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Abstract. In this paper, we examine a nonlinear hyperbolic equation with a nonlinear integral condition.
In particular, we prove the existence and the uniqueness of the linear problem by the Fadeo Galerkin
method, and by applying an iterative process to some significant results obtained for the linear problem,
the existence and the uniqueness of the weak solution for the nonlinear problem are additionally

examined.

1. Introduction

The nonlinear hyperbolic equations describes important processes in the nonlinear evolution equation
basis of mathematical models of diverse phenomena and processes in mechanics, physics, technology,
biophysics, biology, ecology, and many other areas [1-4]. Such ubiquitous occurrence of nonlinear
hyperbolic equations is to be explained, first of all, by the fact that they are derived from fundamental
laws in the real world [5, 6].

Let us remark only that for broad classes of equations, the fundamental questions of solvability and
uniqueness of solutions of various boundary value problems have been solved and that the differentia-
bility properties of the solutions have been studied in detail [7-9]. General results of the solvability
and uniqueness were inferred by different methods such as the energy method, upper lower method
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and the Fadeo Galerkin methods. The later one is regarded one of the most important methods that
were mainly developed in the 1960s, but they are still powerful tools today to deal with nonlinear evo-
lution equations, especially those who are modeled by non-classical boundary conditions that consist
of integral conditions [10-13]. Non-local and integral partial differential equations are used to solve a
vast range of current physics and technology challenges [14-19]. When it is hard to directly measure
the minimum and maximum values on the border, the overall value or average is known. This method
might be utilized for modeling where we can model more complicated domain with nonlinear integral
condition.

Motivated by the above perspective, we trait in this work to discuss a nonlinear evolution equation
with a nonlinear integral condition. In particular, we aim to focus on the solvability of the solution
of nonlinear hyperbolic problems with the integral condition of the second type by the method of
Fadeo-Galerkin. In the following sections, we present first the existence of the linear problem, and
then by applying an iterative process based on the results obtained for the linear problem, we prove

the existence and the uniqueness of the weak solution of the nonlinear problem.

2. The statement of the main problem

In this section, we let @ = {(x,t) € R?, x € Q2=1]0,/[ and 0 < t < T}, besides we consider the

main following initial boundary value problem for a nonlinear hyperbolic equation:

f gig—aging(x,t,u,ux)
u(x,0) = p(x)
ur(x,0) = 9P(x) (P1)

%(O’ t) = fol k(x, t)g(ue)(x, t)dx
a%“ t) = fO/ k(x, t)h(ut)(x, t)dx.

Assuming that f € L2 (Q) and ¢, % € L?(Q). The nonlinear hyperbolic equation is given as follows:

\

0%°u  o%u
EU:W—aﬁ:f(X,t,U, UX), (21)
which satisfies the following identities:
e The initial conditions
u(x,0) =@ (x
w:{ O =eC) 0.
ue (x,0) =9 (x)

e The boundary conditions are integral conditions of the second type defined as:
I

%oy = / K(x, )g(ud)(x. )dx, te (0.T),

Ox 0

/
&(/, t) = /0 k(x, t)h(us)(x, t)dx, te(0,T),
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where
k(x,t) >0 V(x,t) € Qand g(u)(x, t) < h(us)(x, t) V(x, t) € Q,
and for all v € L?(Q), we have:
190l 2@y < ClIVIlLseo,7.2()) -

in which we define the space V by V = H! (Q).

Actually, the space V is provided with the norm [|v[|y = ||v||41(q). and hence it is a Hilbert space.

From this point of view, we are now able to formulate problem (P) in order to precisely study it.

From this fact, we will need to the following hypothesis:

(H) fel?(0,T; L2(Q) (H1)
| e H Q) (H2)

3. Position of problem (P)

In the rectangular area Q = Q2 x (0, T), and T < oo, we consider the following linear problem (£»):

9%u 92u

w—a@:f(x,t) \V/(X't)EQ
u(x,0)=(x) vx € (0,/)
ur (x,0) =9 (x) Vx € (0,/) (P,)

6‘—i(O, t) = fol k(x, t)g(ur)(x, t)dx  Vte (0,T)
aTL:(" t) = [1k(x, )g(u)(x, )dx VYt e (0,T)

in which the hyperbolic equation is given as follows:

8%u 8%u
EU—ﬁ—a@—f(X, t), (31)
with the initial conditions:
,0) =
eu:{ ux.0)=wlg ©,1),
ur (x,0) =9 (x)

and with the integral condition of the second type:

/
Zi(o,t) . /Ok(x,t)g(ut)(x,t)dx, te(0.7),

%(l, t) = /0/ k(x, t)h(us)(x, t)dx, te(0,T),

where
k(x,t) >0 V(x,t) € Qand 0 < g(us)(x,t) < h(ug)(x, t) V(x, t) € Q,

and
gl 2(@) < CllvIlL=(0.7.2(0)) -
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such that the space V = H! (Q) provided with the norm ||v|y = [vll1(q) is a Hilbert space. We are

now able to formulate the problem (P%), precisely to study it, according to the following hypothesis:
(H) { fel?(0,T;L2(Q) (H1)
p € H (Q) (H.2)
Definition 3.1. The weak solution of problem (P>) is a function that satisfies:
e uc?2(0,T; HH(Q)NL>®(0,T; H ().
e u admits a strong derivative ou €L?(0,T; L?(Q)).

ot
e u(0) =9, u:(0) =9.
e The following identity:

(uee, v) + a(ux, vx) = (f, v) + ux(l, t)v(l) — ux(0, t)v(0) Vv eV, Vte[0,T].

3.1. Variational formulation. By multiplying the equation:

0°u  B°u
T —f 2
ot2 a8x2 (x.) (3.2)
by an element v € V, and the by integrating the result over 2, we obtain:
0%u %u
at2~vdx—a/ax2-vdx:/f'vdx. (3.3)
Q Q Q

By using the boundary conditions and using Green's formula, ( 3.3) becomes
(uee, v) + a(ux, vx) = (f, ve) + ux(, t)v(l) — ue(0, t)v(0), Yv eV, (3.4)
where (-, -) denotes the scalar product L? ().

3.2. Study of the existence of weak solution of problem (/). The demonstration of the existence
of the solution of problem (P,) can be discussed based on the Faedo-Galerkin method which consists

of carrying out the next three steps.

3.2.1. Step 1: Construction of the approximate solutions. As the space V' is separable, then there

exists a sequence wy, Ws, - -+ , Wy, having the following properties:
w; €V, Vi,
Ym, wi, wo, ..., W are linearly independent, (3.5)
Vin = {w1, wo, ..., wn}) is dense in V.

In particular, we can say:

m

Vo € V = F(akm)m € IN*, ©om= Zakak —  when m — +o0. (3.6)
k=1
m

Yo € V = IBim)m € IN, Ym =D BrmWi — © when m — +oc. (3.7)

k=1
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Now, the Faedo Galerkin's approximation aims to search about a function in which

t— Uum(x,t) Zg,m ) w; (x)

verifies
{ Um (t) € Vi, VEE[0,T] )
((m(t) e wic) + A(um(t), wi) = (F(£), wi)  Yk=T,m ' ’
for any integer m > 1, where
((Um(t) tt Wk ((Z glm ) ) Wk)
tt (3.8)
- (Z 0" Gim (t)w; (x), Wk> Z (w;, w) 9”” (1),
i=1
and
A(um(t), we) = A (Z im (1) w;, Wk)
i=1
a ow; 8Wk BW,
:a;gim(t) [ Ax @X
- (3.9)
= aZg,m( )/GWI aWk Zglm
+azg/m ZA(Wika)gim(t)-
i=1
In addition, we have
um(0) = gim (0) Wi (x) = om = > Aimwi(x)
i=1 =1
and
Un(0) = Gl (0) Wi (X) = Bm = Y Bimwi(x).
i=1 i=1
We obtain consequently a system of first-order nonlinear differential equations:
m im aW, 8Wk
= (i i) 5 o+ (5 6) o0 (0
—(F()w) a3 9 () Z2 D) =22 6m (2 Om(® | (g
9im (O) =0Oim Vi=1 m.
L 9im (0) = Bim Vi=1m.

From this view, we consider the vector:

9m = (g1m(t), -+ Imm(t)) , fm = ((Fow1) -+ (F, wim))
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coupled with the matrices:

By = ((W,, M/J))F/_gm,Am - (( Ox ' Ox >>1</<m

<j<m

and

Cn=(Gr 0w, 0= (520 w(©),
1

<m
1<<m <m

<i
<

Now, we can immediately write problem (Fy) in the matrix form as:

magf’ (t) + aAmdgm + aDmgm = fm + aCmdm
9gm (0) = (aim)lgigm
gm (0) = (5im)1gi§m

As the matrix entries By, are linearly independent (because it is a diagonal matrix), then det B,

So, it is invertible, and then g, is the solution of the following states:

O Gm
ot2

(t) + (aBptAm + bBy Dy — aBitC) 9m = Bt fm

gm (0) = (O‘im)lgigm :
gfn (0) = (5im)1§/§m-

Now, it is easy to verify that this ordinary differential system has a solution where the matrix:

(aBtAm + bB Bm — aBp Crn)

£0.

(Ps)

is of constant coefficients and the vector B, ! f,, are continuous functions and majorized by integrable

functions on (0, T). Consequently, we can conclude that there exists a t,, that depends only on |am|

and |,5im|-

3.2.2. Step 2: A priori estimate. Herein, we intend to begin this step with state and prove the next

result.

Lemma 3.1. For all m € N*, if
1 2

— >k
83>'

the solution up € L2 (0, T ;Vy,) of problem (P>) satisfies:

IN

lumll20.7; H1(0)) 1,

H AUm

IN

G,

L2(0.T; L2())

where ¢1 and ¢ are two positive constants independent of m.
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Proof. By multiplying the equation of (P3) by gkm(t), and then by summing the result over k, we

obtain:

S () ec. 6) G r>+a2(a“m D). g ) Sk

k=1

g SUCHARAE )+ 23 0 () 2 ()Y ()
=1

k=1

- azg,m 0 2% (0) ngmmwkm
So, we obtain

(e ()0 + 2 (200 s;’gt(w)

= (F(1). (um(1) >+azg,m SEA0) PEMOIAN

k=1
8W,' ’
- aZg,-m () 3¢ (O)ngm(t)wk(o)-
i=1 k=1
Thus, we get
6um 2
((um(t))ee . (um(t))e) +a = (f(1), um(t))
8W, 6W1
+azg/m(t) (/)ngm(t)wk(/)_azglm(t) (O)ngm(t)Wk(O)
Integrating the above equality over 0 to t coupled wit using the Cauchy inequality with €, i.e.
a° z—:b2
pl< 422
|a |_ + >
we get
1| 6uml|? a 5
> ‘ Bt @) T3 IVumllz2(q)
1 5 e ||0um 2 i GW,
<—||f Z =2 -
_28 H ||L2(Q) + 2 at_ Lz(Q) + a;g/m ngm

8W,
- 329/m ngm(t wi(0) + 5 ||(Pm||L2(Q) +5 ||V¢m||L2(Q)

2

ou ou ou ou ou
oo Iy + 5 [ S|+ 520052 0.0 - 2520, 520, 1),
L2(Q)
Oum 2
< ||f||L2Q + IIwmllesz + 3 IIVUJmIle
2 (@) At L2(Q) () ()

+a/OT [(/Q K(x, g ((0),) (x, t)dx) 85’:(/, )
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_ (/Qk(x, £)h ((ue)m) (%, t)dx> aum(o t)]

8um
ot

1 a
+ 5 ||‘pm||i2(§2) + 5 ||V¢m||i2(§2)

< HfHL? Q)
=2 @ 12(Q)

+a/OT [(/Q k(x, ) ((ue),) (x, t)dx) a“’”(/ )

— k(x, t)h ((ut),,) (x, t)dx %(O, t)].
Q ot

This means
ou a
H L 5||wm||%zm)
L2()
Bum
S5 ||f||L2(Q)+ B L2(Q) ||(pm||L2(Q)+ ||V1¢’m||L2(Q)
T Oum
v [T [ kx D () (x 0ax) G200
0 Q
Oum
= ([ K 019 @) (5110 ) et t>]
Q
Oum 2
||f||L2 Q + ||<Pm||L2 o)t 5 ||V¢m||L2 Q
@2 |3t || 20y " (@) ()
T 2
+aCkHaum [/ /a Umdxdt}
L%0(0,T;L2( Q)) 0 Jo Otdx
Gum
||f||L2 Q + ||<Pm||L2 o t5 vam”L? Q
OREY T (@) (@)
+akCHaum [ %d —/ad’md]
L20(0,T;L2()) o Ox
which yields
+ 5 [IVumllz2
H LZ(Q 2 milL (Q)
8um (aCk) 8um
||fH > +

+6 [men%w oz + IVOmlE o 2|

||<Pm||L2(Q)Jr ||V¢m||L2(Q)

(aCk)? H Aum||?
L?(o) 20

Oum|*
ot

2
Szfg 1711220

L(0,T:L2(S2))

+ 6 IVUumllf o020 + 5 ||V'¢m\|L2 @ T max(f 8) llmllFn (e -
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or 2
1||0um 2
2 ' ot L2(Q) " 2 ||VUm||L2(Q)
2
< i ||f||22 + eCr + (aCk)2 Oum (3.10)
< 5 Mz @) 2 26 Ot || o, T-L2(Q))

+9 HVUmHLoo(O T:12Q) t 5 ||V’(,l1m||L2(Q) + max(— aCko) ||(Pm||/—/1(§2)

where K = max fQ k? (x, t) dxdt. Consequently, we obtain

a
+5 IV umlI2(c)

1 5 (aCk) Aum |I?
< ey + ( . ) %

+ 8 IV umll <0702 + 5 HV?/JmHLZ(Q)

1k

L2(2)

L>(0,T;L2(Q))

+ max(i, d) ||(pm||%—ll(§2) ;

which gives:
1 (aCk) dum||?
2 2 H

By putting € = ﬁ and § = 4(aCk) , We get

a
+ (= = 8) IVumllFego 112
Lo0(0,T:L2(Q)) (2 ) mllL(0,T;L2(£2))

||f||L2(Q) +5 IIVwmIILz(Q) +ma><(* 8) lemlln o

Oum 2

ot + IV tmllf w(0,7:02(0))

L(0,T;L2(R)) (3.11)
< G [IIFl22(0) + IV 9mllEa(y + I0mlFaey

or
max (2CT ,max(, (aCk) ))
C, =
1 7, 5
min {4, (§ — 4 (aCk) ))}
From (3.11), we can also get:
Ou 1
H 2y < VG (171220 + IV 92y + l0mlncey] (3.12)
L2(Q

By integrating (3.12) over [0, T], we obtain:
T T
/8um < / OUm
ot - ot
0 L2(Q) 0

< TVC [IF1220) + V¥l + 0mliZncay

L2(Q)

SIS
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or

T

ou 3
[52l < TVEIf1) + I9¥nlg) + lomlBue)

0 L2(Q)

which implies:
1

lum = emllizgy < TVE[IF gy + IV¥mlZa@y + llomlne|

2 2
[umlZ20) + llomlli2(0)

<TG [Hin?(Q) + IVl T2 + H‘Pmezﬂ(Q)} + 2 [[umll 2 () lemll 20 -
By applying Cauchy inequality with -y, we get:

lumlIZ2e) + loml72(0)
2 2 2 1 2 2
< TG IlE2) + IVUmlz2(q) + lomllm )| + ~ lumllz2(q) + Y lemlliz@) -
By putting vy = 2, we can have:
luml| 20y < 4T Cy [||f||f2(o) +IVYmlT2(0) + lomllZn | - (3.13)

Now, it follows from (3.11) and (3.13) that the solution of the initial value problem for system (F;)
can be extended to [0, T]. This confirms what we have demonstrated in the first step. Consequently,

when m — +o0o in (3.13), we obtain:

{ Um uniformly bounded in L2(0, T; H(Q)) (3.14)

(Um) ¢ uniformly bounded in L2 (0, T; L?())
O

3.2.3. Step 3: Convergence and the result of existence.

0
Theorem 3.1. There is a function u € L2(0,T; H*(Q)) N L>(0,T; L?(Q)) with 90 ¢

ot
L2 (0, T;L2(S)) and a subsequence denoted by (um,), < (Um),, such that
Umy, — U in L2(0, T;H* ()
Oue 00

; 2 2
Bt 5; L (0, T,L2(Q))

as m — +oo.

Proof. From Lemma 1.2, we might deduce that there are subsequences denoted respectively by (um, ),

(agr:k> of (um) and (um), such that

Um, —u in L2(0, T; HY(Q)) (3.15)

and
Y ~w  inL2(0,T; L2() - (3.16)
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We know that according to Relikh-Kondrachoff's theorem the injection of H! (Q) into L2 (Q) is

compact. In addition, like the results of Rellich’s theorem, any weakly convergent sequence in H! (Q)

has a subsequence which converges strongly in L2 (Q). So, we can assert:

Un, — U in L2(Q) .

(3.17)

On the other hand, from Lemma 1.3, there is a subsequence of (umk)k, which is still denoted by up,,

converges almost everywhere to u such that
Um, — U almost everywhere Q .

It is still essential to demonstrate that w = %. This actually suffices to prove:

t
u(t) =p+ / w(T)dT.
0
To this aim, we note that as
Um, = u inL%(0,T;L%2(Q)) .
then the proof of (3.19) is equivalent to prove that
Um, = @+x inL2(0,T;L2(Q))

which means

lim (um, — @ — X, v)Lz(OYT;LQ(Q)) =0, Yv € L2(0,T;L2(Q)),

as
t

x (t) :/W(T)dT.
0
In fact, by using the equality

t

0
Uy, — P, = /g;"_kdr forall t € [0, T],
0

with the help of using tm, € L2 (0,T; V) and (um,), € L2 (0, T Vin, ), we can get:

t
(umk —p— / w(T)dT, v)
L2(0,T;L2(2))

0
t
= | um, — Om, — / w(T)dT, v + (om, — w0, V)Lz(o,T;Lz(Q))
0 12(0,T;L2(Q))
t
Oum
= / < o W(T)> dr,v + (@me = ©.V) 120 71202
0 L2(0,T5L2(Q))

(3.18)

(3.19)
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for all t € [0, T]. By virtue of part (ii) of Lemma 1.6, it comes

(umk —p— O/ w(T)dT, v)

Oum
= / ( 8Tk —w(T), V> a7+ (0m, = 9. V) 20 7212(02))
0

L2(0,T;L2(Q2))

L2(0,T:L3(2))

for all t € [0, T]. On the one hand, we have

lim o/ (ag:k —w(T), v) dr =0, (3.20)

L2(0,T;L2(Q2))

for t € [0, T]. Besides, we have:
Jim (om =@, V)20, 7i02(2)) = 0. (3.21)
which implies:
lim  (Um, — @ — X, V) 207 2@y =0 YV E L2(0,T;L%(Q)).

k—>o0

]

Theorem 3.2. The function u of the Theorem (3.1) is the weak solution to the problem (P>) in the

sense of the definition 3.1.

Proof. From Theorem (3.1), we have shown that the limit function u satisfies the first two conditions

of the definition 3.1. Now we will demonstrate (iii). According to the Theorem 3.1, we have:
Um, (0) = u(0)  in L2() .

On the other hand, we have

Um, (0) —> @ in L2() |
which implies:

Um, (0) = ¢ in L2(Q) .

From the uniqueness of the limit, we get u (0) = ¢. By using the same previous steps, we demonstrate

us (0) = 1. It remains to demonstrate (iv). To this aim, we have:
(ute,v)+a(u,v)=(f,v) VveV, and Vtel[0,T].

Integrating (P3) over (0, T), we obtain:

((um(t)) e wi) dT 4+ [ a(um(t), wk)dT = | (f(t), wy)dT, (3.22)
/ / /
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for all k =1, m and for all t € [0, T]. Using (3.13) and that V},; dense in V' and passing to the limit
n (3.22), we get:

T T T
/utt Wi d7'+/auwk /fwk)d'r, Vte[0,T].
0 0 0
This immediately implies that (iv) is verified. O

Corollary 3.1. The uniqueness of the solution of problem (P>) comes straight through the estimate
(3.11).

4. Weak solution of the nonlinear problem

Initially, we present the considered solution’s concept. For this purpose, we let v = v(x, t) be any
function of V such that

V={vecl (Q), w(lt)=w(0,t)=0, te[0,T]}.

By multiplying
o2%u aa2u
ot2 Ox2

by v and integrating the result over Q, we obtain

= f(x,t,u, ux)

/6t2( t) - —Z(x, t)dxdt—a/Ay(x, t)-@(x, t)dxdt
v
/GxtyyX T —(x, t)dxdt.

Now, by using integration by parts and the conditions on y and v, we get

ov oy 0%v
/ 512 (x,t)- E(X, t)dxdt + a/ &(X, t) - axﬁt(x' t)dxdt
By (4.1)
= /G(x, t, Y, ¥x) g(x, t)dxdt.

It then results from (4.1) that

Ay,v) = /G(X, t, Y, Yx) - %(X, t)dxdt, (4.2)
Q-

or

0%v
. at(X' t)dxdt.

02y ov Oy
A(y,v) = /8t2 (x,t)- a(x, t)dxdt + a/ a—x(x, t)
Qr Qr
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Thus, it is the time to build a recurring sequence starting with y(®) = 0. The sequence (y(”))neN

is defined as follows: Given the element y("~1) then for n = 1,2,3,---, we can solve the following

problem:

62)/(") aAy(n) =G (X £ y(n 1) y(” 1))
y(M (x,0) =0
v (x,0)=0 : (Ps)
w0, t) =0
W, t) =0

\
According to the last linear problem, we fix the n each time. Problem (P;) admits then a unique

solution y(" (x, t), which can be given by the Fadeo-Galarkin method. In this regard, we assume
2 (x, 1) =y (x, 1) = y(x, 1).

As a result, we have the following new problem:

B0 o) = oD 1
z("W (x.0)=0
2" (x.0) =0 : (Ps)
20, t)=0
2V, 6)dx =0

\

or
pV(x, t) = (X ¢,y y(”)) G (x ¢, y(n=1) = 1))
Multiplying
82z(n
_ (n) — ,(n—-1)
502 alz p (x, t)

by z(" and then integrating the result over Q, yield:

82z(m az("
Z < . _ (n)
() 25 tydxdt - a / 22 1) 227 (e 1) dxdt
Qr Qr
(n-1) 62"
:/p (x, t) - 3 (x, t) dxdt.
Qr

If we apply an integration by parts for each term of the above equality, keeping in view the initial and

boundary conditions, we get:

2
;/(a (x, T))2dx+2/(az )(x t)) dxdt:/p(”_l)(x, t)-aZ()
Q

Q o

(x, t) dxdt.
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When the Cauchy Schwarz inequality is applied to the second portion of the above equation, the

following result is obtained:

2
1 az(m az(n
2/( Z () dx+2/< 2 ()] dxar

Q Q

2

1 az(m

<= | pC D (x, t) |? dxdt + 8/ z (x,t) | dxdt,
QT 2 T at

2€

or

2
1 az(" dz(" 1
- < (n) ()
2/( ot (x. ))dx+2/<6x (x.) dX\2£ QT‘G<Xty ' Vx )

Q Q

2
N az(n)
-G (X, £,y (=1 L 1)) % dxdt + ;/ ( gt (x, t)) dxdt.

We deduce consequently that:

n) 2
;/(a (x, T))2dX+2/<az (x, ))
Q

Q

2
k? _ 8z(m
5o 00—y 0 D P+ ( 27 (1)) dxat
k2/ (1 2= || 2" |)2dxdt+8/ 0z(" (x, t) 2dxdt
2€ QT x 2 QT ot
2
k2 _ £ az(”)
2 (n—=1) |2 (n-1) 2 £
6/QT(|Z =+ |z |)dth+2/T< T (x,t)) dxdt
(n)
€ z

12(0,T,H(0.1)) + 2/T < (x. t)> dxdt.
By multiplying by 2 and applying Grenwell’s Lemma, we get

az(m 82(M 2
/( (x,7)) dx+a/ i (x,t) | dx

Q
(az(n)
e /
L2(0,T,H(0,1)) - 0

k2
< exp(eT) Hz(”_l)

N

N

N

s |-

2
K Hz(n—l)

2
(x, t)) dxdt

L2(0,T,HY(0,1))
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Integrating over t yields:

/(82 (x, T))dedt-f—a/ (ag(n)

2
» (x, t)) dxdt
QT QT

2
< Tk 2=

L2(0,T,H1(0,1)) exp(eT),

or
82" 5z(" ’
/( (x, ’7’))2dde—|-/ e (x,t) | dxdt
QT QT
< k2 exp(eT) Hz(n_l) .
emin(1, a) L2(0,T,H(0,1))
By putting
_ Tk?exp(eT)
~ emin(l,a) ’
we get:
oz(M NI
I 25 oo + | 2o \|L2<0TH1<Q>><c1| i F—
Thus, by applying Pointcarre, we have
(1|7

(n) 12
12 207 2y S T HZ L2(0,T,H (%))’

and
n—1

(R
Zz vy,

i=1

(0.)
According to the convergence criterion of the series z(M that converges if |c| < 1, we obtain:
n=1

(Tk)? exp(eT)
emin(1, a)

exp(eT)

1.
emin(1, a) <

<1 = Tk

Consequently, we get:

+
Then (y("), converges to an element of L2(0, T, H*(Q2)), say y. Now, we will show that

K< \/z—: min(1, a) exp(—sT)_

lim y("M(x, t) = y(x, t)

n—-ao0

is a solution to the problem (Ps) by showing that y satisfies:

Ay,v) = /G(X, t,y,yx) - v(x, t)dxdt.
Qr
We therefore consider the weak formulation of the problem (P;) as follows:
gy (" v

> | Tax %D Fiax
Qr

A(y(m,v) :/azyw)( t) - —(x t)dxdt + 2

a2 (x, t)dxdt.
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From the linearity of A, we can have:

A <y(”), V) =A (y(”) ~y, V) +A(y,v)

8>y —y) Bv a [0y —y) 82y
= / T(X t) - a(X t)dxdt + 5 / T(X t) - atéx(X' t)dxdt
Qr Qr
0%y ov a [ oy 0%v
- w(x, t) - a(x, t)dxdt + 5 / a(x, t) - atax(X' t)dxdt,
Qr Qr

which implies

8y — y) Ov

(n) _ S S A ) N

A (y Y, v) / 52 (x,t) T (x, t)dxdt
Qr

a [0y —y) 02v
- 2/ ax Y Brax
ar

(x, t)dxdt.

Now, by applying the Cauchy Schwartz inequality, the following results can be obtained:

A =y v) <l vl |07 = e

L2(0,T,L2(R2))

)(y(”) — ¥)x

a
+ > | vt ||L2(QT) L2(0,T,L2(Q))

Then, we can find

o [CARENR

A (y(”) -y, V) <C <H(y(”) — V)et

L2(0,T,L2(2)) LQ(O,T,L2(Q))>

< (I ve llz@ny + 1 vae llizan)) -
or
a
C = max (1, 5) .

Now, as y(" — y in L2 (0, T, H* (0, 1)) = H* (Q), we get:

y(”) — y in L2(Q),
W — oy inL2(Q),

vy in L2 Q).
Consequently, we note as n — +o0, we find:

lim A (y(”) -y, v) =0.

n——+00
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