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Abstract. This paper aims to prove two general fixed point theorems in multiplicative metric space
(MMS) by using reciprocally continuous mappings and conditionally sequential absorbing mappings.

Further our outcomes are validated by discussing two appropriate examples.

1. Introduction

One of the most exciting areas of contemporary mathematics is fixed point theory, which is also
interesting topic of the analysis. Further this topic has became a platform due to its wide applications in
pure and applied mathematics. In this connection S. Young Cho et al [1] proved a common fixed point
theorem over a complete metric space. Later,many researchers generated results in diffeent spaces. In
this process Monika Verma et al [2] generalized [1] for multiplicative metric space.Furthermore some
results can be witnessed like [3], [4], [5], [6]. [7] [8] and [9] in MMS. Using the conditions conditionally
sequential absorption and reciprocally continuous mappings, the goal of this research is to derive two
common fixed point theorems for MMS. Further two suitable examples are discussed to validate our

theorems.
2. Preliminaries

Definition 2.1 Let X be a non empty set and d : X x X — R* then (X, d) is said to be MMS if

satisfying the following conditions:
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(Y d(¢,n)>1forall {,ne Xandd({,m)=1ifandonly if x=y
(i) d(¢,m) = d({,m) forall {,n € X
(i) d(¢,m) < d(¢,B).d(B,n) for all {,n,B € X (multiplicative triangle inequality).
Then (X, d) is called MMS.
The pair of mapping (G, J) of a MMS (X, d) is said to be
Definition 2.2 Compatible if lim d(GJn;, JGn;) = 1, whenever 7; is a sequence in X such that
Gn; = Jn; = ¢ for some ¢ € XJ._>OO
Definition 2.3 Weakly compatible if G{ = J( for some ¢ € X such that /J¢ = JIC.
Definition 2.4 If there is a coincidence point where the mappings commute then it is said to be
Occasionally Weakly Compatible (OWC).
Example 2.4.1 Let (X, d) be a MMS and ¥, ¢ € X we have (n, ) = eln=¢l.
Now the self mappings G, J are defined on X = [0, o) and given below
G(n) = "TH and J(n) = @ for allm e X.
From above n = 0, 1 are coincidence points for the mappings G, J.
Atn=20
G(0) = J(0) = &,
GJ(0) = G(%) =
JG(0)=J(3) =
Therefore GJ(0) # JG(0).
And also GJ(1) = JG(1) = 1.
Resulting that the maps G, J are OWC but not weakly compatible.

3
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5
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Definition 2.5 Conditionally sequentially absorbing if whenever a sequence ((;) satisfying {(¢{;): lim
j—o0
G(j = lim J(} # 0 then there exists another sequence (7;) in X with lim Gn;= lim Jn; = u for
Jj—o0 Jj—o0 Jj—o0
some u € X such that lim d(Gn;, GJn;) =1 and lim d(Jn;, JGn;) = 1.
j—o0 Jj—00
Example 2.5.1 Lt (X, d) be an MMS and ¥n, ¢ € X we have d(n, ¢) = el=¢l.

Now the self mappings G, J are defined on X = [0, o) and given below

sinm if0<n<?Z
Gm=4 _ 2
2n© if0z <n<m,

J(n)—{ cosm ?f05n<g
™ if 05 <nm<m,
From above n =0, g are coincidence points for the mappings G, J.
Atn=0

G(0) = J(0) =0,

GJ(0) =G(0) =0,

JG(0) = J(0) = 0.
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Therefore GJ(0) = JG(0).
And also GJ(%) = G(%Z) = %4
JG(%) = G(m?) =274,
Therefore GJ(5) # JG(5).
Resulting that the maps G, J are not weakly compatible.
Let (pj) = #, for all j > 1.
Then
4 4
lim Gp; = lim G(£_) = lim sin(i) =0 (2.1)
J—00 Jj—o0 J J—o0 J
and
4 4
lim Jp; = lim J(i.) = lim1- Cos(i) =1—-1=0. (2.2)
J—00 J—00 J J—00 J
From (2.1) and (2.2), we get
lim Gp; = lim Jp, (2.3)
j—o0 j—o0
From (2.3) implies
{(pj) : lim Gp; = lim Jp;} # 0.
J—00 J—00
Then 3 another sequence q; = 5 + ? forall j > 1.
T 5 T 5 2
lim Gg; = lim G(= +>) = lim =2(= +>)? = — 2.4
e 2= (2+j) s (2+j) 2 (2:4)
and )
: : ™ 5 _ m™ b ™
Jjm Jgj = fim S5+ )= Im G 5 =5 (2:5)
From (2.4) and (2.5), we get
_ _ 2
Jfim Gp; = lim Jp; = = (2.6)
Now lim GJ(g) = GJ(E +2) = lim G(n(Z +2)) =
j—ro0 J j—ro0 J
. 2 5 o 3
Jm G5+ )=
and
lim JG(qj) = JG(5+52) = lim J2((5+2)?) =%
J—00 J—00
Therefore lim d(Gqj, GJg;) =1 and lim d(Jq;, JGgj) = 1.
J—00 J—00
Hence the pair(G, J) is conditionally sequentially absorbing but not weakly compatible.
Definition 2.6 Reciprocally continuous whenever (7;) is a sequence in X such that lim Gn; = lim
J—0o0

Jn; = ¢ for some ¢ € X such that lim d(G(, GJn;) =1 and lim d(J¢, JGn;) = 1.
J—00 J—00

Example 2.5.1 Lt (X, d) be a Multiplicative metric space and ¥n, ¢ € X we have d(n, () = eln=¢l.

Now the self mappings G, J are defined on X = [0, o) and given below

mcosn if0<n<Z
Gn) =13 o
n if05 <n<m,
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J(n)Z{ Tsecn ?f0§n<g

™ if 05 <n<m,
From above nn = 0, ™ are coincidence points for the mappings G, J.
From above at n =10

G(0) =J(O) =,

GJ(0) = G(m) = 73,

JG(0) = J(m) = =3.

Therefore GJ(0) = JG(0).

And also GJ(m) = G(m3) = =’

JG(m) = J(n3) = 7°.

Therefore GJ(m) # JG()
Resulting that the maps G, J are not weakly compatible.
Let (rj):ﬂ—j% forallj > 1.

Then
lim Grj = lim G(m i) = lim (m 3)2 — 72
j—o0 J _jﬁoo j3 _j%oo J'3 -
and
lim Jri = lim J(mw — i) = lim m(mw — i) = 72
jmee e FEMEES B

From (2.7) and (2.8), we get
lim Gr; = lim Jr;
Jlim Gr; = fim_ Jn
Now lim GJ(r;) = GJ(mr —3) = lim G(n(r— 3)) ==3
J—00 J J—00 J
and
lim JG(r;) = JG(m— 2) = lim J(mw(m— 3)) =n*.
J—o0 J j—ro0 J
Therefore lim d(G(w?),GJr;) =1 and lim d(J(n2), JGr;) = 1.
J—oo Jj—oo
Hence the maps G, J are reciprocally continuous.

In [1], The following Theorem was established.

Theorem 2.7 Assume that (X, d) is an MMS which is complete and the mappings B, S, A, and T

are defined on X such that

(B1) B(X) C S(X) and A(X) C T(X)

(B2) d(Au, Bv) < (max{d(Au, Su), d(Bv,Tv), /[d(Au, Tv).d(Bv, Su)], d(Su, Tv)})P.
(max{d(Au, Su),d(Bv, Tv)})9.(max{d(Au, Tv),d(Bv,Su)})" for all u,v € X, where 0 <

h=p+qg+2r <1 (pqgandr are non-ve real numbers).
(B3) Among the subspaces AX or BX or SX or T X is complete
(B4) both the pairs (A,S) and (B,T) are weakly compatible.

Then the four maps A,B,S and T above share a common single fixed point.

Now we generalize the above Theorem 2.7 as below.
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3. Main Result

Theorem 3.1 Assume that (X, d) is an MMS which is complete and the mappings A, B, S, and T

are defined on X such that

(D1) A(X) C T(X) and B(X) C S(X)

(D2) d(Au, Bv) < (max{d(Au, Su), d(Bv,Tv),\/[d(Au, Tv).d(Bv, Su)],d(Su, Tv)})P.
(max{d(Au, Su),d(Bv, Tv)})9.(max{d(Au, Tv),d(Bv,Su)})" for all u,v € X, where h =
p+q+2rand o< h<1(p, gandrarenon — verealnumbers).

(D3) the pairs (A, S) reciprocally continuous and conditionally sequentially absorbing and (B, T) is

occasionally weakly compatible.

Then the four mappings share a single fixed point which is common in X.

Proof: By (D1), there is a point here ug € X such that Aug = Tuy = y1. For this point u; € X
there exists a point > in X such that Bu; = Sus = y» and so on. Similarly, we can inductively define
Buoj—1 = Sunj = yoj; Atoj = Tpjy1 = yoj41 forn=20,1,2, ..

We can now show that the sequence {v;} is a Cauchy in X. Put u = wpj and v = wtpj;1 in (D2)
then
d(vajt1, vony2) = d(Augj, Buoji) <
(max{d(Auzj, Su;), d(Bugji1, Tuzji1), /[d(Auzj, Tuioj1).d(Busjy1, Stio))], d(Suaj, Tuojy1)})P.
(max{d(Auaj, Suzj), d(Buoji1, T uzjy1)})?.(max{d(Aunj, T uzjt1), d(Buzji1, Suzj)})"

d(vajs1, Vant2) <
(max{d(vaj11, vo)), d(vaji2, Vaj1), v/[d(Vaji1, vaj1).d(vajia, Vo))l d(va), vajy1)})P.

(max{d(vaj41, va)), d(vajto, vajt1)})9.(max{d(vaj+1, vaj41), d(vajp2, v2)})"

d(vajy1, Vanso) <
(max{d(vajt1, vo)), d(Vaji2, vajr1), v/[d(Vaji1, vaj1) . d(vajy1, voy).d(Vaj, vaji2)], d(vay, V1) })P.
(max{d(vajt1, v2)), d(vaj2, vaj+1) })9.(max{d(vaj41, vaj+1), d(vajs1, voj).d(vajs1, vaj42) 1)

In the above equation, if d(vaji2, voj+1) > d(voj41,v2j) for some +ve integer j, then we have

d(vaj+1, vaji2) < d(vaji1, vaj12)"", where o < h=p+ g+ 2r < 1, a contradiction.
Therefore we have
d(Vajt2, vaj1) < d(vaj, vajy1).
Likewise, we have
d(vj, vajs1) < (d(vi1, v))") < (d(vjma, vi — D < o < (d(vo, )"
Let /,jIn N such that / > j, we get
d(vi, vj) < d(vj, vi—1)....d(Vj+1, v))
< (d(wn, VO))h/*.1+....h/
< (d(v1, %)™ — 1 as 1,j — .

As a result, the sequence {v;} is a Cauchy.
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By the completeness of X 3 w € X such that v; — w as j — oo.

Accordingly, the sequences
AUQJ', SUQJ' — Z, TU2j+1, BU2j+1 — Z (31)

as j — 0.
Use the notion
L{A S} = {(y;) : lim Au; = lim Su;}.
j—0o0 Jj—00
By (D3) the pair of mapping (A, S) is conditionally sequentially absorbing from (3.1) L{A, S} #
0 = 3(v;) such that

lim Ay = lim Sv; = (3.2)
j—o0 j—o0
—> d(Av;j, ASvj) = landd(Sv;, SAv;) =1 (3.3)

By the reciprocally continuous of the pair (A, S) implies whenever

lim Av; = lim Sy; =9 (3.4)
J—00 J—00
— d(AY, ASv;) = landd(Svy, SAy;) = 1. (3.5)

Using (3.2) and (3.5) in (3.3), we get
A = Sep = 1.
Since Ay is an element in A(X) by (D1) there exists ¢ such that

Y =5y =AY ="To. (3.6)

Claim Byp = To.
Putting u=1% , v=¢ in (D2)

d(AY, Bo) < (max{d(Ap, S¥), d(Bp, Tp), /[d(Ap, Te).d(Bp, Sp)], d(S, Te)})P.
(max{d(AY, Sv¥), d(Bp, Te)}).(max{d(AY, Tp), d(Bp, S¢)})".
Letting n — oo we get,
d(Ty, Bp) < (max{d(¥,¥), d(By, Te), /1d(¥, ¥).d(Be, Tp)], d(¥, ¥)})P.
(max{d(¢,¥), d(Bp, Tp)})9.(max{d(¥,¥), d(Bp, Tp)})"

d(Tw, Bp) < d(Te, Bp)Ptatr,

which is a contradiction.

Hence Ty = Bo.
Which gives
Y=5Sy=AY=Toe=DBop. (3.7)
From (D3) we have the pair (B, T) is occasionally weakly compatible which gives BT = T By
implies that By = T from (3.7).
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Claim v = By.
Putting u = v =9 in (D2)
d(¥, BY) < (max{d(¥,v), d(TY, T9), /[d(¥, BY).d(BY, ¥)], d(¥, BY)})P.
(max{d(¥,¥), d(T¥, TY)}).(max{d(¥, BY), d(BY, ¥)})"

d(¥, By) < d(3, B)PT", a contradiction

which impies ¢ = B.

Therefore ¢ = Sy = AY = Ty = By.

Which implies that 9 is the required common fixed point.

For Uniqueness:

Assume that p be the another fixed point then p = Sp = Ap = Tp = Bp.

Putting u =% and v = p in (D2), we get
d(AY, Bp) < (max{d(Ay, S¥), d(Bp, Tp), \/[d(Ap, Tp).d(Bp, S¥)], d(Sv, Tp)})P.
(max{d(Ayp, S), d(Bp, Tp)})?.(max{d(AY, Tp), d(Bp, S)})"

d(w, p) < (max{d(¥¥), d(p, p), /Id(W, p).d(p, )], d(¥, 0)})P.
(max{d(¥,¥), d(p, p)})?.(max{d(¥, p). d(p, ¥)})"

d(, p) < d(, p)PT9T", a contradiction

which implies ¥ = p.

This proves the uniqueness.

Now we discuss an example.

Example 3.2 Assume that (X, d) is an MMS space with d(u, v) = el*=Vl for all u, v € X.
A, B, S, and T are the self maps that are defined on X = [0, 1] as follows:

A~ { T2 fosn<i
77:
ifg<n<i;

n’+n+l < 1
sm=q 7 0="eE
n? if £ <n<1;

THIntl e <o L
Ef(n):{1 2 T
5 if 5 <n<1,;
mInt if 0 <p<
T(n) = S
n ifg<n<L
Now A(X) = [5,052] U (£, 1], S(X) = [5,09) U{%} , B(X) = [5,0.62] U {2} and T(X) =
[1,0.52]U (%, 1].
Clearly A(X) C T(X) and B(X) C S(X) so that (D1) is satisfied.
For the pair of mappings (A, S) and (B, T), it is evident that 0 and 1 are coincidence points.
Atn=0= A(0) = S(0) = .
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But AS(0) = A(3) = 1 and
SA(0) =S(3) = &
Therefore AS(0) ;é SA(0).
Alsoatn=0= B(0)=T(0) =5
But BT(0) = B( ) = 1 and
Therefore BT (0) # T B(0).
As a result, the mappings (A, S) and (B, T) are not weakly compatible.
Take a sequence 1, = % for all kK > 0.
352
Then lim A, = A(3) = G —Land fim Sme=S(%) =14
Implies lim Ang = lim Smy = 3.
'k~>oo 'kﬁoo 3 ' . o6k )
Now kl|_>moo ASnk:kILmoo AS(5¢)= kl|_)moo AG+ %) =3
and lim SAm= lim SAGL +3) =G +50)%=1
Therefore the pair (A, S) is non-compatible so that 3 another sequence By = % + % for all k > 1.
k||~>moo Aﬁk B k||—>moo Sﬁk N ) ) . .
Also we have kl|_>moo ASﬁkzkIL)moo AS(g + 55)= kI|_>mOO A(z)=¢
and
Jim SAB=lim SA(5 + %)= lim S(3+ 4%
Thus from above I|m d(ABk, ASﬁk) =d( %
Jim d(SBk, SAﬁk) =dit. b= els—sl =1
Further Jim d(ASBr, A(})) = d(E, 1)y =els =5l = 1.
— 00

From the above we can conclude that the pairs (A,S) and (B,T) are non-compatible reciprocally

1
5

continuous and conditionally sequential absorbing mappings.
Also it is observed that A(2) = S(3) =B(3})=T(}) = 1.
It is found that the only common fixed point shared by the four self-maps is %
Now we prove another generalization of Theorem 2.7, as given below.
Theorem 3.3 Assume that (X, d) is an MMS which is complete and the mappings A,B,S, and T are

defined on X such that

(E1) A(X) C T(X) and B(X) C S(X)

(E2) d(Au, Bv) < (max{d(Au, Su), d(Bv,Tv),\/[d(Au, Tv).d(Bv, Su)], d(Su, Tv)})P.
(max{d(Au, Su),d(Bv, Tv)})9.(max{d(Au, Tv),d(Bv,Su)})"
forall u,v € X, where h=p+ qg+2rand 0 < h< 1 (p,q and r are non-ve real numbers).

(E3) The mappings for the pairs (A, S) and (B, T) are non-compatible reciprocally continuous and

conditionally sequential absorbing mappings.

Then the four mappings share a single fixed point which is common in X.
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Proof:

By (E3) we have the pair (A, S) non-compatible = there is a sequence (u;) with

lim Au; = lim Su; =49 (3.8)
J—00

j—00
for some Y € X.

= limj_o d(ASuj, SAuj) not exist or Iimj_,o d(ASu;, SAu;) # 1.

Considering that the pair (A, S) is conditionally sequentially absorbing from (3.8) we have
L{A, S} # 0 = 3(v;) such that
lim Ay, :jingo Sv; =1 (say)

J—00

= limjoo d(Avj, ASvj) =1 and limj_ d(Svj, SAv}) = 1.

Also from (E3) we have (A, S) is reciprocally continuous means whenever

lim Av; = lim Sv; = . (3.9)

= limjeo d(AY, ASvj) =1 and limj_, d(SY, SAy;) = 1.

Using the above equations, we get

AY =Sy =1. (3.10)
Since the pair (B, T) is non compatible implies there is sequence (uj) with
lim Buj= lim Tuj = ¢ (3.11)
j—o0 Jj—o0

for some p € X.
= limj_oo d(BTuj, TBuj)1 not exist or [imj_,o, d(BTu;, TBu;) # 1.

From (E3) the pair (B, T) is conditionally sequential absorbing from (3.11)
L{B, T} # 0 = 3(v;) such that
Jm, 8 = Jin Ty =8 (<)
— 1imj0e d(Bvj, BTV}) =1 and limj_,oe d(Tvj, TBY;) = 1.
Also the pair (B, T) is reciprocally continuous implies whenever Jll[go By; :J_lngo Tv; =B (say)
— 1imj_seo d(BB, BTvj) =1 and limj_s d(TB, TBv;) = 1.
Using the above equation, we get
BE=TB =4 (3.12)
Claim B = 9.
Assume that B # .
Putting u =% and v =0 in (E2)
d(Ap, BB) < (max{d(Ap, Sv), d(BB, TB), \/[d(AY, TB).d(BB, S¥)], d(Sv, TB)})P.
(max{d(AY, S¥), d(BB, TB)})?.(max{d(Ay, TB), d(BB. S¥)})".

Letting as n — oo
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d(¥.B) < (max{d(v, %), d(8.B8), V[d(¥.B).d(B.¥)]. d(¥.8)})"-
(max{d(¥, %), d(B.6)})7.(max{d(.B), d(B.¥)})".

d(¥,B8) < d(¥,B)P*".

A contradiction hence ¥ = (.

Therefore Ay = Sy =By =Ty = 1.

Which implies that 1 is the required unique common fixed point.

From (E2) uniqueness follows easily.

Now we give an example to support Theorem 3.3.

Example 3.4 Assume that (X, d) is a MMS space with d(u, v) = el“=VI for all u, v € X.
A, B, S, and T are the self maps that are defined on X = [0, 12] as follows:

4 .
n* if0<n<1
Aln) = .
2 ifl<n<L12;

2 .

Ui fo<n<l1
S(n) = .

2logn if 1 <n <12;

5 .
n° if0<n<l1
B(n) = {

4 fl<n<12;

4logn If 1 <n<12.
Now A(X) = [0, 1] U {2}, S(X) =[0,4.96], B(X) =[0,1]U4 and T(X) = [0, 5.45].
We have from above maps n = e and 1 are coincidence points for (A,S) and (B,T).
Atnm=-e, Ale) =5S(e) =2and B(e) =T(e) =4.
AS(e) = A(2) =2,SA(e) = S(2) =2log2 and BT (e) = B(1) =1, TB(e) =T(4) = 4log4.
Clearly AS(e) # SA(e) and BT (e) # TB(e).
As a result, the mappings (A,S) and (B,T) are not weakly comparable.

3 .
n fo<n<1
T(n)z{

Now take a sequence mj = e + 4%., for all j > 1.

Then
: . 3 .
lim An; = lim A(e+ —) = lm 2=2 (3.13)
and
lim Sn; = lim S(e—&-i)* lim 2/o (e+i)*2 (3.14)
j—o0 Ny _j—>oo 4 _j—>00 J 4 T .

Implies lim An; = lim Sn; = 2.
J—00 J—00
Now lim AS(e+ 2)=lim A(2log(e+ 7=))= lim 2=2
Jj—00 47 oo m Jj—00
and lim SA(e+ )= lim S(2)= 2/0g2.
j—ro0 Jj—ro0
Therefore the pair (A, S) is non-compatible.
Further from (3.13) and (3.14) we get
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{(mj) : lim An; = lim Sn;} # 0.
Jj—o0 Jj—oo
Further there exists another sequence 3, = 1 — 4%- for all j > 1.

5

Jim A8, = lim (1= ) = lim (1= )" =1 (3.15)

and
lim SB; = lim S(1 — 3.) = lim (1 - 3_)2 =1 (3.16)
J—o0 J—oo 4 00 4

Now jlr?o AS(B)) = jinlo AS(1 - ‘%)zjirﬂo A(l - 2)2= J-l”!o Al -1g) = jlrl‘o (1-2)=1

o i, SAR) =jim SAL - fejin S(L- =i (1= =

Therefore

lim d(ASB;, AGj) =d(1,1)=el*"1I =1

anélHOO

lim d(SAB;, SB;) =d(1,1)= el~1 = 1.

JF_L)J?EheI’

lim d(ASB;j, A(1)) =d(1,1)=ell~1 =1

and

lim d(SAB;, S(1)) = d(1,1) e~ =1.

J—o0

It follows that the pairs (A,S) and (B,T) have unique fixed point 7 = 1 and are non-compatible
reciprocally continuous and conditionally sequentially absorbing mappings. Further the maps A,S, T
and B are discontinuous at 1 = 1.Moreover the pairs (A,S) and (B, T) are not weakly compatible and

hence all the conditions of Theorem 3.3 are satisfied.

4. Conclusion

In this paper we generalized Theorem 2.7 using
(i) conditionally sequential absorbing, reciprocally continuous and OWC by removing weakly compatible
mappings in Theorem 3.1.
(ii) Further the weakly compatible mappings are replaced by non-compatible reciprocally continuous
and conditionally sequential absorbing mappings in Theorem 3.3.
Moreover the above two results are substantiated by two suitable examples.
Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publi-
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