L∞-Convergence Analysis of a Finite Element Linear Schwarz Alternating Method for a Class of Semi-Linear Elliptic PDEs

Main Article Content

Qais Al Farei, Messaoud Boulbrachene

Abstract

In this paper, we prove uniform convergence of the standard finite element method for a Schwarz alternating procedure for a class of semi-linear elliptic partial differential equations, in the context of linear iterations and non-matching grids. More precisely, making use of the subsolution-based concept, we prove that finite element Schwarz iterations converge, in the maximum norm, to the true solution of the PDE. We also give numerical results to validate the theory. This work introduces a new approach and generalizes the one in [14] as it encompasses a larger class of problems.

Article Details

References

  1. R. Glowinski, G.H. Golub, G.A. Meurant, J. Periaux, Domain Decomposition Methods for Partial Differential Equations, In: Proceedings of 1st International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, USA, (1988).
  2. P.L. Lions, On the Schwarz Alternating Method I, In: Proceedings of 1st International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, USA, pp. 1-40, (1988).
  3. P.L. Lions, On the Schwarz Alternating Method II, In: Proceedings of the 2nd International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, PA, USA, pp. 47-70, (1989).
  4. C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Pienium Press, New York, (1992).
  5. S.H. Lui, On Schwarz Alternating Methods for Nonlinear Elliptic PDEs, SIAM J. Sci. Comput. 21 (1999), 1506- 1523. https://doi.org/10.1137/s1064827597327553.
  6. S.H. Lui, On Linear Monotone Iteration and Schwarz Methods for Nonlinear Elliptic PDEs, Numer. Math. 93 (2002), 109-129. https://doi.org/10.1007/bf02679439.
  7. X.C. Cai, T.P. Mathew, M.V. Sarkis, Maximum Norm Analysis of Overlapping Nonmatching Grid Discretizations of Elliptic Equations, SIAM J. Numer. Anal. 37 (2000), 1709-1728. https://doi.org/10.1137/s0036142998348741.
  8. M. Boulbrachene, S. Saadi, Maximum Norm Analysis of an Overlapping Non-Matching Grids Method for the Obstacle Problem, Adv. Differ. Equ. 2006 (2006), 85807.
  9. A. Harbi, M. Boulbrachene, Maximum Norm Analysis of a Nonmatching Grids Method for Nonlinear Elliptic PDES, J. Appl. Math. 2011 (2011), 605140. https://doi.org/10.1155/2011/605140.
  10. A. Harbi, Maximum Norm Analysis of an Arbitrary Number of Nonmatching Grids Method for Nonlinears Elliptic PDES, J. Appl. Math. 2013 (2013), 893182. https://doi.org/10.1155/2013/893182.
  11. M. Boulbrachene, Q. Al Farei, Maximum Norm Error Analysis of a Nonmatching Grids Finite Element Method for Linear Elliptic PDEs, Appl. Math. Comput. 238 (2014), 21-29. https://doi.org/10.1016/j.amc.2014.03.146.
  12. A. Harbi, Maximum Norm Analysis of a Nonmatching Grids Method for a Class of Variational Inequalities With Nonlinear Source Terms, J. Inequal. Appl. 2016 (2016), 181. https://doi.org/10.1186/s13660-016-1110-4.
  13. S. Boulaaras, M.S. Touati Brahim, S. Bouzenada, A Posteriori Error Estimates for the Generalized Schwarz Method of a New Class of Advection-Diffusion Equation With Mixed Boundary Condition, Math. Meth. Appl. Sci. 41 (2018), 5493-5505. https://doi.org/10.1002/mma.5092.
  14. M. Boulbrachene, Finite Element Convergence Analysis of a Schwarz Alternating Method for Nonlinear Elliptic PDEs, SQU Journal for Science. 24 (2020) 109-121. https://doi.org/10.24200/squjs.vol24iss2pp109-121.
  15. Q. Al Farei, M. Boulbrachene, Mixing Finite Elements and Finite Differences in Nonlinear Schwarz Iterations for Nonlinear Elliptic Pdes, Comput. Math. Model. 33 (2022), 77-94. https://doi.org/10.1007/s10598-022-09558-x.
  16. P.G. Ciarlet, Discrete Maximum principle for Finite-Difference Operators, Service de Mathematiques, L.C.P.C, and Case Institute of Technology, (1969).
  17. P.G. Ciarlet, P.A. Raviart, Maximum Principle and Uniform Convergence for the Finite Element Method, Computer Methods Appl. Mech. Eng. 2 (1973), 17-31. https://doi.org/10.1016/0045-7825(73)90019-4.
  18. J. Nitsche, L ∞-Convergence of Finite Element Approximations, In: Proceedings of the Symposium on Mathematical Aspects of Finite Element Methods, Vol 606 of Lecture Notes in Mathematics, pp. 261-274, (1977).
  19. F. Hecht, New Development in FreeFEM++, J. Numer. Math. 20 (2012), 251-265.