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Abstract. The k-tridiagonal matrices have received much attention in recent years. Many different
algorithms have been proposed to improve the efficiency of k-tridiagonal matrix estimation. A novel
method based on interval analysis has been identified to improve the efficiency of the calculation. This
paper presents efficient and reliable computational algorithms for determining the determinant and
inverse of general k-tridiagonal interval matrices built on generalized interval arithmetic. This study
is based on the Doolittle LU factorization of the interval matrix. Finally, examples are presented to

illustrate the algorithms.

1. Introduction

Tridiagonal matrices play an influential role in many areas of science and engineering. These areas
include spline interpolation, parallel computing, signal processing, solving ordinary and partial differen-
tial equations using finite differences. In many of these areas, tridiagonal matrix inversion is a crucial
procedure with various applications. k-tridiagonal matrices, a generalization of tridiagonal matrices,
are widely used and frequently appear in various applications. For examples, Moawwad El-Mikkawy
et al. [13-15] present breakdown-free algorithms for inverting general tridiagonal and k-tridiagonal
matrices without imposing constraints. Moreover, they have developed a novel algorithm for invert-
ing a non-singular k-tridiagonal matrix. Ji Teng Jia et al. [8, 9] developed a numerical algorithm for

computing the determinants of a block k-tridiagonal matrix and a bordered k-tridiagonal matrix. The
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algorithm uses the fast block diagonalization method. Tanasescu A et al. [21,22] proposed the singu-
lar value decomposition of a k-tridiagonal matrix that can be calculated in O(n3/k?) and a technique
for enhancing any existing SVD algorithm to make it suitable for this class of matrices. Da Fonseca
CM et al. [3, 4] developed the spectral theory for k-tridiagonal matrices, which are the first type of
matrices. Then they discussed the explosion of interest in them over the last two decades. Wei Y et
al. [24] presented explicit formulae for determinants, inverses and eigenpairs of a periodic tridiagonal
Toeplitz-like matrix with asymmetrically perturbed rows. Solary et al. [19] showed a symbolic algo-
rithm for inverting a general k-heptadiagonal matrix and recursive relationships. This work is based
on the LU factorization of the matrix. Fu Y et al. [5] studied the eigenvalues and eigenvectors of
the tridiagonal Toeplitz matrix with opposite bordered rows. Alberto J et al. [1] studied the inverses
of k-Toeplitz matrices in the context of resonator arrays with multiple receivers. Albuquerque H et
al. [2] gave rational formulas for the determinant, the characteristic polynomial and the elements of
the inverse of a tridiagonal k-Toeplitz matrix over any commutative unital ring. Kucuk AZ et al. [10]
discussed recursive and combinational formulas for the permanents of general k-tridiagonal Toeplitz
matrices. Takahira S et al. [20] presented bidiagonalization of n-by-n (k, k + 1)-tridiagonal matrices
when n < 2k. Yalciner [23] proposed a k-tridiagonal matrix determinant based on LU factorization. In
real-life, computations are inaccurate since uncertainty often exists. At most, it is possible to know
the intervals of possible values. So, it is crucial to figure out how to handle the impact of unclear
parameters on system properties. Interval analysis is a common way to deal with uncertain situations.
It describes uncertain parameters as interval numbers. Then, the interval containing each potential
solution must be computed. Ganesan et al. [6] presented a new set of arithmetic operations for in-
terval numbers by which those discrepancies in general can be reduced to some extent. Kaucher [11]
introduced interval analysis in extended interval space IR and dual as a significant monadic operator in
interval calculations. Nirmala et al. [16] developed a new way to find the inverse of an interval matrix.
This helps us solve systems of interval linear equations. Rohn [18] proposed theoretical and practical
ways to figure out how to calculate the inverse interval matrix. After this inspiration and motivation,
several authors, such as [7,12,17] have investigated uncertainty. The main goal of this study is to
create effective computational algorithms based on generalized interval arithmetic. These algorithms
are used to find the determinant and inverse of general k-tridiagonal interval matrices with interval
Doolittle LU factorization. This is explained with the help of two instructive numerical examples. The
paper is organized as follows: Section 2 overviews generalized interval arithmetic. In Section 3, the
main results and theorem are presented. Section 4 suggests algorithms for finding the determinant
and inverse of the general k-tridiagonal interval matrix. Section 5 gives two numerical examples to

show how the algorithm works.
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2. Preliminary Notes

Let D = IR UIR = {[u1, up] : u1, un € R} is the set of generalized intervals that are the proper
and improper intervals, where IR = {i = [u1, o] : u1 > tp and ug, u» € R} be the collection of
all improper intervals on a real line R. Be the collection of generalized intervals D is a group that

maintains inclusion monotonicity while performing addition and multiplication operations over zero free

. S . . - o . uy + u
intervals. The midpoint and width of an interval number & = [uy, uo] is given by m(d) = < ! 5 2)

Uy — U

2
expresses element to element symmetry between proper and improper intervals by reversing the end

points numbers in the interval, intervals in D. For i = [u1, up] € D, its dual is given by dual(i) =

dual[uy, up] = [uz, u1]. An interval’s opposite i = [u1, o] is opp {[u1, u2]} = [—u1, —uz] which is the
1 1

additive inverse of [u1, up] and [u’ " is the multiplicative inverse of [u1, un], provided 0 ¢ [u1, us].
1 W

Kaucher introduces the dual as a significant monadic operator [11] that

and w(i) =

That is, i+ (—dual @) = i — dual(d) = [u1, up] — dual([u1, uo])

= [uy, o] — [up, 1] = [ur — vy, up — p] = [0,0] and

- 1 1 1
o (rs) = (qen) =0 o

= [u1, uo] x [1 1} =[1,1].

up’ o
2.1. Arithmetic Operations on Interval Matrices. If A, B € D" % € D" and & € D, we propose
a generalized interval arithmetic as,
(). @A~ (&d;) fori=1,2,---,nandj=1,2,-,n
B~ (é,-j+5,-j) fori=1,2,---,nandj=1,2,---,n

(i). A
i), A— B~ (3 — B/J')lg/gn, 1<jenr I A, B are not equivalent
. A—dual(A)~O0=0, ifAxB
(iv). AB =~ (Z éikBkj> fori=1,2,---,nandj=1,2,---,n
k=1

- n
(v). Ax=~ (Z §,ji> fori=1,2,---,n

2.2. Interval Arithmetic. A new method of interval arithmetic on IR was proposed by Ganesan and
Veeramani [6]. The set of generalized interval numbers is extended using these arithmetic procedures
D by utilising the dual concept, For i = [u1, 2], 7 = [v1, 2] € D and for * € {+, —, -, =}, we define
i v =[m(d)«m(V)—j,m(d)*m(V)+ ], where

J = min{(m(&)*m(7)) —B, v— (m(id)*m(V))}, where the B and <y are the end points of the

interval i ® V¥ under the existing interval arithmetic. In particular,

(i) Addition: &+ V = [u1, up] + [va, vo] = [(m(d) + m(V)) — J, (m(d) + m(¥)) +J],
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(V2 + U2) — (Vl + Ul)
2
(i) Subtraction: 7 — V = [u1, tp] — [v1, va] = [(m(d) — m(V)) — J, (m(&@) — m(¥)) + /],
(v2 4+ p) — (v + 1)
2
Also if 1=V, i.e. if [u1, ua] = [v1, v2], then

where j =

where j =

i—v = i—dual(d) =[u1, w] —[u2, 1] = [u1 — v, ux — up] = [0, 0].

(iii) Multiplication: 0.V = v = [uy, us] [v1, vo] = [(m(&)m(¥)) — j, (m(T)m(7)) + ],
where j = min {(m(@)m(¥)) — B, v — (m(d)m(V¥))},
B = min(uyvy, U1 Vo, Uavy, Uavo) and v = max(uiva, U1 Ve, U Ve, UaVa).

(iv) Division: 1+ i = ! ! [ ! ! + } where
i [u1, uz] m( i) J: m( ) |
. . U — Uy Uy — Uy
Jj = min and
{ <u1—|-U2> <U1+U2)}
U —l— uo

m([u1, w)]) = ) # 0.

Alsoif 1 =7, i.e. [up, ] = [vl, v2], then

i i 1 L
7= duai@) e gy el [] -

<i =

[Aup, Aup], for A >0

[Aup, Aup], for A < 0.
It's worth noting that ® stands for existing interval arithmetic and * stands for generalized interval

From (iii), it is clear that A\ii = {

arithmetic. However, in circumstances when there is no ambiguity, the same notation can be used for

both cases. It is also to be noted that i« 7 C i ® 7, where ® € {®, 5, ®, @} is the existing interval

arithmetic.

Note 2.1. Without loss of generality, assume that for any interval number i = [u1, up] with m(&) # 0

and 0 € @, there exist V = [m(d) —j, m(&) +J], where 0 < j < h and h = min{|u1], |uz]}, such that
~ @ and 0 ¢ V. Hence, if g with m(@) # 0 and 0 € &, then we replace g by g where ¥ ~ {i and

1%
0 ¢ V. In particular (for convenience) one may select j in such a way that

- mg“) it m(d) >0
- ‘”;(a) it m(d) <0

Generalized interval arithmetic can be used to prove a lot of important things, like the distributive law
for interval numbers.
3. Main Results

In this section, we provide some important results concerning the general k-tridiagonal interval

matrix. A tridiagonal interval matrix is a matrix with three interval diagonals. The tridiagonal interval
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matrix has nonzero interval entries (midpoint of interval number not equal to zero) on the form’s main

diagonal, immediate sub diagonal and super diagonal.

[y, M) [f1,f1] 0 0
ler @1] [ho, ho] [f5, F2]
i 0 [es, €] [h3, hs] [fs, f3] 0
5 . . . 5
[fn_p ?n—l]
L 6 6 [Qn—lv 6n—l] [ﬁnv En]

Let D"*" be the collection of all n x n interval matrices.

(3.1)

The k-tridiagonal interval matrix Aﬁ is @ more general tridiagonal interval matrix that can be expressed

as follows:

[y, 7]
[0, 0]

- [0, 0]
[e1. e1]

[0,0]

| [0.0]

[0,0]
[hy. ho)]
[0,0]

[0, 0]

(e, €]

[0, 0]

[0, 0]

[0,0] (1. F1]
[0.0]
[0,0]
(A An—i]
[0,0]
[0,0]
len—k €] [0.0]

[0,0] [0,0]
[f5. Fa :
[0, 0]
[k Pkl
[0, 0]
[0, 0]
[0,0]  [hy_1, hn-1] [0, 0]
[0, 0] [, hnl

(3.2)

where 1 < k < n. For k > n, the interval matrix AX is a diagnal interval matrix, which has k = 1,

gives a standard tridiagonal interval matrix in (3.1). The 3n — 2k memory locations can be used to

store the nonzero interval numbers of the interval matrix AX. Having this habit makes calculations

easier. The midpoint of an k-tridiagonal interval matrix Aﬁ is defined as,

[ m(Fy)  10,0] [0, 0]
0.0 m(R) [0,0]
[0, 0] [0, 0]
iy — | 0.0 m(Fnk)
m(&) [0,0]
[0,0] m(&)
: [0, 0]
(0,0 [0,0] m(&-x)

The width of an k-tridiagonal interval matrix A is defined as,

m(f) [0.0] 0.0] |
0.0 m(f) '
0. 0]
m(Fn—k)
0. 0]
[0,0] [0,0]
0,0 m(Fn1)  10,0]
[0,0] 0.0 m(hn)
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(w(f) [0.0] 0.0 w(R) [0.0] 0.0] |

0.0 w(hs) 10,0] 0.0 w(h) '

[0.,0] [0,0] [0, 0]
w(A) [0, 0] w(hn—k) w(fo—i)

w(é) [0,0] [0.0]

0.0 w(&) [0, 0] 0. 0]

S [0, 0] 0,0] w(hn1) [0,0]

 [0.0] [0,0] w(é, ) [0.0] 0.0 w(hn) |

which is always nonnegative.

If m(AK) = m(B¥), then the interval matrices AX and BX are said to be equivalent and is denoted
by Ak ~ BX. In particular if m(AX) = m(BX) and w(AK) = w(B¥), then Ak = BX. If m(AK) =0
then AX is a zero interval matrix. In particular, if m(AK) = 0 and w(AX) = 0, then A% = 0.
If m(AK) = 0 and w(AK) # 0, then AK % 0, if AX is said to be a non-zero interval matrix. If
m(AK) = I, then AX is an identity interval matrix. In specifically, if m(AX) = | and w(AX) = 0,
then Ak = 1, if m(AX) = I and w(AK) # 0, then AKX ~ I. Also / denotes the identity matrix and

the identity interval matrix is indicated by I. 1f 0 be the null matrix and 0 be the matrix of null intervals.

Theorem 3.1. Let the k-tridiagonal interval matrix Aﬁ be as in (3.2), the LU factorization of

Ak can be expressed as,

Iy

where ) )
[1,1] [0,0] [0,0] [0, 0]
[0, 0] [1,1] [0, 0] :
[0,0] [1,1]
[0, 0]
ko [leél] . . . . . .
Ly = m [ 7 ] ) . . . - [0,0]
€5, €2
R T
[Qn—kvén—k]
_ [0'0] [0,0] m [0'0] [1'1]_
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[kl 0.0 - [0,0] [f, ] 0.0 - [0.0] ]
[0.0] [ko ko] [0,0] - [0,0] [fy F2]
[0.0] [k ks] - [0, 0]
g | 00 T [ T
[0, 0] [0,0]
[0,0] :
I [0,0] [0, 0] [0, 0] [KWE”] |
with
k= {h =2k (3.3)
hi—5_ké_x Ii=k+1,k+2,---,n.

f,
where §= = fori=1,2,...,n— k.

1
In order to further discuss this article, we must consider the above results.

4. The Symbolic Inverse of a k-Tridiagonal Interval Matrix

In this section, we give two algorithms for finding the determinant and inverse of the general
k-tridiagonal interval matrix AK.

The following algorithm can be used to evaluate the value of det(A¥) in the interval matrix AX.

Algorithm 4.1. An algorithm for determining the determinant of the k-tridiagonal interval

matrix.

Step 1. Input: &;, h;, f; and the order n.
Step 2. For i=1,2,..., k do

Set: /N(,' = /~7,‘

End do.

Setp 3. Fori=1,2,....n— k, do
Set: 5 = — If m(k;)) #0
End do.

Step 4. For i=k+1,k+2,...,ndo

XY
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Set: /;,' = /~7,' — 5i_k6i_k

End do.
Step 5. Compute and simplify:

det(AK) =n"_ k.
Step 6. Output: The determinant of the tridiagonal interval matrix (AX).

We can follow the procedure outlined below to find the inverse of a general k-tridiagonal interval

matrix (AK).

Algorithm 4.2. Symbolic algorithm for inverting a k-tridiagonal interval matrix.

Step 1. Input: &, h;, f;, and the order n.

For &;, f, i=1,2,...,n— k. Fz,—, I=1,2,...,n.

Step 2. Fori=1,2,....k do

Set: /?,‘ = FI,’. If m(/},) #0

End do.
Step3. Fori=k+1,k+2,...,ndo

Compute and simplify:

End do.
Step 4. Use the determinant of the k-tridiagonal interval matrix algorithm (4.1) to check the

non-singularity of the interval matrix in (3.2).
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Stepb. Fori=nn—1,...n—k+1do

Compute and simplify:

< 1
0ii = =

ki
End do.

Step 6. Fori=n—k n—k—1,...,1do

Compute and simplify:

0ii = = + 5itiditk itk

l
XY

End do.
Step 7. For j=n,n—1,...,2do

Fori=j—k,j—2k,...,1do

Compute and simplify:

0ij = —5i0i1k,;

End do.
Step 8. For i=n,n—1,...,2 do

J=i—k,i—2k, .. 1do

Compute and simplify:

0ij = —0i vk

End do.

Step 9. Output: The inverse interval matrix (Aﬁ)_l =A= 5?,1:1-




10

Int. J. Anal. Appl. (2023), 21:20

5. Numerical examples

In this section, we will examine the effectiveness of two numerical examples using the
algorithm.

Example 5.1. Let us consider the k-tridiagonal interval matrix A% with n = 10, k = 4.

proposed

[[-3.75,1.75] [0.0] [0,0] [0,0] [0515] [0,0] [0,0] [0,0] [0,0] [0,0]
[0,0] [~4.25,0.25] [0,0] [0,0] [0,0] [05,15] [0,0] [0,0] [0,0] [0,0]
[0,0] [0,0] [—4.25,0.25] [0,0] [0,0] [0,0] [0.5,15] [0,0] [0,0] [0,0]
[0,0] [0,0] [0,0] [~4.25,0.25] [0,0] [0,0] [0,0] [05,1.5 [0,0] [0,0]
o _ | 0515 [0.0] [0,0] [0,0] [—4.25,0.25] [0,0] [0,0] [0,0] [05,15] [0,0]
o [0,0] [05,15] [0,0] [0,0] [0,0] [—4.25,0.25] [0,0] [0, 0] [0,0] [0.5,1.5]
[0,0] [0,0] [05,1.5 [0,0] [0,0] [0,0] [—4.25,0.25] [0,0] [0,0] [0,0]
[0,0] [0,0] [0,0] [05,15] [0,0] [0,0] [0,0] [-4.25,0.25] [0,0] [0,0]
[0,0] [0,0] [0,0] [0,0] [0515] [0,0] [0,0] [0,0] [—4.25,0.25] [0,0]
| [0.0] [0,0] [0,0] [0,0] [0,0] [05,15 [0,0] [0,0] [0,0] [—4.25,0.25]]

Solution: Applying the symbolic algorithm (4.2) for inverting a k-tridiagonal interval matrix.

By using steps 2-3, we get:

ki = [-3.75,1.75], ko = [<4.25,0.25], ks = [-4.25,0.25], ks = [—4.25,0.25], ks = [—4.083,2.084],

ke = [~4.132,1.132], k; = [~4.132,1.132), kg = [~4.132,1.132], kg = [~4.083,2.084], k1o = [—4.139, 1.472].

Using step 4, we yields:
det(Aly) = M2 ki = [-653997, 654068.2].
Applying steps 5-8, we obtain (AX)~1

[[-5.156, —0.750] [0,0] [0,0] [0,0] [~3.756,—0.248] [0,0] [0,0] [0,0] [~1.928,-0.074] [0,0]
[0,0] [~1.047,—0.523] [0,0] [0,0] [0,0] [-0.924,-0.217] [0,0] [0,0] [0,0] [~0.474, —0.026]
[0,0] [0,0] [-0.836,—0.497] [0,0] [0,0] [0,0] [-0.562,—0.105] [0,0] [0,0] [0,0]
[0.0] [0.0] [0,0] [-0.836,-0.497] [0,0] [0, 0] [0,0] [-0.562,—0.105] [0,0] [0, 0]
_|[-3.756,-0.248]  [0,0] [0,0] [0,0] [-3.260,—0.742] [0,0] [0,0] [0,0] [~1.778,—0.223] [0,0]
- [0,0] [-0.924,—0.217] [0,0] [0,0] [0,0] [~1.363,—0.918] [0,0] [0,0] [0,0] [-0.889,—0.111]]
[0,0] [0,0] [~0.562,—0.105] [0,0] [0,0] [0,0] [-0.889,—0.444] [0,0] [0,0] [0,0]
[0,0] [0,0] [0,0] [-0.562,—0.105] [0,0] [0,0] [0,0] [-0.889,—0.444] [0,0] [0,0]
[~1.928,-0.074] [0, 0] [0,0] [0,0] [~1.778,—0.223] [0,0] [0,0] [0,0] [~1.333,-0.667] [0,0]
[0,0] [-0.347,-0.028] [0,0] [0, 0] [0,0] [-0.632,-0.118] [0,0] [0, 0] 0,00  [-1,-0.5]
Example 5.2. Let us consider the k-tridiagonal interval matrix A% with n = 10, k = 6.
[ [1.5,2.5] [0,0] [0,0] [0.0] [0,0] [0,0] [0.5,1.5 [0,0] 00  [00 |
0,00 [0.3,1.7] [0,0] [0,0] [0,0] [0,0] [0,0] [-1.5,—0.5] [0,0] [0, 0]
[0,0] [0,0] [-3.75,1.75][0,0] [0,0] [0,0] [0,0] [0,0] [-0.25,4.25] [0,0]
[0, 0] [0, 0] [0,0] [2.8,3.2][0,0] [0,0] [0, 0] [0, 0] [0,0] [2.58,5.42]
5 — [0, 0] [0,0] [0,0] [0,0][0.5,1.5] [0,0] [0, 0] [0, 0] [0, 0] [0,0]
° [0,0]  [0,0] [0,0] [0.0] [0,0][-2.5,~1.5] [0,0] [0, 0] [0,0]  [0,0]
[1.65,2.35] [0,0] [0,0] [0,0] [0,0] [0,0] [3.574,6.426] [0,0] [0, 0] [0, 0]
[0,0] [-3.75,1.75] [0,0] [0,0] [0,0] [0,0] 0,00 [2.8,32] [0,0] [0, 0]
[0, 0] [0,0] [2.8,3.2] [0,0] [0,0] [0,0] [0, 0] [0,0] [-1.5,—0.5] [0,0]
| [0.0] [0, 0] [0,0] [1.5,2.5][0,0] [0,0] [0,0] [0, 0] [0,0] [2832] |

Solution: Applying the symbolic algorithm (4.2) for inverting a k-tridiagonal interval matrix.
By using steps 2-3, we get:
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ki =[1.5,2.5] k, = [0.3,1.7], ks = [-3.75,1.75], ks = [2.8,3.2], ks = [0.5,1.5], k¢ = [-2.5, —1.5],
k; = [1.904, 6.096], ks = [—2.186, 6.186], ko = [—2.674, 12.674], ko = [—1.324,1.988].

Using step 4, we yields:

det(A8,) = N0 k; = 70840, 71158.73].

Applying steps 5-8, we obtain (AK)~1

[ [0.422,0.828] [0,0] [0,0] [0,0] [0,0] [0,0] [-0.217,-0.033] [0, 0] [0,0] [0,0]
[0,0] [-2.224,5.224] [0,0] [0,0] [0,0] [0,0] [0,0]  [0.098,0.902] [0,0] [0,0]
[0,0] [0,0] [-1.909,2.309]  [0,0] [0,0] [0,0] [0,0] [0,0] [-0.098,0.898]  [0,0]
[0,0] [0,0] [0,0] [1.076,4.955]  [0,0] [0,0] [0,0] [0,0] [0,0] [-6.414, —1.622]

_ [0,0] [0,0] [0,0] [0,0]  [0.667,1.333] [0,0] [0,0] [0,0] [0,0] [0,0]
- [0, 0] [0,0] [0,0] [0,0] [0,0] [-0.6,—0.4] [0,0] [0,0] [0,0] [0,0]
[—0.392,—0.108] [0, 0] [0,0] [0,0] [0,0] [0,0] [0.164,0.336]  [0,0] [0,0] [0,0]
[0,0] [-1.648,2.648] [0,0] [0,0] [0,0] [0,0] [0,0]  [0.333,0.667] [0,0] [0,0]
[0,0] [0,0]  [0.198,1.002] [0,0] [0,0] [0,0] [0,0] [0,0] [0.133,0.267] [0,0]

[0,0] [0,0] [0,0] [-3.077,—0.944] [0,0] [0,0] [0,0] [0,0] [0,0] [2.008,4.016] |

6. Conclusion

In this paper, we present two efficient algorithms for finding the determinant and inverse of k-
tridiagonal interval matrices based on generalized interval arithmetic. These algorithms are based on
interval Doolittle LU factorization and are efficient. Computational results are shown in numerical
examples, illustrating the feasibility of the proposed algorithms.
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