
Int. J. Anal. Appl. (2023), 21:102

Geometry of Admissible Curves of Constant-Ratio in Pseudo-Galilean Space

M. Khalifa Saad1,∗, H. S. Abdel-Aziz2, Haytham A. Ali2

1Department of Mathematics, Faculty of Science, Islamic University of Madinah, KSA
2Department of Mathematics, Faculty of Science, Sohag University, 82524 Sohag, Egypt

∗Corresponding author: mohammed.khalifa@iu.edu.sa

Abstract. An admissible curve of a pseudo-Galilean space is said to be of constant-ratio if the ratio of

the length of the tangent and normal components of its position vector function is a constant. In this

paper, we investigate and characterize a spacelike admissible curve of constant-ratio in terms of its

curvature functions in the pseudo-Galilean space G13 . Also, we study some special curves of constant-

ratio such as T -constant and N-constant types of these curves. Finally, we give some computational

examples for constructing the meant curves to demonstrate our theoretical results.

1. Introduction

According to the space curve theory, it is well known that, a curve α(s) in E3 lies on a sphere if its

position vector lies on its normal plane at each point. If the position vector α lies on its rectifying plane

then α(s) is called a rectifying curve [1]. Rectifying curves are characterized by the simple equation:

α(s) = λ(s)T (s) + µ(s)B(s), (1.1)

where λ(s) and µ(s) are smooth functions and T (s) and B(s) are tangent and binormal vector fields

of α, respectively. In [2] the author provided that a twisted curve is congruent to a non constant linear

function of s. On the other hand, in the Minkowski 3-space E31 , the rectifying curves were investigated

in [3, 4]. Besides, in [4] a characterization of the spacelike, the timelike and the null rectifying curves

in the Minkowski 3-space in terms of centrodes were given. The characterization of rectifying curves

in three dimensional compact Lee groups as well as in dual spaces were given in [5], [6], respectively.

For the study of constant-ratio curves, the authors gave the necessary and sufficient conditions for
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curves in Euclidean and Minkowski spaces to become T -constant or N-constant [7–10]. In analogy

with the Euclidean 3-dimensional case, our main goal in this work is to define the spacelike admissible

curves of constant-ratio in the pseudo Galilean 3-space as a curve whose position vector always lies in

the orthogonal complement N⊥ of its principal normal vector field N. Consequently, N⊥ is given by

N⊥ = {V ∈ G13 :< V,N >= 0},

where <·,·> denotes the inner product in G13 . Hence N⊥ is a 2-dimensional plane of G13 , spanned

by the tangent and binormal vector fields T and B, respectively. Therefore, the position vector with

respect to some chosen origin of a considered curve α in G13 , satisfies the parametric equation:

α(s) = mo(s)T (s) +m1(s)N(s) +m2(s)B(s), (1.2)

for some differential functions mi(s), 0 ≤ i ≤ 2, where s is arc-length parameter. Then, we give

the necessary and sufficient conditions for the curve α in G13 to be a constant-ratio curve.

2. Pseudo-Galilean geometry

In this section, we introduce the basic concepts, familiar definitions and notations on pseudo-

Galilean space which are needed throughout this study. The pseudo-Galilean geometry is one of the

real Cayley-Klein geometries of projective signature (0,0,+,-). The absolute of the pseudo-Galilean

geometry is an ordered triple {w, f , I} where w is the ideal (absolute) plane, f is a line in w and I

is the fixed hyperbolic involution of points of f , for more details, we refer to [11, 12]. The geometry

of the pseudo-Galilean space is similar (but not the same) to the Galilean space which was presented

in [11]. The inner and cross product of two vectors x = (x1, y1, z1) and y = (x2, y2, z2) in G13 are,

respectively defined as follows:

g(x, y) =

{
x1x2, i f x1 6= 0 ∨ x2 6= 0,

y1y2 − z1z2 i f x1 = 0 ∧ x2 = 0,

x× y =

∣∣∣∣∣∣∣∣
0 −e2 e3

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣∣ .
Also the norm of a vector x = (x, y , z) is given by

‖x‖ =

{
x , i f x 6= 0,√

|y2 − z2| , i f x = 0.
(2.1)
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The group of motions of the pseudo-Galilean G13 is a six-parameter group given (in affine coordi-

nates) by

x̄ = a + x,

ȳ = b + cx + y coshϕ+ z sinhϕ,

z̄ = d + ex + y sinhϕ+ z coshϕ.

According to the motion group in pseudo-Galilean space, a vector x(x, y , z) is said to be non

isotropic if x 6= 0. All unit non-isotropic vectors are of the form (1, y , z). For isotropic vectors, x = 0

holds. There are four types of isotropic vectors: spacelike (y2 − z2) > 0, timelike (y2 − z2) < 0, and

two types of lightlike (y = ±z) vectors. A non-lightlike isotropic vector is a unit vector if y2−z2 = ±1.

A trihedron (To ; e1, e2, e3) with a proper origin To(xo , yo , zo) which is orthonormal in pseudo-

Galilean sense if the vectors e1, e2, e3 are of the following form: e1 = (1, y1, z1), e2 = (0, y2, z2) and

e3 = (0, εz2, εy2) with y2 − z2 = δ, where ε, δ is +1 or −1. Such trihedron (To ; e1, e2, e3) is called

positively oriented if for its vectors, det(e1, e2, e3) = 1 holds; that is if y2 − z2 = ε.

Let α(t) : I ⊂ R → G13 be a curve parameterized by α(t) = (x(t), y(t), z(t)), where

x(t), y(t), z(t) ∈ C3 (the set of three-times continuously differentiable functions) and t run through

a real interval [12].

Definition 2.1. A curve α given by α(t) = (x(t), y(t), z(t)) is admissible if ẋ(t) 6= 0.

Also, If α is taken as follows:

α(x) = (x, y(x), z(x)), (2.2)

with the condition

y ′′2(x)− z ′′2(x) 6= 0, (2.3)

then the arc-length parameter s is defined by

ds = |ẋ(t)dt| = dx. (2.4)

Here, we assume that ds = dx and s = x as the arc-length of the curve α [12]. The vector

T (s) = α′(s),

is called the tangent unit vector of α. Also, the unit vector field is given by

N(s) =
α′′(s)√

|y ′′2(s)− z ′′2(s)|
, (2.5)

and the binormal vector is expressed as

B(s) =
(0, εz ′′(s), εy ′′(s))√
|y ′′2(s)− z ′′2(s)|

, (2.6)

and it is orthogonal in pseudo-Galilean sense to the osculating plane of α spanned by the vectors α′(s)

and α′′(s). The curve α given by Eq. (2.2) is a spacelike (resp. timelike) if N(s) is a timelike (resp.
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spacelike) vector. The principal normal vector or simply normal is spacelike if ε = +1 and timelike if

ε = −1. Here ε = +1 or −1 is chosen by the criterion det(T,N,B) = 1. That means

∣∣y ′′2(s)− z ′′2(s)
∣∣ = ε(y ′′2(s)− z ′′2(s)). (2.7)

Definition 2.2. In each point of an admissible curve in G13 , the associated orthonormal (in pseudo-

Galilean sense) trihedron {T (s), N(s), B(s)} can be defined. This trihedron is called pseudo-Galilean

Frenet trihedron.

For the pseudo-Galilean Frenet trihedron of an admissible curve α, the Frenet equations are defined

as:

T ′ = κN,

N ′ = τB, (2.8)

B′ = τN.

where κ and τ are the pseudo-Galilean curvatures of α defined as follows:

κ(s) =
√
|y ′′2(s)− z ′′2(s)|, (2.9)

τ(s) =
y ′′(s)z ′′′(s)− y ′′′(s)z ′′(s)

κ2(s)
, (2.10)

and the pseudo-Galilean torsion can be written in the form

τ(s) =
det(α′(s), α′′(s), α′′′(s))

κ2(s)
. (2.11)

The Serret-Frenet equations (2.8) can be written in matrix form as

d

ds


T

N

B

 =


0 κ 0

0 0 τ

0 τ 0



T

N

B

 .
The Pseudo-Galilean sphere with radius r is defined by

S
2

± = {u ∈ G13 : g(u, u) = ±r2},

3. Spacelike curves of constant-ratio in G13

Let α : I ⊂ R → G13 be an arbitrary spacelike admissible curve. In the light of which introduced

in [13–15], we consider the following theorem.
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Theorem 3.1. The position vector of α with curvatures κ(s) and τ(s) 6= 0, and with respect to the

Frenet frame in the pseudo-Galilean space G13 , it can be written as

α = (s + co)T + e−
∫
τ(s)ds

(
c1 e

2
∫
τ(s)ds + e2

∫
τ(s)ds

∫
κ(s)(s + co)

2
e−

∫
τ(s)dsds

−
∫
κ(s)(s + co)

2
e
∫
τ(s)dsds + c2

)
N + e−

∫
τ(s)ds

(
c1 e

2
∫
τ(s)ds (3.1)

+e2
∫
τ(s)ds

∫
κ(s)(s + co)

2
e−

∫
τ(s)dsds +

∫
κ(s)(s + co)

2
e
∫
τ(s)dsds − c2

)
B.

where co , c1 and c2 are arbitrary constants.

Proof. Let α be an arbitrary spacelike curve in the pseudo-Galilean space G13 , then we may express its

position vector as

α(s) = mo(s)T (s) +m1(s)N(s) +m2(s)B(s).

Differentiating this equation with respect to the arc-length parameter s and using the Serret-Frenet

equations (2.8), we obtain

α′(s) = m′o(s)T (s) + (m′1(s) + κ(s)mo(s) + τ(s)m2(s))N(s)

+(m′2(s) + τ(s)m1(s))B(s),

it follows that

m′o(s) = 1,

m′1(s) + κ(s)mo(s) + τ(s)m2(s) = 0, (3.2)

m′2(s) + τ(s)m1(s) = 0.

From Eqs. (3.2), we have

mo(s) = s + co . (3.3)

It is useful to change the variable s to the variable t =
∫
τ(s)ds. Therefore all functions of s will

transform to the functions of t. Here, we will use dot to denote the derivative with respect to t

(where the prime denotes the derivative with respect to s). Also, From Eq. (3.2), we get

m1(t) = −ṁ2(t), where ṁ2 =
dm2
dt

, (3.4)

it leads to

m̈2(t)−m2(t) =
y(t)κ(t)

τ(t)
, y(t) = mo(s) = s + co . (3.5)

The general solution of this equation is given by

m2(t) = e−t
[
c1 e

2t + e2t
∫
κ(t)y(t)

2τ(t)
e−tdt +

∫
κ(t)y(t)

2τ(t)
etdt − c2

]
, (3.6)

where c1 and c2 are arbitrary constants. From Eqs. (3.4) and (3.6), we obtain the function m1(t) as

m1(t) = e−t
[
c1 e

2t + e2t
∫
κ(t)y(t)

2τ(t)
e−tdt −

∫
κ(t)y(t)

2τ(t)
etdt + c2

]
. (3.7)
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Hence, Eqs. (3.6) and (3.7) take the following forms:

m1 = e−
∫
τ(s)ds

[
c1 e

2
∫
τ(s)ds + e2

∫
τ(s)ds

∫
(s + co)κ

2
e−

∫
τ(s)dsds −

∫
(s + co)κ

2
e
∫
τ(s)dsds + c2

]
, (3.8)

m2 = e−
∫
τ(s)ds

[
c1 e

2
∫
τ(s)ds + e2

∫
τ(s)ds

∫
(s + co)κ

2
e−

∫
τ(s)dsds +

∫
(s + co)κ

2
e
∫
τ(s)dsds − c2

]
. (3.9)

Substituting from Eqs. (3.3), (3.8) and (3.9) in Eq. (1.2), the result (3.1) is obtained and thus, the

proof is completed. �

Theorem 3.2. Let α : I ⊂ R → G13 be a spacelike curve with κ 6= 0 and τ 6= 0 in G13 . Then the

position vector and curvatures of α satisfy a vector differential equation of third order.

Proof. Let α : I ⊂ R→ G13 be a spacelike curve with curvatures κ 6= 0 and τ 6= 0 in G13 . From Frenet

equations (2.8), one can write

N =
T ′

κ
, (3.10)

B =
N ′

τ
. (3.11)

Substituting Eq. (3.10) in Eq. (2.8), we get

B′ =
τ

κ
T ′. (3.12)

Differentiating Eq. (3.10) with respect to s and substituting in Eq. (3.10), we find

B =
1

τ

[(
1

κ

)′
T ′ +

(
1

κ

)
T ′′
]
. (3.13)

Similarly, taking the differentiation of Eq. (3.13) and equalize with Eq. (2.8), we obtain

1

τκ
T ′′′ +

[
2

1

τ

(
1

κ

)′
−
(

1

τ

)′ 1

κ

]
T ′′ +

[
1

τ

((
1

κ

)′′
−
τ2

κ

)
−
(

1

τ

)′(1

κ

)′]
T ′ = 0. (3.14)

Hence, it completes the proof. �

Theorem 3.3. The position vector α(s) of a spacelike admissible curve with curvature κ(s) and torsion

τ(s) in the pseudo-Galilean space G13 is computed from the intrinsic representation form

α(s) =

(
s,−

∫ [∫
κ(s) sinh[

∫
τ(s)ds]ds

]
ds,

∫ [∫
κ(s) cosh[

∫
τ(s)ds]ds

]
ds

)
,

with tangent, principal normal and binormal vectors respectively, are given by

T (s) =

(
1,−

∫
κ(s) sinh[

∫
τ(s)ds]ds,

∫
κ(s) cosh[

∫
τ(s)ds]ds

)
,

N(s) =

(
0,− sinh[

∫
τ(s)ds], cosh[

∫
τ(s)ds]

)
,

B(s) =

(
0,− cosh[

∫
τ(s)ds], sinh[

∫
τ(s)ds]

)
.
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Now, for each given α : I ⊂ R → G13 , there is a natural orthogonal decomposition of the position

vector α at each point on α; namely,

α = αT + αN , (3.15)

where αT and αN denote the tangential and normal components of α at the point, respectively. Let∥∥αT∥∥ and
∥∥αN∥∥ denote the length of αT and αN , respectively. In what follows we introduce the

notion of constant-ratio curves. So, similar to the Euclidean case [16], we consider the following

definitions [17].

Definition 3.1. A curve α of the pseudo-Galilean space G13 is said to be of constant-ratio curve if

the ratio
∥∥αT∥∥ :

∥∥αN∥∥ is constant on α(I).

Clearly, for a constant-ratio curve in G13 , we have

m2o
m22 −m21

= c3, (3.16)

for some constant c3.

Definition 3.2. Let α : I ⊂ R → G13 be an admissible curve in G13 . If
∥∥αT∥∥ is constant, then α is

called T -constant curve. Further, T -constant curve α is called of first kind if
∥∥αT∥∥ = 0, otherwise is

called of second kind.

Definition 3.3. Let α : I ⊂ R → G13 be an admissible curve in G13 . If
∥∥αN∥∥ is constant, then α is

called a N-constant curve. For a N-constant curve α, either
∥∥αN∥∥ = 0 or

∥∥αN∥∥ = µ for some non-

zero smooth function µ. Further, a N-constant curve α is called of first kind if
∥∥αN∥∥ = 0, otherwise

it is of second kind.

For N-constant curve α in G13 , we can write∥∥αN(s)
∥∥2 = m22(s)−m21(s) = c4, (3.17)

where c4 is constant.

In what follows, we characterize the admissible curves in terms of their curvature functions mi(s) and

give the necessary and sufficient conditions for these curves to be T -constant or N-constant curves.

Theorem 3.4. Let α : I ⊂ R → G13 be a spacelike curve in G13 . Then α is of constant-ratio if and

only if (
κ′ − κ3c3(s + co)

c3κ2τ

)′
=
−τ
c3κ

.

Proof. Let α : I ⊂ R→ G13 be a spacelike curve given with the invariant parameter s. Then, we have

mo(s) = s + co ,
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where co is an arbitrary constant. Also, from Eq. (3.16), the curvature functions mi(s), 0 ≤ i ≤ 2

satisfy

m2(s)m′2(s)−m1(s)m′1(s) =
s + co
c3

. (3.18)

By using Eqs. (3.2) with Eq. (3.18), we obtain

m1 =
1

c3κ
,

it follows that

m2 =
κ′ − κ3c3(s + co)

c3κ2τ
,

thus, the result is clear. �

3.1. T-constant spacelike curves in G13 .

Proposition 3.1. There are no T -constant spacelike curves in pseudo-Galilean space G13 .

Proof. Let α : I ⊂ R→ G13 be a spacelike curve in G13 . Then
∥∥αT∥∥ = mo , where mo is equal to zero

or a nonzero constant. Since mo = x + co , this contradicts the fact of value of mo . �

3.2. N-constant spacelike curves in G13 .

Lemma 3.1. Let α : I ⊂ R→ G13 be a spacelike curve in G13 . Then α is N-constant curve if and only

if the following condition:

m2(s)m′2(s)−m1(s)m′1(s) = 0,

holds together Eqs. (3.2), where mi(s), 0 ≤ i ≤ 2 are differentiable functions.

Proposition 3.2. Let α : I ⊂ R → G13 be a spacelike curve in G13 . Then α is a N-constant curve of

first kind if α is a straight line in G13 .

Proof. Suppose that α is N-constant curve of first kind in G13 , then

m22(s)−m21(s) = 0.

So, we have two cases to be discussed:

Case 1.

m2(s) = m1(s).

Using Eqs. (3.2), we get

κ = 0.

Case 2.

m2(s) = −m1(s).

Also, from Eqs. (3.2), we obtain

κ = 0.

It means that the curve α is a straight line in G13 . �
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Theorem 3.5. Let α : I ⊂ R → G13 be a spacelike curve in G13 . If α is N-constant curve of second

kind, then the position vector α has the parametrization:

α(s) = (s + co)T (s) +

[
1

4
e−u(s)

(
−4c4 + e2u(s)

)
−

1

2
eu(s)

]
N(s)

+

[
1

4
e−u(s)

(
−4c4 + e2u(s)

)]
B(s), (3.19)

where u(s) =
∫
τ(s)ds + c5, c5 is integral constant.

Proof. From Eq. (3.3), we have

mo(s) = (s + co).

Besides, from of Eq. (3.2) and Eq. (3.17), we obtain

m′22 (s)− τ2(s)m22(s)− c4τ2(s) = 0,

where c4 6= 0 is a real constant. The solution of this equation is given by

m2(s) =
1

4
e−u(s)

(
−4c4 + e2u(s)

)
. (3.20)

If we substitute Eq. (3.3) in Eq. (3.2), we can get

m1(s) =
1

4
e−u(s)

(
−4c4 + e2u(s)

)
−

1

2
eu(s), (3.21)

hence, in light of Eqs. (3.3), (3.20) and (3.21), we obtain the required result. �

Theorem 3.6. Let α be a spacelike curve in G13 with its pseudo-Galilean trihedron {T (s), N(s), B(s)}.
If the curve α lies on a pseudo-Galilean sphere S2±, then it is N-constant curve of second kind and the

center of a pseudo-Galilean sphere of α at the point c(s) is given by

c(s) = α(s) +m1(s)N(s) +m2(s)B(s).

Proof. Let S2± be a sphere in G13 , then S
2
± is given by

S
2

± = {u ∈ G13 : g(u, u) = ±r2},

where r is the radius of the pseudo-Galilean sphere and it is a constant. Let c be the center of the

pseudo-Galilean sphere, then we have

g(c(s)− α(s), c(s)− α(s)) = ±r2.

Differentiating this equation with respect to s, we get

g(−T (s), c(s)− α(s)) = 0, (3.22)

more differentiation yields

g(−T ′(s), c(s)− α(s)) + g(−T (s),−T (s)) = 0.
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From Eq. (2.8), we find

−κ(s)g(N(s), c(s)− α(s)) + 1 = 0, (3.23)

and since c(s)− α(s) ∈ Sp{T (s), N(s), B(s)}, then we can write

c(s)− α(s) = mo(s)T (s) +m1(s)N(s) +m2(s)B(s). (3.24)

Now, from Eq. (3.23) and (3.24), we find

κ(s)m1(s) + 1 = 0,

it follows that

m1(s) = −
1

κ(s)
.

Also, from Eq. (3.22) and (3.24), one can write

g(T (s), c(s)− α(s)) = mo(s),

which gives

mo(s) = 0,

and then Eq. (3.24) becomes

c(s)− α(s) = m1(s)N(s) +m2(s)B(s).

Besides, the derivation of Eq. (3.23) leads to

m2(s) =
−m′1(s)

τ(s)
.

Now, from aforementioned information, we obtain

m22(s)−m21(s) = ±r2 = const.

which completes the proof. �

Theorem 3.7. Let α be N-constant curve of second kind which lies on a pseudo-Galilean sphere S2±
with constant radius r in G13 . Then

m′2(s)− τ(s)m1(s) = 0,

where m2(s) 6= 0, τ(s) 6= 0.

Proof. Let α be a N-constant curve in G13 , then we have

m22(s)−m21(s) = ±r2,

since r is constant, then

m2(s)m′2(s)−m1(s)m′1(s) = 0.

Substituting m2(s) =
m′1(s)
τ(s) in this equation, we get

m′2(s)− τ(s)m1(s) = 0.
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Thus, the proof is completed. �

Theorem 3.8. Let α(s) be a spacelike curve in G13 with κ(s) 6= 0, τ(s) 6= 0. The image of the N-

constant curve α lies on a pseudo-Galilean sphere S2± if and only if for each s ∈ I ⊂ R, its curvatures
satisfy the following equalities:

s + co = 0,

1

4
e−u(s)

(
−4c4 + e2u(s)

)
−

1

2
eu(s) =

1

κ(s)
,

1

4
e−u(s)

(
−4c4 + e2u(s)

)
=

κ′(s)

κ2(s)τ(s)
, (3.25)

where u(s) =
∫
τ(s)ds + c5 and co , c4 and c5 ∈ R.

Proof. By assumption, we have

g(α(s), α(s)) = r2,

for every s ∈ I ⊂ R and r is the radius of the pseudo-Galilean sphere. Differentiating this equation

with respect to s gives

g(T (s), α(s)) = 0. (3.26)

Again, differentiation leads to

g(N(s), α(s)) = −
1

κ(s)
, (3.27)

and also

g(B(s), α(s)) =
κ′(s)

κ2(s)τ(s)
. (3.28)

Using Eqs. (3.26)-(3.28) in Eq. (3.19), we obtain the required result: Eq. (3.25).

Conversely, we assume that Eq. (3.25) holds, for each s ∈ I ⊂ R, then from Eq. (3.19), the position

vector of α can be expressed as

α(s) = −
1

κ(s)
N(s) +

κ′(s)

κ2(s)τ(s)
B(s),

which satisfies the equation: g(α(s), α(s)) = r2. It means that the curve α lies on the pseudo-Galilean

sphere S2±. Hence, the proof is completed. �

Theorem 3.9. Let α be a spacelike curve in G13 . If α is a circle then α is N-constant curve of second

kind.

Proof. If α is a circle, then we have

κ(s) = const and τ(s) = 0.

Also, from Theorem 3.4, one can write

m1 =
1

c3κ
= const.,
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m2 =

∫ (
−τ
c3κ

)
ds = const.,

which leads to

m22(s)−m21(s) = const.

thus, it completes the proof. �

4. Examples

In this section, we give some examples to illustrate our main results.

Example 4.1. Consider the following spacelike curve α : I ⊂ R→ G13 , given by

α(s) =
(
s,
s

6
[2 sinh(2 ln s)− cosh(2 ln s)] ,

s

6
[2 cosh(2 ln s)− sinh(2 ln s)]

)
. (4.1)

Differentiating Eq. (4.1), we get

α′(s) =

(
1,

1

2
cosh(2 ln s),

1

2
sinh(2 ln s)

)
. (4.2)

Pseudo-Galilean inner product follows that 〈α′, α′〉 = 1. So the curve is parameterized by the arc-

length. The tangent vector is

T ′ =

(
0,

1

s
sinh(2 ln s),

1

s
cosh(2 ln s)

)
,

by taking the norm of both sides, we have κ(s) = 1
s . Thereafter, we have

N = (0, sinh(2 ln s), cosh(2 ln s)) ,

and the binormal vector is

B = (0,− cosh(2 ln s),− sinh(2 ln s)) .

From Serret-Frenet equations, one can obtain τ(s) = −2
s . Moreover, the curvature functions mi(s)

are

mo = s, m1 =
s

c3
, m2 = −Ω s, Ω =

(
1 + c3

2c3

)
= const.

So, from Eq. (3.16), we get

m2o
m22 −m21

= z, z =
4(c3)

2

(c3 + 1)2 − 4
= const.

Under the above considerations, α is of constant-ratio and the ratio is equal z. Also, since∥∥αN(s)
∥∥2 = m22(s)−m21(s) =

(
(c3 + 1)2 − 4

4(c3)2

)
s2 6= const.,

then the curve α is a constant-ratio curve but not N-constant curve, see Fig(1a).

Example 4.2. Consider a spacelike curve γ(s) in G13 parameterized by

α(s) =

(
s,−a

∫ (∫
sinh(

s2

2
)ds

)
ds, a

∫ (∫
cosh(

s2

2
)ds

)
ds

)
,

where a ∈ R.
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Then we have

γ′(s) = T (s) =

(
1,−a

∫
sinh(

s2

2
)ds, a

∫
cosh(

s2

2
)ds

)
,

T ′(s) =

(
0,−a sinh(

s2

2
), a cosh(

s2

2
)

)
.

By a straightforward calculations, we obtain

N(s) =

(
0,− sinh(

s2

2
), cosh(

s2

2
)

)
,

B(s) =

(
0,− cosh(

s2

2
), sinh(

s2

2
)

)
,

where κ(s) = a = const and τ(s) = s.

Since the curve has a constant curvature and non-constant torsion, so it is a Salkowski curve.

From Theorem 3.4, we have the curvature functions:

m1 =
1

c3κ
=

1

ac3
,

m2 =
κ′ − κ3c3s
c3κ2τ

= −a, a is constant,

which leads to

m22(s)−m21(s) = (−a)2 −
(

1

ac3

)2
= const.

It follows that γ is N-constant curve but not constant-ratio curve, see Fig(1b).

(a) (b)

Figure 1. (A) The constant-ratio curve α, (B) the N-constant Salkowski curve γ;

a = 2.
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5. Conclusion

In the three-dimensional pseudo-Galilean space, spacelike admissible curves of constant-ratio and

some special curves such as T -constant and N-constant curves have been studied. Furthermore, the

spherical images of these curves have been studied. Some interesting results of N − constant curves
have been obtained. Finally, as an application for this work, two examples are given and plotted to

confirm our main results.
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