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Abstract. This paper aims to prove two general fixed point theorems in multiplicative metric space

(MMS) by using reciprocally continuous mappings and conditionally sequential absorbing mappings.

Further our outcomes are validated by discussing two appropriate examples.

1. Introduction

One of the most exciting areas of contemporary mathematics is fixed point theory, which is also

interesting topic of the analysis. Further this topic has became a platform due to its wide applications in

pure and applied mathematics. In this connection S. Young Cho et al [1] proved a common fixed point

theorem over a complete metric space. Later,many researchers generated results in diffeent spaces. In

this process Monika Verma et al [2] generalized [1] for multiplicative metric space.Furthermore some

results can be witnessed like [3], [4], [5], [6], [7] [8] and [9] in MMS. Using the conditions conditionally

sequential absorption and reciprocally continuous mappings, the goal of this research is to derive two

common fixed point theorems for MMS. Further two suitable examples are discussed to validate our

theorems.
2. Preliminaries

Definition 2.1 Let X be a non empty set and d : X × X → R+ then (X, d) is said to be MMS if

satisfying the following conditions:
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(i) d(ζ, η) ≥ 1 for all ζ, η ∈ X and d(ζ, η) = 1 if and only if x = y

(ii) d(ζ, η) = d(ζ, η) for all ζ, η ∈ X
(iii) d(ζ, η) ≤ d(ζ, β).d(β, η) for all ζ, η, β ∈ X (multiplicative triangle inequality).

Then (X, d) is called MMS.

The pair of mapping (G, J) of a MMS (X, d) is said to be

Definition 2.2 Compatible if lim
j→∞

d(GJηj , JGηj) = 1, whenever ηj is a sequence in X such that

Gηj = Jηj = ζ for some ζ ∈ X.
Definition 2.3 Weakly compatible if Gζ = Jζ for some ζ ∈ X such that IJζ = JIζ.

Definition 2.4 If there is a coincidence point where the mappings commute then it is said to be

Occasionally Weakly Compatible (OWC).

Example 2.4.1 Let (X, d) be a MMS and ∀η, ζ ∈ X we have (.η, ζ) = e
|η−ζ|.

Now the self mappings G, J are defined on X = [0,∞) and given below

G(η) = η+1
2 and J(η) = η2+1

2 for all η ∈ X.
From above η = 0, 1 are coincidence points for the mappings G, J.

At η = 0

G(0) = J(0) = 1
2 ,

GJ(0) = G(12) =
3
4 ,

JG(0) = J(12) =
5
8 .

Therefore GJ(0) 6= JG(0).
And also GJ(1) = JG(1) = 1.

Resulting that the maps G, J are OWC but not weakly compatible.

Definition 2.5 Conditionally sequentially absorbing if whenever a sequence (ζj) satisfying {(ζj): lim
j→∞

Gζj = lim
j→∞

Jζj} 6= ∅ then there exists another sequence (ηj) in X with lim
j→∞

Gηj= lim
j→∞

Jηj = u for

some u ∈ X such that lim
j→∞

d(Gηj , GJηj) = 1 and lim
j→∞

d(Jηj , JGηj) = 1.

Example 2.5.1 Lt (X, d) be an MMS and ∀η, ζ ∈ X we have d(η, ζ) = e |η−ζ|.

Now the self mappings G, J are defined on X = [0,∞) and given below

G(η) =

{
sinη if 0 ≤ η < π

2

2η2 if 0π2 ≤ η ≤ π;

J(η) =

{
cosη if 0 ≤ η < π

2

πη if 0π2 ≤ η ≤ π;

From above η = 0, π2 are coincidence points for the mappings G, J.

At η = 0

G(0) = J(0) = 0,

GJ(0) = G(0) = 0,

JG(0) = J(0) = 0.



Int. J. Anal. Appl. (2023), 21:13 3

Therefore GJ(0) = JG(0).

And also GJ(π2 ) = G(
π2

2 ) =
π4

2 ,

JG(π2 ) = G(π
2) = 2π4,

Therefore GJ(π2 ) 6= JG(
π
2 ).

Resulting that the maps G, J are not weakly compatible.

Let (pj) =
√
4
j , for all j ≥ 1.

Then

lim
j→∞

Gpj = lim
j→∞

G(

√
4

j
) = lim

j→∞
sin(

√
4

j
) = 0 (2.1)

and

lim
j→∞

Jpj = lim
j→∞

J(

√
4

j
) = lim

j→∞
1− cos(

√
4

j
) = 1− 1 = 0. (2.2)

From (2.1) and (2.2), we get

lim
j→∞

Gpj = lim
j→∞

Jpj (2.3)

From (2.3) implies

{(pj) : lim
j→∞

Gpj = lim
j→∞

Jpj} 6= ∅.

Then ∃ another sequence qj = π
2 +

5
j , for all j ≥ 1.

lim
j→∞

Gqj = lim
j→∞

G(
π

2
+
5

j
) = lim

j→∞
= 2(

π

2
+
5

j
)2 =

π2

2
(2.4)

and

lim
j→∞

Jqj = lim
j→∞

J(
π

2
+
5

j
) = lim

j→∞
π(
π

2
+
5

j
) =

π2

2
. (2.5)

From (2.4) and (2.5), we get

lim
j→∞

Gpj = lim
j→∞

Jpj =
π2

2
. (2.6)

Now lim
j→∞

GJ(qj) = GJ(
π
2 +

5
j ) = limj→∞

G(π(π2 +
5
j )) =

lim
j→∞

G(π
2

2 +
5π
j ) =

π3

2

and

lim
j→∞

JG(qj) = JG(
π
2 +

5
j ) = limj→∞

J(2((π2 +
5
j )
2)) =π

3

2 .

Therefore lim
j→∞

d(Gqj , GJqj) = 1 and lim
j→∞

d(Jqj , JGqj) = 1.

Hence the pair(G, J) is conditionally sequentially absorbing but not weakly compatible.

Definition 2.6 Reciprocally continuous whenever (ηj) is a sequence in X such that lim
j→∞

Gηj = lim
j→∞

Jηj = ζ for some ζ ∈ X such that lim
j→∞

d(Gζ,GJηj) = 1 and lim
j→∞

d(Jζ, JGηj) = 1.

Example 2.5.1 Lt (X, d) be a Multiplicative metric space and ∀η, ζ ∈ X we have d(η, ζ) = e |η−ζ|.

Now the self mappings G, J are defined on X = [0,∞) and given below

G(η) =

{
πcosη if 0 ≤ η < π

2

η2 if 0π2 ≤ η ≤ π;
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J(η) =

{
πsecη if 0 ≤ η < π

2

πη if 0π2 ≤ η ≤ π;
From above η = 0, π are coincidence points for the mappings G, J.

From above at η = 0

G(0) = J(0) = π,

GJ(0) = G(π) = π3,

JG(0) = J(π) = π3.

Therefore GJ(0) = JG(0).

And also GJ(π) = G(π3) = π7,

JG(π) = J(π3) = π9.

Therefore GJ(π) 6= JG(π)
Resulting that the maps G, J are not weakly compatible.

Let (rj) = π − 3
j3

for all j ≥ 1.
Then

lim
j→∞

Grj = lim
j→∞

G(π −
3

j3
) = lim

j→∞
(π −

3

j3
)2 = π2 (2.7)

and

lim
j→∞

Jrj = lim
j→∞

J(π −
3

j3
) = lim

j→∞
π(π −

3

j3
) = π2. (2.8)

From (2.7) and (2.8), we get

lim
j→∞

Grj = lim
j→∞

Jrj (2.9)

Now lim
j→∞

GJ(rj) = GJ(π − 3
j3
) = lim

j→∞
G(π(π − 3

j3
)) = π3

and

lim
j→∞

JG(rj) = JG(π − 3
j3
) = lim

j→∞
J(π(π − 3

j3
)) =π4.

Therefore lim
j→∞

d(G(π2), GJrj) = 1 and lim
j→∞

d(J(π2), JGrj) = 1.

Hence the maps G, J are reciprocally continuous.

In [1], The following Theorem was established.

Theorem 2.7 Assume that (X, d) is an MMS which is complete and the mappings B, S, A, and T

are defined on X such that

(B1) B(X) ⊆ S(X) and A(X) ⊆ T (X)
(B2) d(Au,Bv) ≤ (max{d(Au, Su), d(Bv, Tv),

√
[d(Au, Tv).d(Bv, Su)], d(Su, Tv)})p.

(max{d(Au, Su), d(Bv, Tv)})q.(max{d(Au, Tv), d(Bv, Su)})r for all u, v ∈ X, where 0 <
h = p + q + 2r < 1 (p,q and r are non-ve real numbers).

(B3) Among the subspaces AX or BX or SX or TX is complete

(B4) both the pairs (A,S) and (B,T) are weakly compatible.

Then the four maps A,B,S and T above share a common single fixed point.

Now we generalize the above Theorem 2.7 as below.
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3. Main Result

Theorem 3.1 Assume that (X, d) is an MMS which is complete and the mappings A, B, S, and T

are defined on X such that

(D1) A(X) ⊆ T (X) and B(X) ⊆ S(X)
(D2) d(Au,Bv) ≤ (max{d(Au, Su), d(Bv, Tv),

√
[d(Au, Tv).d(Bv, Su)], d(Su, Tv)})p.

(max{d(Au, Su), d(Bv, Tv)})q.(max{d(Au, Tv), d(Bv, Su)})r for all u, v ∈ X, where h =
p + q + 2r and o < h < 1 (p, qandrarenon − verealnumbers).

(D3) the pairs (A, S) reciprocally continuous and conditionally sequentially absorbing and (B,T ) is

occasionally weakly compatible.

Then the four mappings share a single fixed point which is common in X.

Proof: By (D1), there is a point here u0 ∈ X such that Au0 = Tu1 = y1. For this point u1 ∈ X
there exists a point u2 in X such that Bu1 = Su2 = y2 and so on. Similarly, we can inductively define

Bu2j−1 = Su2j = y2j ;Au2j = Tu2j+1 = y2j+1 for n = 0, 1, 2, ...

We can now show that the sequence {vj} is a Cauchy in X. Put u = u2j and v = u2j+1 in (D2)

then

d(v2j+1, v2n+2) = d(Au2j , Bu2j+1) ≤
(max{d(Au2j , Su2j), d(Bu2j+1, T u2j+1),

√
[d(Au2j , T u2j+1).d(Bu2j+1, Su2j)], d(Su2j , T u2j+1)})p.

(max{d(Au2j , Su2j), d(Bu2j+1, T u2j+1)})q.(max{d(Au2j , T u2j+1), d(Bu2j+1, Su2j)})r

d(v2j+1, v2n+2) ≤
(max{d(v2j+1, v2j), d(v2j+2, v2j+1),

√
[d(v2j+1, v2j+1).d(v2j+2, v2j)], d(v2j , v2j+1)})p.

(max{d(v2j+1, v2j), d(v2j+2, v2j+1)})q.(max{d(v2j+1, v2j+1), d(v2j+2, v2j)})r

d(v2j+1, v2n+2) ≤
(max{d(v2j+1, v2j), d(v2j+2, v2j+1),

√
[d(v2j+1, v2j+1).d(v2j+1, v2j).d(v2j+1, v2j+2)], d(v2j , v2j+1)})p.

(max{d(v2j+1, v2j), d(v2j+2, v2j+1)})q.(max{d(v2j+1, v2j+1), d(v2j+1, v2j).d(v2j+1, v2j+2)})r

In the above equation, if d(v2j+2, v2j+1) > d(v2j+1, v2j) for some +ve integer j , then we have

d(v2j+1, v2j+2) ≤ d(v2j+1, v2j+2)h, where o < h = p + q + 2r < 1, a contradiction.

Therefore we have

d(v2j+2, v2j+1) ≤ d(v2j , v2j+1)h.
Likewise, we have

d(vj , v2j+1) ≤ (d(vj−1, vj)h) ≤ (d(vj−2, v j − 1)h
2 ≤ .... ≤ (d(v0, v1))h

n
.

Let l , j lnN such that l > j , we get

d(vl , vj) ≤ d(vl , vl−1)....d(vj+1, vj)
≤ (d(v1, v0))h

l−1+....hj

≤ (d(v1, v0))
hj

1−h → 1 as l , j →∞.
As a result, the sequence {vj} is a Cauchy.
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By the completeness of X ∃ w ∈ X such that vj → w as j →∞.

Accordingly, the sequences

Au2j , Su2j → z, Tu2j+1, Bu2j+1 → z (3.1)

as j →∞.
Use the notion

L{A, S} = {(uj) : lim
j→∞

Auj = lim
j→∞

Suj}.

By (D3) the pair of mapping (A, S) is conditionally sequentially absorbing from (3.1) L{A, S} 6=
∅ ⇒ ∃(vj) such that

lim
j→∞

Avj = lim
j→∞

Svj = ψ (3.2)

=⇒ d(Avj , ASvj) = 1andd(Svj , SAvj) = 1 (3.3)

By the reciprocally continuous of the pair (A, S) implies whenever

lim
j→∞

Avj = lim
j→∞

Svj = ψ (3.4)

=⇒ d(Aψ,ASvj) = 1andd(Sψ, SAvj) = 1. (3.5)

Using (3.2) and (3.5) in (3.3), we get

Aψ = Sψ = ψ.

Since Aψ is an element in A(X) by (D1) there exists ϕ such that

ψ = Sψ = Aψ = Tϕ. (3.6)

Claim Bϕ = Tϕ.

Putting u = ψ , v = ϕ in (D2)

d(Aψ,Bϕ) ≤ (max{d(Aψ,Sψ), d(Bϕ, Tϕ),
√
[d(Aψ, Tϕ).d(Bϕ,Sψ)], d(Sψ, Tϕ)})p.

(max{d(Aψ,Sψ), d(Bϕ, Tϕ)})q.(max{d(Aψ, Tϕ), d(Bϕ,Sψ)})r .
Letting n →∞ we get,

d(Tϕ,Bϕ) ≤ (max{d(ψ,ψ), d(Bϕ, Tϕ),
√
[d(ψ,ψ).d(Bϕ, Tϕ)], d(ψ,ψ)})p.

(max{d(ψ,ψ), d(Bϕ, Tϕ)})q.(max{d(ψ,ψ), d(Bϕ, Tϕ)})r

d(Tϕ,Bϕ) ≤ d(Tϕ,Bϕ)p+q+r ,
which is a contradiction.

Hence Tϕ = Bϕ.

Which gives

ψ = Sψ = Aψ = Tϕ = Bϕ. (3.7)

From (D3) we have the pair (B,T ) is occasionally weakly compatible which gives BTϕ = TBϕ

implies that Bψ = Tψ from (3.7).
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Claim ψ = Bψ.

Putting u = v = ψ in (D2)

d(ψ,Bψ) ≤ (max{d(ψ,ψ), d(Tψ, Tψ),
√
[d(ψ,Bψ).d(Bψ,ψ)], d(ψ,Bψ)})p.

(max{d(ψ,ψ), d(Tψ, Tψ)})q.(max{d(ψ,Bψ), d(Bψ,ψ)})r

d(ψ,Bψ) ≤ d(ψ,Bψ)p+r , a contradiction

which impies ψ = Bψ.

Therefore ψ = Sψ = Aψ = Tψ = Bψ.

Which implies that ψ is the required common fixed point.

For Uniqueness:

Assume that ρ be the another fixed point then ρ = Sρ = Aρ = Tρ = Bρ.

Putting u = ψ and v = ρ in (D2), we get

d(Aψ,Bρ) ≤ (max{d(Aψ,Sψ), d(Bρ, Tρ),
√
[d(Aψ, Tρ).d(Bρ, Sψ)], d(Sψ, Tρ)})p.

(max{d(Aψ,Sψ), d(Bρ, Tρ)})q.(max{d(Aψ, Tρ), d(Bρ, Sψ)})r

d(ψ, ρ) ≤ (max{d(ψψ), d(ρ, ρ),
√
[d(ψ, ρ).d(ρ, ψ)], d(ψ, ρ)})p.

(max{d(ψ,ψ), d(ρ, ρ)})q.(max{d(ψ, ρ), d(ρ, ψ)})r

d(ψ, ρ) ≤ d(ψ, ρ)p+q+r , a contradiction

which implies ψ = ρ.

This proves the uniqueness.

Now we discuss an example.

Example 3.2 Assume that (X, d) is an MMS space with d(u, v) = e |u−v | for all u, v ∈ X.
A, B, S, and T are the self maps that are defined on X = [0, 1] as follows:

A(η) =

{
η2+1
2 if 0 ≤ η < 1

5

η if 15 ≤ η ≤ 1;

S(η) =

{
η2+η+1
2 if 0 ≤ η < 1

5

η2 if 15 ≤ η ≤ 1;

B(η) =

{
η2+4η+1
2 if 0 ≤ η < 1

5
1
5 if 15 ≤ η ≤ 1;

T (η) =

{
η2+3η+1
2 if 0 ≤ η < 1

5

η if 15 ≤ η ≤ 1;

Now A(X) = [12 , 0.52] ∪ (
1
5 , 1], S(X) = [

1
2 , 0.9) ∪ {

1
5} , B(X) = [12 , 0.62] ∪ {

1
5} and T (X) =

[12 , 0.52] ∪ (
1
5 , 1].

Clearly A(X) ⊆ T (X) and B(X) ⊆ S(X) so that (D1) is satisfied.

For the pair of mappings (A, S) and (B,T ), it is evident that 0 and 1 are coincidence points.

At η = 0 ⇒ A(0) = S(0) = 1
2 .
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But AS(0) = A(12) =
1
2 and

SA(0) = S(12) =
1
5 .

Therefore AS(0) 6= SA(0).
Also at η = 0 ⇒ B(0) = T (0) = 1

2 .

But BT (0) = B(12) =
1
8 and

TB(0) = T (12) =
1
2 .

Therefore BT (0) 6= TB(0).
As a result, the mappings (A, S) and (B,T ) are not weakly compatible.

Take a sequence ηk = 3
2k for all k ≥ 0.

Then lim
k→∞

Aηk = A(
3
2k ) =

( 3
2k
)2+1

2 = 1
2 and lim

n→∞
Sηk = S(

3
2k ) =

1
2 .

Implies lim
k→∞

Aηk = lim
k→∞

Sηk = 1
2 .

Now lim
k→∞

ASηk= lim
k→∞

AS( 32k )= limk→∞
A(12 +

9+6k
8k2
) = 1

2

and lim
k→∞

SAηk= lim
k→∞

SA( 3
2k2
+ 12) = (

1
2 +

9
8k2
)2 = 1

4 .

Therefore the pair (A, S) is non-compatible so that ∃ another sequence βk = 1
5 +

2
3k for all k ≥ 1.

lim
k→∞

Aβk = lim
k→∞

Sβk = 1
5 .

Also we have lim
k→∞

ASβk= lim
k→∞

AS(15 +
2
3m )= limk→∞

A(15) =
1
5

and

lim
k→∞

SAβk= lim
k→∞

SA(15 +
2
3k )= limk→∞

S(15 +
2
3k ) =

1
5 .

Thus from above lim
k→∞

d(Aβk , ASβk) = d(
1
5 ,
1
5) = e

| 1
5
− 1
5
| = 1 and

lim
k→∞

d(Sβk , SAβk) = d(
1
5 ,
1
5) = e

| 1
5
− 1
5
| = 1.

Further lim
k→∞

d(ASβk , A(
1
5)) = d(

1
5 ,
1
5) = e

| 1
5
− 1
5
| = 1.

From the above we can conclude that the pairs (A,S) and (B,T) are non-compatible reciprocally

continuous and conditionally sequential absorbing mappings.

Also it is observed that A(15) = S(
1
5) = B(

1
5) = T (

1
5) =

1
5 .

It is found that the only common fixed point shared by the four self-maps is 15 .

Now we prove another generalization of Theorem 2.7, as given below.

Theorem 3.3 Assume that (X, d) is an MMS which is complete and the mappings A,B,S, and T are

defined on X such that

(E1) A(X) ⊆ T (X) and B(X) ⊆ S(X)
(E2) d(Au,Bv) ≤ (max{d(Au, Su), d(Bv, Tv),

√
[d(Au, Tv).d(Bv, Su)], d(Su, Tv)})p.

(max{d(Au, Su), d(Bv, Tv)})q.(max{d(Au, Tv), d(Bv, Su)})r

for all u, v ∈ X, where h = p + q + 2r and 0 < h < 1 (p,q and r are non-ve real numbers).

(E3) The mappings for the pairs (A, S) and (B,T ) are non-compatible reciprocally continuous and

conditionally sequential absorbing mappings.

Then the four mappings share a single fixed point which is common in X.



Int. J. Anal. Appl. (2023), 21:13 9

Proof:

By (E3) we have the pair (A, S) non-compatible =⇒ there is a sequence (uj) with

lim
j→∞

Auj = lim
j→∞

Suj = ψ (3.8)

for some ψ ∈ X.
=⇒ l imj→∞ d(ASuj , SAuj) not exist or l imj→∞ d(ASuj , SAuj) 6= 1.
Considering that the pair (A, S) is conditionally sequentially absorbing from (3.8) we have

L{A, S} 6= ∅ =⇒ ∃(vj) such that

lim
j→∞

Avj = lim
j→∞

Svj = ψ (say)

=⇒ l imj→∞ d(Avj , ASvj) = 1 and l imj→∞ d(Svj , SAvj) = 1.

Also from (E3) we have (A, S) is reciprocally continuous means whenever

lim
j→∞

Avj = lim
j→∞

Svj = ψ. (3.9)

=⇒ l imj→∞ d(Aψ,ASvj) = 1 and l imj→∞ d(Sψ, SAvj) = 1.

Using the above equations, we get

Aψ = Sψ = ψ. (3.10)

Since the pair (B,T ) is non compatible implies there is sequence (uj) with

lim
j→∞

Buj = lim
j→∞

Tuj = ϕ (3.11)

for some ϕ ∈ X.
=⇒ l imj→∞ d(BTuj , TBuj)1 not exist or l imj→∞ d(BTuj , TBuj) 6= 1.

From (E3) the pair (B,T ) is conditionally sequential absorbing from (3.11)

L{B,T} 6= ∅ =⇒ ∃(vj) such that

lim
j→∞

Bvj = lim
j→∞

Tvj = β (say)

=⇒ l imj→∞ d(Bvj , BTvj) = 1 and l imj→∞ d(Tvj , TBvj) = 1.

Also the pair (B,T ) is reciprocally continuous implies whenever lim
j→∞

Bvj = lim
j→∞

Tvj = β (say)

=⇒ l imj→∞ d(Bβ,BTvj) = 1 and l imj→∞ d(Tβ, TBvj) = 1.

Using the above equation, we get

Bβ = Tβ = β. (3.12)

Claim β = ψ.

Assume that β 6= ψ.
Putting u = ψ and v = β in (E2)

d(Aψ,Bβ) ≤ (max{d(Aψ,Sψ), d(Bβ, Tβ),
√
[d(Aψ, Tβ).d(Bβ, Sψ)], d(Sψ, Tβ)})p.

(max{d(Aψ,Sψ), d(Bβ, Tβ)})q.(max{d(Aψ, Tβ), d(Bβ, Sψ)})r .
Letting as n →∞
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d(ψ, β) ≤ (max{d(ψ,ψ), d(β, β),
√
[d(ψ, β).d(β,ψ)], d(ψ, β)})p.

(max{d(ψ,ψ), d(β, β)})q.(max{d(ψ, β), d(β,ψ)})r .
d(ψ, β) ≤ d(ψ, β)p+r .
A contradiction hence ψ = β.

Therefore Aψ = Sψ = Bψ = Tψ = ψ.

Which implies that ψ is the required unique common fixed point.

From (E2) uniqueness follows easily.

Now we give an example to support Theorem 3.3.

Example 3.4 Assume that (X, d) is a MMS space with d(u, v) = e |u−v | for all u, v ∈ X.
A, B, S, and T are the self maps that are defined on X = [0, 12] as follows:

A(η) =

{
η4 if 0 ≤ η ≤ 1
2 if 1 < η ≤ 12;

S(η) =

{
η2 if 0 ≤ η ≤ 1
2logη if 1 < η ≤ 12;

B(η) =

{
η5 if 0 ≤ η ≤ 1
4 if 1 < η ≤ 12;

T (η) =

{
η3 if 0 ≤ η ≤ 1
4logη if 1 < η ≤ 12.

Now A(X) = [0, 1] ∪ {2}, S(X) = [0, 4.96], B(X) = [0, 1] ∪ 4 and T (X) = [0, 5.45].
We have from above maps η = e and 1 are coincidence points for (A,S) and (B,T).

At η = e , A(e) = S(e) = 2 and B(e) = T (e) = 4.

AS(e) = A(2) = 2, SA(e) = S(2) = 2log2 and BT (e) = B(1) = 1, TB(e) = T (4) = 4log4.

Clearly AS(e) 6= SA(e) and BT (e) 6= TB(e).
As a result, the mappings (A,S) and (B,T) are not weakly comparable.

Now take a sequence ηj = e + 3
4j , for all j ≥ 1.

Then

lim
j→∞

Aηj = lim
j→∞

A(e +
3

4j
) = lim

j→∞
2 = 2 (3.13)

and

lim
j→∞

Sηj = lim
j→∞

S(e +
3

4j
) = lim

j→∞
2log(e +

3

4j
) = 2. (3.14)

Implies lim
j→∞

Aηj = lim
j→∞

Sηj = 2.

Now lim
j→∞

AS(e + 3
4j )= limj→∞

A(2log(e + 3
4m ))= limj→∞

2 = 2

and lim
j→∞

SA(e + 3
4j )= limj→∞

S(2)= 2log2.

Therefore the pair (A, S) is non-compatible.

Further from (3.13) and (3.14) we get
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{(ηj) : lim
j→∞

Aηj = lim
j→∞

Sηj} 6= ∅.

Further there exists another sequence βj = 1− 5
4j for all j ≥ 1.

lim
j→∞

Aβj = lim
j→∞

A(1−
5

4j
) = lim

j→∞
(1−

5

4j
)4 = 1 (3.15)

and

lim
j→∞

Sβj = lim
j→∞

S(1−
5

4j
) = lim

j→∞
(1−

5

4j
)2 = 1. (3.16)

Now lim
j→∞

AS(βj) = lim
j→∞

AS(1− 5
4j )= limj→∞

A(1− 5
4m )

2= lim
j→∞

A(1− 15
16j ) = limj→∞

(1− 5
4j )
4= 1

and lim
j→∞

SA(βj) = lim
j→∞

SA(1− 5
4j )= limj→∞

S(1− 5
4j )
4= lim

j→∞
(1− 5

4j )
8= 1.

Therefore

lim
j→∞

d(ASβj , Aβj) =d(1,1)=e |1−1| = 1

and

lim
j→∞

d(SAβj , Sβj) =d(1,1)= e |1−1| = 1.

Further

lim
j→∞

d(ASβj , A(1)) =d(1,1)=e |1−1| = 1

and

lim
j→∞

d(SAβj , S(1)) = d(1,1) e |1−1| = 1.

It follows that the pairs (A,S) and (B,T) have unique fixed point η = 1 and are non-compatible

reciprocally continuous and conditionally sequentially absorbing mappings. Further the maps A,S,T

and B are discontinuous at η = 1.Moreover the pairs (A,S) and (B,T) are not weakly compatible and

hence all the conditions of Theorem 3.3 are satisfied.

4. Conclusion

In this paper we generalized Theorem 2.7 using

(i) conditionally sequential absorbing, reciprocally continuous and OWC by removing weakly compatible

mappings in Theorem 3.1.

(ii) Further the weakly compatible mappings are replaced by non-compatible reciprocally continuous

and conditionally sequential absorbing mappings in Theorem 3.3.

Moreover the above two results are substantiated by two suitable examples.
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