On Anti-Q-Fuzzy Deductive Systems of Hilbert Algebras

Main Article Content

M. Vasuki, P. Senthil Kumar, N. Rajesh


In this paper, the concept of anti-Q-fuzzy deductive systems concepts of Hilbert algebras are introduced and proved some results. Further, we discuss the relation between anti-Q-fuzzy deductive system and level subsets of a Q-fuzzy set. Anti Q-fuzzy deductive system is also applied in the Cartesian product of Hilbert algebras.

Article Details


  1. B. Ahmad, A. Kharal, On Fuzzy Soft Sets, Adv. Fuzzy Syst. 2009 (2009), 586507. https://doi.org/10.1155/2009/586507.
  2. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87-96. https://doi.org/10.1016/s0165-0114(86)80034-3.
  3. A.K. Adak, D.D. Salokolaei, Some Properties of Pythagorean Fuzzy Ideal of Near-Rings, Int. J. Appl. Oper. Res. 9 (2019), 1-9.
  4. M. Atef, M.I. Ali, T.M. Al-Shami, Fuzzy Soft Covering-Based Multi-Granulation Fuzzy Rough Sets and Their Applications, Comput. Appl. Math. 40 (2021), 115. https://doi.org/10.1007/s40314-021-01501-x.
  5. D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe. J. Math. 2 (1985), 29-35. https://cir.nii.ac.jp/crid/1570854175360486400.
  6. D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe. J. Math. 5 (1988), 161-172. https://cir.nii.ac.jp/crid/1570572702603831808.
  7. N. Caˇgman, S. Enginoˇglu, and F. Citak, Fuzzy soft set theory and its application, Iran. J. Fuzzy Syst. 8 (2011), 137-147.
  8. I. Chajda, R.Halas, Congruences and ideals in Hilbert algebras, Kyungpook Math. J. 39 (1999), 429-429.
  9. A. Diego, Sur les algébres de Hilbert, Collect. Log. Math. Ser. A (Ed. Hermann, Paris). 21 (1966), 1-52.
  10. W.A. Dudek, Y.B. Jun, On fuzzy ideals in Hilbert algebra, Novi Sad J. Math. 29 (1999), 193-207.
  11. W. A. Dudek, On fuzzification in Hilbert algebras, Contrib. Gen. Algebra, 11 (1999), 77-83.
  12. H. Garg, S. Singh, A novel triangular interval type-2 intuitionistic fuzzy sets and their aggregation operators, Iran. J. Fuzzy Syst. 15 (2018), 69-93. https://doi.org/10.22111/ijfs.2018.4159.
  13. H. Garg, K. Kumar, An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making, Soft Comput. 22 (2018), 4959-4970. https://doi.org/10.1007/s00500-018-3202-1.
  14. H. Garg, K. Kumar, Distance measures for connection number sets based on set pair analysis and its applications to decision-making process, Appl. Intell. 48 (2018), 3346-3359. https://doi.org/10.1007/s10489-018-1152-z.
  15. Y.B. Jun, Deductive systems of Hilbert algebras, Math. Japon. 43 (1996), 51-54. https://cir.nii.ac.jp/crid/1571417124616097792.
  16. K.H. Kim, On intuitionistic Q-fuzzy ideals of semigroups, Sci. Math. Japon. e–2006 (2006), 119-126.
  17. P.M. Sithar Selvam, T. Priya, K.T. Nagalakshmi, T. Ramachandran, A note on anti Q-fuzzy KU-subalgebras and homomorphism of KU-algebras, Bull. Math. Stat. Res. 1 (2013), 42-49.
  18. K. Tanamoon, S. Sripaeng, A. Iampan, Q-fuzzy sets in UP-algebras, Songklanakarin J. Sci. Technol. 40 (2018), 9-29.
  19. L.A. Zadeh, Fuzzy sets, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  20. J. Zhan, Z. Tan, Intuitionistic fuzzy deductive systems in Hilbert algebra, Southeast Asian Bull. Math. 29 (2005), 813-826.