PM1(τ, y) = y
(2p−2)× p(p−1)

2

PM1(τ, y) = y
p(p−1)2

PM2(τ, y) =
∏
v ′v”∈E′(τ) y

[deg(v ′)deg(v”)]

PM2(τ, y) = y
[(p−1)(p−1)]|E

′(τ)|
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PM2(τ, y) = y
[(p−1)2]× p(p−1)

2

PM2(τ, y) = y
[ p(p−1)3

2

M2(τ, y , z) =
∏
v ′v”∈E′(τ) y

[deg(v ′)]z [deg(v”)]

M2(τ, y , z) = y
[p−1]|E

′(τ)|
z [p−1]

|E′(τ)|

M2(τ, y , z) = y
[p−1]× p(p−1)

2 z [p−1]×
p(p−1)
2

M2(τ, y , z) = y
p(p−1)3
2 z

p(p−1)3
2 .

Theorem 2.5. Let τ = τp(b1, b2, b3, ..., bm), be the toeplitz graphs, for p ≥ 2. Then
ABC(τ) = p

√
p−2
2 .

Proof: The toeplitz graphs τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz

graphs τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each

vertex in V ′(τ) is p − 1, i.e.
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2 and

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
Now, by using equation (4.), we have

ABC(τ) =
∑
v ′v”∈E′(τ)

√
deg(v ′)+deg(v”)−2
deg(v ′)deg(v”)

ABC(τ) = |E′(τ)|
√
(p−1)+(p−1)−2
(p−1)(p−1)

ABC(τ) = p(p−1)
2

√
(2p−4)
(p−1)2

ABC(τ) = p(p−1)
2

√
2(p−2)
(p−1)2

ABC(τ) =
p
√
2(p−2)
2

ABC(τ) = p ×
√

p−2
2 .

Theorem 2.6. Let τ = τp(b1, b2, b3, ..., bm) be the toeplitz graphs, for p ≥ 2. Then
R(τ) = p

2 .

Proof: The toeplitz graphs τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz

graphs τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each

vertex in V ′(τ) is p − 1, i.e.
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2 and

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
Now, from equation (4.), we have

R(τ) =
∑
v ′v”∈E′(τ)

1√
deg(v ′)deg(v”)

R(τ) = |E′(τ)| 1√
(p−1)(p−1)

R(τ) = p(p−1)
2 × 1√

(p−1)2
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R(τ) = p(p−1)
2 × 1

(p−1)

R(τ) = p
2 .

Theorem 2.7. Let τ = τp(b1, b2, b3, ..., bm), be the toeplitz graphs. Then, for p ≥ 2,
MR1(τ) = p

3 − 3p2 + 2p
MR2(τ) =

p(p−1)(p−2)2
2

MR3(τ) = 0

RR(τ) = p(p−1)
2(p−2)

RRR(τ) = p(p−1)(p−2)
2 .

Proof: The toeplitz graphs τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz

graphs τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each

vertex in V ′(τ) is p − 1, i.e.
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2 and

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
Now, by using equations (4.)− (4.), we have

MR1(τ) =
∑
v ′v”∈E′(τ)[(deg(v

′)− 1) + (deg(v”)− 1)]
MR1(τ) = |E′(τ)|[(p − 1− 1) + (p − 1− 1)]
MR1(τ) =

p(p−1)
2 × (2p − 4)

MR1(τ) =
p(p−1)
2 × (2(p − 2))

MR1(τ) = p(p − 1)(p − 2)
MR1(τ) = p(p

2 − 2p − p + 2)
MR1(τ) = p

3 − 3p2 + 2p

MR2(τ) =
∑
v ′v”∈E′(τ)(deg(v

′)− 1)(deg(v”)− 1)
MR2(τ) = |E′(τ)|(p − 1− 1)(p − 1− 1))
MR2(τ) =

p(p−1)
2 × (p − 2)2

MR2(τ) =
p(p−1)(p−2)2

2

MR3(τ) =
∑
v ′v”∈E′(τ) |(deg(v ′)− 1)− (deg(v”)− 1)|

MR3(τ) = |E′(τ)||(p − 1− 1)− (p − 1− 1)|
MR3(τ) =

p(p−1)
2 (0)

MR3(τ) = 0

RR(τ) =
∑
v ′v”∈E′(τ)

1√
(deg(v ′)−1)(deg(v”)−1)

RR(τ) = |E′(τ)| 1√
(p−1−1)(p−1−1)

RR(τ) = p(p−1)
2 × 1√

(p−2)2

RR(τ) = p(p−1)
2 × 1

(p−2)

RR(τ) = p(p−1)
2(p−2)
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RRR(G) =
∑
v ′v”∈E′(G)

√
(deg(v ′)− 1)(deg(v”)− 1)

RRR(τ) = |E′(τ)|
√
(p − 1− 1)(p − 1− 1)

RRR(τ) = p(p−1)
2 ×

√
(p − 2)2

RRR(τ) = p(p−1)(p−2)
2 .

Theorem 2.8. Let τ = τp(b1, b2, b3, ..., bm) be the toeplitz graphs, for p ≥ 2. Then
F (τ) = p(p − 1)3

F (τ, y) = p(p−1)
2 y [2(p−1)

2].

Proof: The toeplitz graphs τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz

graphs τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each

vertex in V ′(τ) is p − 1, i.e.
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2 and

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
Now, by using equation (4.), we have

F (τ) =
∑
v ′v”∈E(τ)[(deg(v

′))2 + (ded(v”))2]

F (τ) = |E(τ)|[(p − 1)2 + (p − 1)2]
F (τ) = p(p−1)

2 [p2 + 1− 2p + p2 + 1− 2p]
F (τ) = p(p−1)

2 [2p2 − 4p + 2]
F (τ) = p(p−1)

2 [2(p2 − 2p + 1)]
F (τ) = p(p − 1)(p − 1)2

F (τ) = p(p − 1)3

F (τ, y) =
∑
v ′v”∈E(τ) y

[(deg(v ′))2+(ded(v”))2]

F (τ, y) = |E(τ)|y [(p−1)2+(p−1)2]

F (τ, y) = |E(τ)|y [p2+1−2p+p2+1−2p]

F (τ, y) = |E(τ)|y [2p2−4p+2]

F (τ, y) = p(p−1)
2 y [2(p

2−2p+1)]

F (τ, y) = p(p−1)
2 y [2(p−1)

2].

Theorem 2.9. Let τ = τp(b1, b2, b3, ..., bm), be the toeplitz graphs, for p ≥ 2. Then
SDD(τ) = p(p − 1).

Proof: The Toeplitz graphs τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz

graphs τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each

vertex in V ′(τ) is p − 1, i.e.
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2 and



Int. J. Anal. Appl. (2023), 21:111 15

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
Now, by using equation (4.), we have

SDD(τ) =
∑
v ′v”∈E′(τ)

mini(deg(v ′),deg(v”))
max(deg(v ′),deg(v”)) +

maxi(deg(v ′),deg(v”))
mini(deg(v ′),deg(v”))

SDD(τ) = |E′(τ)|mini(p−1,p−1)max(p−1,p−1) +
p−1
p−1

SDD(τ) = |E′(τ)|p−1p−1 +
maxi(p−1,p−1)
mini(p−1,p−1)

SDD(τ) = p(p−1)
2 (2)

SDD(τ) = p(p − 1).

Theorem 2.10. Let τ = τp(b1, b2, b3, ..., bm), be the toeplitz graphs, for p ≥ 2. Then
PCIλ(τ) =

p(p−1)2λ+1
2

SCIα(τ) =
p(p−1)(1+α)
2(1−α)

.

Proof: The toeplitz graphs τ = τp(b1, b2, b3, ..., bm) appears in figure( graph ). The toeplitz

graphs τ = τp(b1, b2, b3, ..., bm) contains p no of vertices and Cp2 no of edges. The degree of each

vertex in V ′(τ) is p − 1, i.e. ,
|V ′(τ)| = p,
|E′(τ)| = Cp2 =

p(p−1)
2 and

deg(v ′) = p − 1,∀v ′ ∈ V ′(τ)
Now, by using equation (4.), we have

PCIλ(τ) =
∑
uv∈E′(τ)(deg(v

′)deg(v”))λ

PCIλ(τ) = |E′(τ)|[(p − 1)(p − 1)]λ

PCIλ(τ) =
p(p−1)
2 (p − 1)2λ

PCIλ(τ) =
p(p−1)2λ+1

2

SCIα(τ) =
∑
v ′v”∈E′(τ)(deg(v

′) + deg(v”))α

SCIα(τ) = |E′(τ)|[p − 1 + p − 1]α

SCIα(τ) =
p(p−1)
2 (2p − 2)α

SCIα(τ) =
p(p−1)(1+α)
2(1−α)

3. Numerical Examples

Let H be a toeplitz binary symmetric matrix with all 0 entries in the main diagonal. The column

numbers with the leading entry 1 are denoted by h1, h2, ..., hm. Then (undirected) teoplitze graphs

is symbolized as τp(h1, h2, h3, ..., hm). Which essentially means that the toeplitz graphs, which is

undirected, τp(h1, h2, h3, ..., hm) has a vertex set V ′(τ). If V ′ = {1, 2, 3, ..., p}, so that a vertex k

which is contiguous with the vertices k + hl , l = 1, 2, 3, ..., m for k + hl ≤ p. In Figure 1, the toeplitz

graphs of adjacency matrix I is shown.

Let p, h1, h2, h3, ..., hm are different +ve integers, with 0 < h1 < h2 < h3 < ... < hm < p. The

finite (undirected) toeplitz graphs τp(h1, h2, h3, ..., hm) is a graph with
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V ′(τ) = {1, 2, 3, ..., p},

E′(τ) = {kl : |k − l | ∈ D}

The toeplitz graphs becomes infinite when |V ′| is infinite.

A toeplitz matrix is an adjacency matrix that determines the first row of a graph uniquely

i.e. by a sequence of 0 − 1 where the first element is 0. In general, in the toeplitz graphs

τp(h1, h2, h3, ..., hm),

No of vertices = |V ′(τ)| = p

No of edges =
∑m
k=1 p − hk

Example 3.1. For the teoplitz graphs τp(h1, h2, h3, ..., hm), let p = 3, then

|V ′(τ)| = 3
|E′(τ)| =

∑2
k=1(p − hk)

|E′(τ)| = p − h1 + p − h2
|E′(τ)| = 3− 1 + 3− 2
|E′(τ)| = 2 + 1
|E′(τ)| = 3
The adjacency symmetric teoplitz matrix of τ3(1, 2) is given below

0 1 1

1 0 1

1 1 0


Here, the degree of each vertex is "2".

The graph is given below:

Figure 1. Graph

Example 3.2. For the teoplitz graph τp(h1, h2, h3, ..., hm), let p = 5, then

|V ′(τ)| = 5
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|E′(τ)| =
∑4
k=1(p − hk)

|E′(τ)| = p − h1 + p − h2 + p − h3 + p − h4
|E′(τ)| = 5− 1 + 5− 2 + 5− 3 + 5− 4
|E′(τ)| = 4 + 3 + 2 + 1
|E′(τ)| = 10

The adjacency symmetric teoplitz matrix of τ5(1, 2, 3, 4) is given below



0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0


Here, the degree of each vertex is "4". The graph is given below:

Figure 2. Graph

Example 3.3. For the teoplitz graph τp(h1, h2, h3, ..., hm), let p = 10, then

|V ′(τ)| = 10
|E′(τ)| =

∑9
k=1(p − hk)

|E′(τ)| = p − h1 + p − h2 + p − h3 + p − h4 + p − h6 + p − h7 + p − h8 + p − h9
|E′(τ)| = 10− 1 + 10− 2 + 10− 3 + 10− 4 + 10− 5 + 10− 6 + 10− 7 + 10− 8 + 10− 9
|E′(τ)| = 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1
|E′(τ)| = 45

The adjacency symmetric teoplitz matrix of τ10(1, 2, 3, 4, 5, 6, 7, 8, 9) is given below
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0 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 0


Here, the degree of each vertex is "9".

The graph is given below:

Figure 3. Graph

Example 3.4. For the teoplitz graphs τp(h1, h2, h3, ..., hm), let p = 25, then

|V ′(τ)| = 25
|E′(τ)| =

∑24
k=1(p − hk)

|E′(τ)| = p−h1+p−h2+p−h3+p−h4+p−h6+p−h7+p−h8+p−h9+p−h10+p−h11+p−h12+p−
h13+p−h14+p−h15+p−h16+p−h17+p−h18+p−h19+p−h20+p−h21+p−h22+p−h23+p−h24
|E′(τ)| = 25− 1 + 25− 2 + 25− 3 + 25− 4 + 25− 5 + 25− 6 + 25− 7 + 25− 8 + 25− 9 + 25−
10 + 25− 11 + 25− 12 + 25− 13 + 25− 14 + 25− 15 + 25− 16 + 25− 17 + 25− 18 + 25− 19 +
25− 20 + 25− 21 + 25− 22 + 25− 23 + 25− 24
|E′(τ)| = 24+23+22+21+20+19+18+17+16+15+14+13+12+11+10+9+8+7+6+5+4+3+2+1
|E′(τ)| = 300
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The adjacency symmetric teoplitz matrix of τ25 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24) is given below



0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0



Here, the degree of each vertex is "24".

The graph is given below:

Figure 4. Graph
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4. Conclusion

The metric dimension of the crystal cubic carbon structure has been investigated and a formula for

its metric dimension has been derived. The metric dimension of specific families of toeplitz graphs

has been examined as well and it has been determined that these graphs exhibit a constant metric

dimension.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-

cation of this paper.
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