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Abstract. In this paper, we are interested in providing an analytic solution for cooperative investment risk. We refor-

mulate cooperative investment risk by writing dual representations for each risk preference (Coherent risk measure).

Finding an analytic solution for this problem for both cases individual and cooperative investment by using dual

representation for each risk preference has a strong effect on the financial market. In addition, we formulate a problem

that covers the risk minimization with an expected return maximization problem with risk constraint, for the general

case of an arbitrary joint distribution for the asset return under certain conditions and assuming that all coherent risk

measure is continuous from below. Thus, the optimal portfolio is written as the optimal Lagrange multiplier associated

with an equality-constrained dual problem. Furthermore, a unique equilibrium allocation as a fair optimal allocation

solution in terms of equilibrium price density function for each agent is also shown.

1. Introduction

Cooperative investment is considered a recent problem and it is not very old, all the work before

(2013) was working in risk-sharing without portfolio optimization problem. Later, they focused on

optimal risk-sharing which has become one of the central avenues of study for researchers, which

is defined as similar to cooperative investment but is not concerned with portfolio optimization.

Cooperative investment synthesizes three key elements; (1) Modeling of agents’ risk preferences.

The fact that different agents have different utilities or different risk preferences for goods is the

basis of all markets. In my paper we choose the coherent risk measure, not that there are many

types of coherent risk measures, we focus on negative expected as definitions of coherent risk

measure and we write dual representation for each risk preference for each agent (investor). Then,

formulate an individual optimization problem
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(2) Formulating and solving a cooperative investment problem. In this paper we develop [3] by

Akturk et al in 2020 who studied portfolio investment with two risks and we develop this paper

and solve cooperative investment by considering an authority risk measure determined by the

central bank. Hence, we solve a cooperative investment problem with three risk measure: the

first risk measure represent the first agent, the second risk measure represent the second agent

and an authority measure reflects the third risk measure. It can be formulated as follows: for a

given uncertain outcome X where we have m agents, the question is how X can be partitioned into

random Yi, i = 1, ...., m, which is based on their risk-reward preferences, such that
∑m

i=1 Yi = X and

whether each Yi is acceptable for each agent ior not. At first glance, cooperative seems to offer no

advantage over individual investment. However, the exact reason why cooperative investment

has an advantage is that agents’ shares may not be replicable in an incomplete financial market.

In other words, sharing creates instruments that the one hand, satisfy individual risk preferences

but, on the other hand, may not be replicable on the incomplete market, so each agent is strictly

better at participating in cooperative investment than investing alone. Note that, the underlying

asset returns X are in some Lp space with Lp
∈ [1,+∞] and they have an arbitrary joint distribution

with possible correlation. Assuming that all risk measures are continuous from below so that

the suprema in the dual representations are attained at the same dual probability measure, we

derive a simple dual problem with a linear objective and a linear equality constraint in addition to

domain constraints for the dual variables. Thus, at first, we write dual representation for each risk

preference (Coherent risk measure) for each agent (investor). As shown in the examples; example

1, then create individual optimization problem and cooperative investment problem then find the

optimal solution as shown in theorem(1), and theorem (2), respectively. In the last step, we find

the equilibrium allocation in terms of equilibrium price by formulating the optimal problem in

case of equilibrium with an initial endowment for each agent’s ’investor’.

2. Literature Review

In 2013, Grechuk and Zabarankin [9] studied risk-sharing problems for agents with utility

functions depending only on the expected value and a deviation measure of an uncertain payoff.

Moreover, all of these works formulated and studied cooperative games with players using dif-

ferent deviation measures as numerical representations of their attitudes toward risk. Note that,

cooperative investment is considered a recent problem and it is not very old, all the work before

(2013) was working in risk measure without portfolio optimization problems. In 2015, Grechuk

and Zabarankin [7], studied a cooperative game with a general deviation measure, they showed

that a cooperative portfolio does not, in general, accommodate the risk preferences of all agents,

whereas the risk preferences of each agent are satisfied at the stage of fair sharing of the cooperative

portfolio’s return. More over, In 2015, Grechuk and Zabarankin [7],

described the cooperative investment in a single period with the alternative utility function

and alternative deviation measure, respectively. In 2016, Almualim [2] dynamic cooperative
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investment with the GARCH model and applied the GARCH model to the asset return. In 2017,

Grechuk and Zabarankin [8], extended their work into cooperative investment in multi-period

with synergy effect also suppose that Ui is monetary utility function and he solves the following

problem supX∈FU∗(X), where X∗ =
∑m

i=1 Yi is a maximizer to the investment problem. In, 2020,

Akturk [3] studied Portfolio optimization with coherent risk measures with an authorized risk

but not in cooperative investment. In 2021, Sarkar B. & Guchhait [10] studied the economic

and environmental assessment of retailers within a supply chain management and they took into

account the equilibrium condition of the forward and backward supply chain and their results

found by the classical optimization technique. However, they did not study the problem with

an authoritative risk determined by the Central Bank. Furthermore, in 2022, Sarkar B., et al. [12]

focus on A multi-period multi-product inventory model that is tested through an artificial neural

network for experiencing an uncertain environment. In addition, their result shows that the

proposed approach is the best for cost optimization and time minimization through an artificial

neural network. Furthermore, in 2022, Abdikerimova, et al. [4] designed their problem as a risk-

sharing strategy that is based on mean-variance optimizations of participants’ terminal reserves.

They show convergence of the risk-sharing solution and the ratios of long-term reserves. As well

as they also studied the impact of financial fairness on various risk-sharing strategies and their

long-term limits, but they did not apply it to portfolio optimization problems.

In this paper, I develop [3] by Akturk in 2020, and joined it in case of cooperative investment.

Hence, we create Cooperative investment with an authorized risk introduced by the central bank

where the underlying asset returns X are in some L∞. Then we start to solve three key elements of

cooperative investment as follows:

1) formulate individual investment and it is different than [3] because in my case we need to add

an expected return constraint for the investor and this is the first difference before. then

2) expend our problem to cooperative investment for two agents with an authority risk measure

and its level determined by the central bank.

3) studying an equilibrium problem to find a fair equilibrium allocation to be satisfied and accept-

able for each agent which I mean in this point the result from equilibrium allocation for each agent

is better than the result from solving the investment problem alone.

3. Problem Formulation

3.1. Problem reformulation. Firstly : in case of individual problem. Let us start to model risk-

aversion, let ρ1,ρ2,ρ3 : Lp
→ R be a three arbitrary coherent risk measures. The aim of the portfolio

manager for individual cases is to choose a portfolioω ∈W that minimizes the type 1 risk ρ1(ωTX)

while controlling the type 2 risk ρ2(ωTX) with a fixed threshold level r ∈ R that is while satisfying

ρ2(ωTX) ≤ r which we refer to as the risk constraint ( an external regulatory authority), and

expected return level reflected by E[ωTX]. In the case of individual investment with each risk

measure defined by negative expectation in this case we can formulate the individual investment
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as follows:

minimizeρ1(ω
TX) subjectto ρ2(ω

TX) ≤ r , E[ωTX] ≥ π ,ω ∈W (3.1)

here ρ1(Y) = E[−Y] for each Y ∈ Lp, in our case the random vector X with arbitrary distribution

and assuming that ρ1,ρ2are continuous from below, in this paper we characterize an optimal

solution for (2.2) as a Lagrange multiplier of an associated dual problem. we need to address

some literature reviews for portfolio optimization problems under an arbitrary joint distribution

as follows: we assume X ∈ Lp
n for a for a fixed p ∈ [1,+∞] and ρ1,ρ2 are continuous on Lp, see

( [11],corollary 2.3), thus ρ1,ρ2 admit dual representations of the form:

ρ1(Y) = maxQ1∈Q1EQ1 [−Y]

and

ρ2(Y) = maxQ2∈Q2EQ2 [−Y]

for each Y ∈ Lp, where Q1,Q2 are convex subsets of Mq
1(P) such that corresponding density set

D(Q1), D(Q2), are convex σ(Lq, Lp)-compact subset of Lq. For each j ∈ {1, 2}, Let us define the

continuous convex function gi : Rn
→ R by

gi(ω) = ρ j(ω
TX) = maxV∈D(Q j)E[−VωTX]

for each ω ∈ Rn. We recall a few notations and facts from convex analysis. Let X be a Hausdorff

locally convex topological linear space with topological dual Y and bilinear duality mapping

< ., . >: Y×X → R

i X = Rn with the usual topology which yields Y = Rn together with < x, y >= yTx for

every x ∈ Rn ,y ∈ Rn.

ii X = Lq with q ∈ [1,+∞) with the weak topology σ(Lq, Lp), which yields Y = Lp together

with < Y, U >= E[UY] for every U ∈ Lq, Y ∈ Lp.

iii X = L∞with weak topology σ(Lq, Lp), which yieldsY = Lp together with< Y, U >= E[UY]
for every U ∈ Lq, Y ∈ Lp.

Let A ⊂ X be a set. cone(A):={λx|λ ≥ 0, x ∈ A}, is called the conic hull of A. if A is convex then

cone(A) is a convex cone. For x ∈ A, the convex cone

NA := {y ∈ Y|∀x̀ ∈ A :< y, x > ≥ < y, x̀ >}

is called the normal cone of A at x. The function IA : X → R
⋃
{+∞} defined by IA(x) = 0 for

x ∈ A and IA = +∞ for x ∈ X\A is called indicator function of A. Note that A is convex if and only

if IA is convex. Let g := X → R
⋃
{+∞} be a function. For x ∈ X, the set ∂g := {y ∈ Y|∀x̀ ∈ X :

g(x̀ ≥ g(x)+ < y, x̀ − x >} is called subdifferential of g at x . If A is a nonempty convex set then it

is well-known that from Zalinescu,2002, [14]. ∂IA(x) = NA(x) for every x ∈ A and ∂IA(x) = φ for

every x ∈ X\A. The function g∗ : Y → R
⋃
{±∞} defined by g∗(y) := supx∈X(< y, x > −g(x)) for

every x ∈ X, y ∈ Y such that g is lower semi continuous at x.
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Now, we need to formulate a second constraint qualification, we also need the following. For

A ⊂ X, the set

qri(A) := {x ∈ A|NA(x) is a subspace o f Y}

is called the quasi-relative interior of A see ( [5]). When X = Rn, hence, qri(A) coincides with

relative interior of A. In this case qri(A) , φ whenever A is nonempty, close, and convex.

When X = Lq(q ∈ [1,+∞]) is considered with topology σ(Lq, Lp) and A is nonempty,close and

convex, one has qri(A) , φ see [5]. In particular, if A − Lq
+ := {U ∈ Lq

|P{U ≥ 0} = 1}, then

qri(A) = {U ∈ Lq
|P{U > 0} = 1}, see [5], while the usual interior of A can even be empty. (For

q < +∞, considering the strong and topologies on Lq yield the same quasi relative interior for a

convex set, see [5].

Note that in our problem as mentioned in (3.1), we add constraint qualification which is called

(Slater’s condition ) as an authority risk measure defined by ρ2 to be able to study a dual problem

with zero duality gap.

The main theorems in this paper are showing theorems and their proofs, by constructing a Lagrange

dual problem for (3.1) and exploiting the dual representations of ρ1,ρ2. Moreover, the optimal

solution for (3.1) can be calculated as the Lagrange multiplier of the equality constraint of the dual

problem at optimality. where the dual problem is as follows;

maximize − rν− λ1π− λ2 (3.2)

subject to E[−UX] + ν E[−VX] + λ1E[X] + λ2 1 = 0

U ∈ D(Q1), V ∈ cone(D(Q2)), ν ≥ 0,λ1,λ2 ∈ R

optimal value for individual problem is shown in Theorem 1.

Secondly : reformulate the problem in the case of cooperative investment.

In this section we develop and present a novel technique for solving continuous portfolio optimiza-

tion problems in cooperative investment cases. Now, we suppose the two agents (investors) agree

to invest their joint capital into the risky instrument. Then, divide the random variable X by the

amount of money investors (agents) get at the end of the investment period, where Y1, and Y2 are

the optimal allocation of the first and second agents, respectively. such that X = Y1 +Y2. Now, the

portfolio optimization for individual investment for first and second investors is formulated as a

problem (3.1), while the cooperative investment optimization problem with an external regulatory

authority with a different risk reflected by ρ3 imposes the risk constraint as an obligation for the

portfolio manager. This also makes sense when the portfolio manager wishes to work with two

risk measures in the case of individual investment and three risk measures in the case of coopera-

tive investment. Furthermore, the principle one risk ρ1 for the agent having higher seniority than

the other risk ρ2 which represents a risk constraint and controlled within a fixed threshold level

r ∈ R, which is expressed as follows ρ2(ωTYi) ≤ r. Indeed, in the case of cooperative investment,

an external regulatory authority with a different risk is reflected by ρ3(X), Where X = Y1 +Y2 and
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X = ωTx. Thus, we formulate cooperative investment for the continuous portfolio optimization

problem with short selling as :

minmize ρ1(ω
TY1),

S.T.

ρ2(ω
TY2) ≤ r1, ρ3(ω

Tx) ≤ r2

E[ωTY1] ≥ π1, E[ωT
2 Y2] ≥ π2,

X = Y1 + Y2, ω ∈ W

(3.3)

The aim of the portfolio manager to choose a portfolio ω ∈ W that minimizes the type-1 risk

ρ1(ωTY1) while controlling the type-2 for second agents ρ2(ωTY2) within a fixed threshold level

r1 ∈ R, and controlling the type-3 risk ρ3(ωTX) within a fixed threshold level r ∈ R, note that when

you need to choose r2 ∈ R is less than or equal to value as solving minimization individual problem

for each agent. In Particular, For a random vector X with an arbitrary distribution and assuming

that ρ1,ρ2,ρ3 are continuous from below. Note that, this framework covers as special cases the

problem of maximizing expected return subject to a risk constraint if we take ρ1(Y1) = E[−Y1] for

each Y ∈ Lp as well as the problem of minimizing ( the type 1) risk while maintaining a high-enough

expected return if we take ρ2(Y2) = E[−Y2] and ρ3(X) = E[−X] for each Y1, Y2, X ∈ Lp. So the

Lagrange dual problem (3.3) for cooperative investment problem takes the more explicit form as

follows

maximize − r1ν1 − r2ν2 − λ1π1 − λ2π2 − λ3 (3.4)

subject to E[−UY1] + ν1 E[−V1Y2] + ν2E[V2x] + λ1E[Y1] + λ2E[Y2] + λ3 1 = 0

U ∈ D(Q1), V1 ∈ D(Q2), V3 ∈ D(Q3), ν1,2 ∈ R,λ1,2,3 ∈ R

optimal value for cooperative Investment problem is shown in Theorem 2.

Remark :

According to the condition of Karush-Kuhn-Tucker condition for the problem and from [14], thus an

optimal solution for (3.1),(3.3) is an optimal solution for their dual problem (3.2), (3.4) for individual

investment problem and cooperative investment problem, respectively. Note that dual problem

(3.2), and (3.4) is equal to (4.1), and (4.2) in the next section. According to (Akturk, Ararat, 2019)

Slater’s condition ( as an external regulatory authority with a different risk perception reflected by

ρ2, and ρ3 for individual and cooperative investment problems, respectively) already guarantees

the existence of an optimal solution. We reformulated the dual problem and defined variable

U, V, ν,λ and the relationship between them in the dual problem (3.2),(3.4), thus, the existence of

an optimal for the dual problem is not guaranteed a prior. However, when we rewrite the dual

problem and rewrite the objective (first line of the problem in both (3.2),(3.4)) these automatically

imply the existence of an optimal solution for the Lagrange multiplier for the equality constraint

in the dual problem (3.2),(3.4), which is shown to give an optimal for the original problem (3.1),

(3.3) respectively, for more details see [14]. Consequently, we already find the optimal solution
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but when we change the value of r2, r3 as in the fixed level of risk for the second investor, this

characterizes the set of all Pareto optimal allocations, which can be visualized as the efficient

frontier.

3.2. Fair Equilibrium allocation. Now, the neutral question is how can we select a unique ’fair’

point on the efficient frontier. In the next section, we will address the unique solution that satisfies

each agent, thus, we need to find a special point which is called ’Equilibrium allocation’. Hence, the

third step for solving the cooperative investment problem (3.3), is to find a fair point that is called

" an equilibrium allocation" among all the points in the efficient frontier. Note that: to find the

whole efficient frontier we need to change the value for r1, r2,π1, pi2 in the cooperative investment

(3.3). the efficient frontier is the convex curve between two investors for the main problem in

the case of the cooperative investment problem (3.3) "concave curve for its corresponding dual

problem (3.4)". According to the theory of market Equilibrium, the price of assets will no longer

be given in advance. Different agents demand by their preferences and their budgets. According

to (Follmer, 2009), see [6].

3.2.1. Steps for Finding Equilibrium allocation. (1)We need the equilibrium allocation for each agent’s

investors by solving the utility maximization problem of agent i ∈ I concerning price density ϕ.

maximize Ui(Yi) s.t E(ϕYi) ≤ E(ϕWi), i ∈ I = 1, 2, ...., m (3.5)

where Ui = E[ui(.)], and we can suppose there are no initial endowments, in this special case we

can replace the condition E(ϕYi) ≤ 0 and find an equilibrium allocation in terms of price density

ϕ. Hence, to formulate each problem for each agent (investor) i ∈ I = {1, 2, 3, ..., m} to find each

equilibrium allocation in terms of price density ϕ

minmizeY1 ρ1(Yi) (3.6)

s.t ρ2(X) ≤ r

E[Y1] ≥ π

E[ϕYi] ≤ 0

and we reformulate it for each agent (investor i ∈ I = {1, 2, 3, ..., m} as follows:

maximizeY1E[−UYi] + ν1(E[−M1X] + r) + ν2E[−ϕM2Yi] + λ1(E[Yi] −π1) (3.7)

in our problem, we will say Yϕi solves the utility maximization problem for agent ’investor’ i ∈ I
with respect to the price density ϕ. Thus, the key problem is whether ϕ can be chosen in such

a way that the requested profiles Yϕi ,i ∈ I form a feasible allocation. Moreover, according to [6]

defined ’Arrow-Debreu -equilibrium’ as follows

Definition : A price densityϕ∗ together with a feasible allocation (Y∗i )i∈I is called an Arrow-Debreu

equilibrium if each Y∗i solves the utility maximization problem of agent i ∈ A concerning ϕ∗.

In particular, the initial endowments Wi, i ∈ I are assumed to be non-negative. Moreover, we

assume Pϕ[Wi > 0] , 0 for all i ∈ I and E[X] < ∞, where
∑

i∈I Wi = X. In our case, we have



8 Int. J. Anal. Appl. (2024), 22:9∑
i∈I Yi = X since we don’t have an initial endowment. A function ϕ ∈ L1(Ω,F , P), such that

ϕ > 0 P− a.s, is a price density if

E[ϕX] < ∞

more that this condition is satisfied as soon as ϕ is bounded, due to our assumption E[X] < ∞

. Given a price density ϕ, each agent faces exactly the optimization problem in terms of price

measure Pϕ ≈ P. Hence, if (Y∗i )i∈I is an equilibrium allocation concerning the price density ϕ∗.

Feasibility implies 0 ≤ Y∗i ≤ X and so it follows as in the proof of (corollary 3.42), see [6] that

Y∗i = I+i (ciϕ
∗), i ∈ I

with positive constant ci > 0. Indeed, according to [6], we have the inverse function of the strictly

decreasing function in (4.2), then the optimal X∗, where X∗ =
∑

i∈I Y∗i . Thus, X∗ = I(cϕ), where each

equilibrium allocation Y∗i = I+i (ciϕ∗), c =
∑

i∈I ci, and I+ is simply the positive part of the function

I = (U′)−1, so its the inverse of restriction of U′ to [0,∞]. where In our problem after rewriting

dual representation for each risk preference for each agent (investor). Hence, our problem will be

written as follows:

maximizeUi(Yi) s.t E(ϕYi) ≤ 0, i ∈ I = 1, 2, ...., m (3.8)

where,

U = E[−UYi] + ν1(E[−M1X] + r) + ν2E[−ϕM2Yi] + λ1(E[Yi] −π1)

(2) then, joint equilibrium allocation for each agent ’investor’ and solve the feasibility problem

to find the equilibrium price.

Let us start to formulate equilibrium problem; Consider a finite set I of economic agents and

convex set X of admissible claim. Suppose at the initial time t = 0 each agent i ∈ I in our case in

this paper i = 1, 2 two investors, so each agent ’investor ’ has no initial endowment wi, i = 1, 2

whose discount payoff at time t = 1, furthermore, Agents may want to exchange since there is

no initial endowment wi, hence admissible claim Yi ∈ X. Consequently, This could lead to a new

allocation Yi, i ∈ I = {1, 2} ad the total demand matches the overall supply.

Definition [6]:

A collection Yi, i ∈ I = {1, 2} ⊂ X is called a feasible allocation if it satisfies the market clearing

condition ∑
i∈I

Yi = X, P− a.s

The budget constraints will be determined by a linear pricing rule of the form

Φ(X) := E[ϕX], X ∈ X

where ϕ is a price density, and F feasible set, i.e an integrable function (Ω,F ), such that ϕ > 0 P-

a.s and E[Yi|ϕ] < ∞ for all i ∈ I. To any such ϕwe can associate a normalized price measure Pϕ ≈ P
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with density ϕE[ϕ]−1.

Note that the market clearing condition

X =
∑
i∈I

Y∗i =
∑
i∈I

I+i (ciϕ
∗)

Consequently, we can write the feasibility problem as follows:

Find P (3.9)

subject to

Y1 + Y2 = Xr(ω)∑
(PXr(ω) = 0

ρ2(Y2) = r

this problem can be solved as follows:

minimize 0 (3.10)

subject to

Y1 + Y2 = Xr(ω)∑
(PXr(ω) = 0

ρ2(Y2) = r

To any suchϕwe can associate a normalized price measure Pϕ ≈ P with densityϕE[ϕ]−1, see [6].

Note that, the aim for solving the feasibility problem is to get to the end fair point which is on

an efficient frontier for more details for applying this in the real market: we solve the feasibility

problem we have the value for price then plug the value for price in each equilibrium allocation

since it is written in terms of price density.

4. Main Results

4.1. Theorems and Proofs: Theorem 1 : The optimal value for the individual problem (3.1) is

equal to the optimal value for the corresponding dual problem

maximize − rν− λ1π− λ2 (4.1)

subject to E[−Ux] + ν E[−Vx] + λ1E[x] + λ2 1 = 0

U ∈ D(Q1), V ∈ cone(D(Q2)), ν ≥ 0,λ1,λ2 ∈ R

and optimal value denote it by

p = sup
ν≥,λi∈R

d(ν,λ1,λ2) f ori = 1, 2

for each ν ≥ 0, and λi, i = 1, 2 ∈ R.

Proof : Let us denote p the optimal value of the problem (3.1) Since the optimal value for problem

(3.1) is the optimal value of the Lagrange dual problem (4.1), that is

p = supν≥0,λ1,2∈Rd(ν,λ1,λ2)
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where, for each ν ≥ 0,λ1,λ2 ∈ R, thus

d(ν,λ1,λ2) = inf
ω∈Rn

(ρ1(ω
Tx) + ν(ρ2(ω

Tx) − r) + λ1(E[ωTx] −π) + λ2(1Tω− 1))

By using dual representation of ρ1,ρ2, we fix ν ≥ 0, λ1,λ2 ∈ R

d(ν,λ1,λ2)

= in fω∈Rn( max
U∈D(Q1)

E[−UωTx]) + ν maxV∈D(Q2)E[−VωTx]) + λ1(E[ωTx]) + λ2(1Tω) − rν− λ1π− λ2

let f (ω, U, V) := E[−UωTx] + ν E[−VωTx] + λ1E[ωTx] + λ21Tω for each ω ∈ Rn, U ∈ D(Q1), V ∈
D(Q2). Note thatω→ f (ω, U, V) is convex(affine) and continuous, (U, V)→ f (ω, U, V) is concave

(affine) and σ(Lq, Lp)-continuous (continuous), and D(Q1) ×D(Q2) is σ(Lq, Lp)-compact. Hence,

From classical minimax theorem see [13] ensures that

d(ν,λ1,λ2)

= sup
(U,V)∈D(Q1)×D(Q2)

in fω∈Rn(E[−UωTx] + ν E[−VωTx] + λ1E[ωTx] + λ21Tω) − rν− λ1π− λ2

Clearly, for every (U, V) ∈ D(Q1) ×D(Q2)

inf
ω
∈ Rn(E[−Ux] + ν E[−Vx] + λ1E[x] + λ21)Tω

=

0, if E[−Ux] + ν E[−Vx] + λ1E[x] + λ2 1 = 0

−∞, else

It follows that

d(ν,λ1,λ2)

=

−rν− λ1π− λ2, if ∃(U, V) ∈ Q1) ×D(Q2 : E[−Ux] + ν E[−Vx] + λ1E[x] + λ2 1 = 0

−∞, else

So the Lagrange dual problem (3.1) for individual cases takes the more explicit form as follows

maximize − rν− λ1π− λ2 (4.2)

subject to E[−Ux] + ν E[−Vx] + λ1E[x] + λ2 1 = 0

U ∈ D(Q1), V ∈ D(Q2), ν ≥ 0,λ1,λ2 ∈ R

Now, we make some changes in variables to avoid the multiplication of variables ν, V as follows;

if M ∈ cone(D(Q2)), then their exist ν ≥ 0 and V ∈ D(Q2)

such that M = νV: we simply take ν = E[M] and V = M
ν if ν > 0 and aribatary V ∈ D(Q2) if

ν = 0. Conversely, if ν ≥ 0 and V ∈ D(Q2), then M = νV ∈ cone(D(Q2)). These observations allow
us to reformulate a dual problem (4.2) as (4.1). Note that both problems have p as their optimal
value. Let (U∗, M∗,λ∗1,λ∗2) ∈ Lq

× Lp
× R × R be an optimal solution for (4.1), see [5], corollary
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4.8), there is a strong duality with corresponding Lagrange dual problem that relaxes the equality
constraint, that is, we have

p = inf
ω∈Rn

sup
U∈D(Q1),M∈cone(D(Q2)),λ1,2∈R

(−rE[M] − λ1π− λ2 −ω
T(E[Ux] + E[Mx] − λ1E[X] − λ21))

p = inf
ω∈Rn

sup
U∈D(Q1),M∈cone(D(Q2)),λ1,2∈R

(−rE[M] − λ1π− λ2 + E[−UωTx] + E[−MωTx] + λ1E[ωTx] + λ2ω
T1)

also from [5], corollary 4.8, ensures that there exists an optimal Lagrange multiplier ω∗Rn. By the

first-order condition concerning U = U∗, thus we have that

0 ∈ −(ω∗)Tx−ND(Q1)(U
∗)

this means

E[−U∗(ω∗)Tx] ≥ E[−U′(ω∗)Tx]

for every U′ ∈ D(Q1), that is

ρ1((ω
∗)Tx) = E[−U∗(ω∗)Tx]

We conclude that U∗ ∈ ψ(ω∗) , where ψ(ω∗) defines as ψ j(ω∗) := argmaxV∈D(Q) j
E[−VxTω], see [3],

Lemma 3.4, Hence,

E[−U∗x] ∈ ∂g1(ω
∗) (4.3)

In the same way, the first-order condition concerning M = M∗ yields

E[−M∗((ω∗)Tx + r)] ≥ E[−M′((ω∗)Tx + r)]

for every M′ ∈ cone(D2), that is

E[−M∗((ω∗)Tx + r)] = max
M′∈cone(D(Q)2)

E[−M′((ω∗)Tx + r)] (4.4)

Sincecone(D2) is a cone, the quantity supM′∈cone(D(Q)2)
E[−M′((ω∗)Tx+ r)] can either take the value

0 or +∞, Since E[−M′((ω∗)Tx + r)] is a finite number, both sides of (5.3) must equal to zero, thus

we obtain

0 = max
M′∈cone(D(Q)2)

E[−M′((ω∗)Tx + r)] = (sup
λ′≥0

λ′)( max
V′∈D(Q2)

E[−V′((ω∗)Tx + r)]) (4.5)

= +∞.ρ2((ω
∗)Tx + r) = +∞(ρ2(ω

∗)Tx) − r)

Moreover , we have from optimality ρ2(ω∗)Tx) = r.

Let ν∗ = E[M∗], and suppose first that ν∗ > 0 and let V∗ := M∗
ν∗ ∈ D(Q2) Then,

E[−M∗((ω∗)Tx + r)] = ν∗E[(ω∗)Tx + r] = 0

so that , E[−V∗(ω∗)Tx] = r, Hence

E[−V∗(ω∗)Tx] = r = ρ2(ω
∗)Tx) = max

V′∈D(Q2)
E[−V′(ω∗)Tx]

that is V∗ ∈ ψ2(ω∗), Actually

E[−V∗x] ∈ ∂g2(ω
∗)
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Furthermore, suppose that ν∗ = 0 that is M∗ = 0 p− almost sure. Let us pack some V∗ ∈ ψ2(ω∗)

arbitrarily. since ψ2(ω∗) , φ because ρ2 is assumed to be continuous from below, thus, in both

cases, we may write M∗ = ν∗V∗ and we can write

E[−M∗x] = ν∗E[−V∗x] ∈ ν∗∂g2(ω
∗) (4.6)

Now, from feasibility of(U∗, M∗,λ∗1,λ∗2) for dual problem (4.1), we have

E[−U∗x] + E[−M∗x] + λ∗1π+ λ∗21 = E[−U∗x] + ν∗E[−V∗] + λ∗1π+ λ∗21 = 0 (4.7)

Consequently, from (4.3),(4.6)and (4.7) we obtain

0 ∈ ∂g1(ω
∗) + ν∗∂g2(ω

∗) + λ∗1π+ λ∗21

Finally, According to first-order condition concerning λ1,2 = λ∗1,2, respectively. Also, we got

1Tω∗ = 1

where ω∗ ∈ W.

Therorm 2 : The optimal value for the cooperative investment problem (3.3) is equal to the

optimal value for the corresponding dual problem

maximize − r1ν1 − r2ν2 − λ1π1 − λ2π2 − λ3 (4.8)

subject to E[−UY1] + ν1 E[−V1Y2] + ν2E[V2x] + λ1E[Y1] + λ2E[Y2] + λ3 1 = 0

U ∈ D(Q1), V1 ∈ D(Q2), V3 ∈ D(Q3), ν1,2 ∈ R,λ1,2,3 ∈ R

and optimal value denote it by

p = sup
νi≥0,λ1,λ2,λ3∈R

d(ν1, ν2,λ1,λ2,λ3), For i = 1, 2

for each ν1, ν2 ≥ 0,λ1,λ2,λ3 ∈ R.

Note that the proof for case cooperative investment with an authorized risk measure for theorem

(2) is similar to the proof of the theorem (1) just we have more constraints since the problem is two

agents (investors) managing their risk and taking in account the authorized risk determined by

the central bank.

Proof : Let us denote p the optimal value of the problem (3.3) Since the optimal value for the

problem (3.3) is the optimal value of corresponding the Lagrange dual problem for (4.8), that is

p = sup
νi≥0,λ1,λ2,λ3∈R

d(ν1, ν2,λ1,λ2,λ3), For i = 1, 2

where, for each ν1, ν2 ≥ 0,λ1,λ2,λ3 ∈ R, thus

d(ν1, ν2,λ1,λ2,λ3) = inf
ω∈Rn

(ρ1(ω
TY1) + ν1(ρ2(ω

TY2) − r1) + ν2(ρ3(ω
Tx) − r2) + λ1(E[ωTY1] −π1)

+ λ2(E[ωTY2] −π2) + λ3(1Tω− 1))

By using Dual representation of ρ1,ρ2,ρ3, we fix ν1, ν2 ≥ 0, λ1,λ2,λ3 ∈ R

d(ν1, ν2,λ1,λ2,λ3) = inf
ω∈Rn

( max
U∈D(Q1)

E[−UωTY1])+ ν1 max
V1∈D(Q2)

E[−V1ω
TY2])+ ν2 max

V2∈D(Q3)
E[−V2ω

Tx])
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+λ1(E[ωTY1]) + λ2(E[ωTY2]) + λ3(1Tω)) − r1ν1 − r2ν2 − λ1π1λ2π2 − λ3

Let f (ω, U, V1, V2) := E[−UωTY1] + ν1 E[−V1ωTY2] + ν2 E[−V2ωTx] + λ1E[ωTX] + λ1E[ωTY1] +

λ2E[ωTY2] + λ31Tω for each ω ∈ Rn, U ∈ D(Q1), V1 ∈ D(Q2), V3 ∈ D(Q3) Note that ω →

f (ω, U, V1, V2) is convex(affine) and continuous, (U, V1, V2) → f (ω, U, V1, V2) is concave (affine)

and σ(Lq, Lp, Ls) -continuous (continuous), and D(Q1) ×D(Q2) ×D(Q3) is σ(Lq, Lp, Ls)-compact.

Hence, From the classical min-max theorem see [13] ensures that

d(ν1, ν2,λ1,λ2,λ3) = sup
(U,V1,V2)∈D(Q1)×D(Q2)×D(Q3)

inf
ω∈Rn

(E[−UωTY1] + ν1 E[−V1ω
TY2] + ν2 E[−V2ω

Tx]

+λ1E[ωTY1] + λ2E[ωTY2] + λ3 1Tω) − r1ν1 − r2ν2 − λ1π1λ2π2 − λ3

Clearly, for every (U, V1, V2) ∈ D(Q1) ×D(Q2) ×D(Q3)

inf
ω
∈ Rn(E[−UY2] + ν1 E[−V1Y2] + ν2 E[−V1x] + λ1E[Y1] + +λ2E[Y2] + λ31)Tω

=

0, if E[−UY1] + ν1 E[−V1Y2] + ν2E[−V2x] + λ1E[Y1] + λ2E[Y2] + λ3 1 = 0

−∞, else

It follows that

d(ν1, ν2,λ1,λ2,λ3)

=


−r1ν1 − r2ν2 − λ1π1 − λ2π2 − λ3, if ∃(U, V1, V2) ∈ Q1) ×D(Q2 ×D(Q3 :

E[−UY1] + ν1 E[−V1Y2] + ν2 E[−V2x] + λ1E[Y1] + λ2E[Y2] + λ3 1 = 0

−∞, else

So the Lagrange dual problem (4.8) for cooperative investment problem takes the more explicit

form as follows

maximize − r1ν1 − r2ν2 − λ1π1 − λ2π2 − λ3 (4.9)

subject to E[−UY1] + ν1 E[−V1Y2] + ν2E[V2x] + λ1E[Y1] + λ2E[Y2] + λ3 1 = 0

U ∈ D(Q1), V1 ∈ D(Q2), V3 ∈ D(Q3), ν1,2 ∈ R,λ1,2,3 ∈ R

Now, we make some changes in variables to avoid the multiplication of variables ν1, V1, ν2, V2, as

follows; if M1 ∈ cone(D(Q2)), then their exist ν1 ≥ 0 and V1 ∈ D(Q2) such that M1 = ν1V1: we

simply take ν1 = E[M1] and V1 = M1
ν1

if ν1 > 0 and arbitrary V1 ∈ D(Q2) if ν1 = 0. Conversely, if

ν1 ≥ 0 and V1 ∈ D(Q2), then M1 = ν1V1 ∈ cone(D(Q2)). Similarly, variables if M2 ∈ cone(D(Q3)),

then their exist ν2 ≥ 0 and V2 ∈ D(Q2) such that M2 = ν2V2: we simply take ν2 = E[M2] and

V2 = M2
ν2

if ν2 > 0 and arbitrary V2 ∈ D(Q3) if ν2 = 0. Conversely, if ν2 ≥ 0 and V2 ∈ D(Q3), then

M2 = ν2V2 ∈ cone(D(Q3)) let These observations allow us to reformulate a dual problem (4.9) as

(4.8). Note that both problems have p as their optimal value.

Let (U∗, M∗1, M∗2,λ∗1,λ∗2,λ∗3) ∈ Lq
× Lp

× Ls
× R × R × R be an optimal solution for (4.2), see [5],
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corollary 4.8, there is strong duality with corresponding Lagrange dual problem that relaxes the

equality constraint, that is, we have

p = inf
ω∈Rn

sup
U∈D(Q1),M1∈cone(D(Q2)),M2∈cone(D(Q3)),λ1,2,3∈R

(−r1E[M1] − r2E[M2]

−λ1π1 −−λ2π2 − λ3 −ω
T(E[UY1] + E[M1Y2] + E[M2x] − λ1E[Y1] − λ2E[Y2] − λ31))

p = inf
ω∈Rn

sup
U∈D(Q1),M1∈cone(D(Q2)),M1∈cone(D(Q3)),λ1,2,3∈R

(−r1E[M1] − r2E[M2]

lk− λ1π1 − λ2π2 − λ3 + E[−UωTY1] + E[−M1ω
TY2] + E[−M2ω

Tx] + λ1E[ωTY1] + λ2E[ωTY2] + λ3ω
T1)

also from [5], corollary 4.8, ensures that there exist an optimal Lagrange multiplier ω∗ ∈ Rn. By

the first-order condition with respect to U = U∗, thus we have that

0 ∈ −(ω∗)TY1 −ND(Q1)(U
∗)

this means

E[−U∗(ω∗)TY1] ≥ E[−U′(ω∗)TY1]

for every U′ ∈ D(Q1), that is

ρ1((ω
∗)TY1) = E[−U∗(ω∗)TY1]

We conclude that U∗ ∈ ψ(ω∗) , where ψ(ω∗) defines as ψ j(ω∗) := argmaxV∈D(Q) j
E[−VYT

1ω], see [3],

Lemma 3.4),

E[−U∗x] ∈ ∂g1(ω
∗) (4.10)

In the same way, the first order condition concerning Mi = M∗i , f or i = 1, 1 yields

E[−M∗1((ω
∗)TY2 + r1)] ≥ E[−M′1((ω

∗)TY2 + r1)]

and

E[−M∗2((ω
∗)Tx + r2)] ≥ E[−M′2((ω

∗)Tx + r2)]

for every M′1 ∈ cone(D2) and M′2 ∈ cone(D3), that is

E[−M∗1((ω
∗)TY2 + r1)] = max

M′1∈cone(D(Q)2)
E[−M′1((ω

∗)TY2 + r1)] (4.11)

and

E[−M∗2((ω
∗)Tx + r2)] = max

M′2∈cone(D(Q)3)
E[−M′2((ω

∗)Tx + r2)] (4.12)

Since cone(D2) is a cone, the quantity supM′1∈cone(D(Q)2)
E[−M′1((ω

∗)TY2 + r1)] can either take the

value 0 or +∞, and cone(D3) is a cone, the quantity supM′2∈cone(D(Q)3)
E[−M′2((ω

∗)Tx + r2)] can

either take the value 0 or +∞, Since E[−M′1((ω
∗)TY2 + r1)] and E[−M′2((ω

∗)Tx + r2)] are a finite

number, both sides of (5.10) must equal to zero, thus we obtain

0 = max
M′1∈cone(D(Q)2)

E[−M′1((ω
∗)TY2 + r1)] = (sup

λ′1≥0
λ′1)( max

V′1∈D(Q2)
E[−V′1((ω

∗)TY2 + r1)]) (4.13)

= +∞.ρ2((ω
∗)TY2 + r1) = +∞(ρ2(ω

∗)TY2) − r1)
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as well

0 = max
M′2∈cone(D(Q)3)

E[−M′2((ω
∗)Tx + r2)] = (sup

λ′2≥0
λ′2)( max

V′2∈D(Q3)
E[−V′2((ω

∗)Tx + r2)]) (4.14)

= +∞.ρ3((ω
∗)Tx + r2) = +∞(ρ3(ω

∗)Tx) − r2)

Moreover , we have from optimality ρ2(ω∗)TY2) = r1 and ρ3(ω∗)Tx) = r2

Let ν∗i = E[M∗i ], f or i = 1, 2, and suppose first that ν∗i > 0, f or i = 1, 2 and let V∗1 :=
M∗1
ν∗1
∈ D(Q2)

and

V∗2 :=
M∗1
ν∗1
∈ D(Q3) Then,

E[−M∗1((ω
∗)TY2 + r1)] = ν∗1E[(ω∗)TY2 + r1] = 0

E[−M∗2((ω
∗)Tx + r2)] = ν∗2E[(ω∗)Tx + r2] = 0

so that , E[−V∗1(ω
∗)TY2] = r1, E[−V∗2(ω

∗)Tx] = r2 Hence

E[−V∗1(ω
∗)TY2] = r = ρ2(ω

∗)TY2) = max
V′1∈D(Q2)

E[−V′1(ω
∗)TY2]

that is V∗1 ∈ ψ2(ω∗),

E[−V∗2(ω
∗)Tx] = r = ρ2(ω

∗)Tx) = max
V′2∈D(Q3)

E[−V′2(ω
∗)Tx]

that is V∗2 ∈ ψ3(ω∗), Actually

E[−V∗1Y2] ∈ ∂g2(ω
∗)

E[−V∗2x] ∈ ∂g3(ω
∗)

Furthermore, suppose that ν∗i = 0, f or i = 1, 2 that is M∗i = 0 f or i = 1, 2 p− almost sure. Let us

pack some V∗2 ∈ ψ2(ω∗) ,V∗3 ∈ ψ3(ω∗) , arbitrarily. Since ψ2(ω∗) , φ, ψ3(ω∗) , φ, because ρ2,ρ3 are

assumed to be continuous from below. Thus, in both cases we may write M∗i = ν∗i V
∗

i , f or i = 1, 2

and we can write

E[−M∗1Y2] = ν∗1E[−V∗1Y2] ∈ ν
∗

1∂g2(ω
∗) (4.15)

and

E[−M∗2x] = ν∗2E[−V∗2x] ∈ ν∗2∂g3(ω
∗) (4.16)

Now, from feasibility of(U∗, M∗1, M∗2,λ∗1,λ∗2,λ∗3) for dual problem (4.2), we have

E[−U∗x] + E[−M∗1Y2] + E[−M∗3x] + λ∗1π1 + λ∗2π2 + λ∗31 (4.17)

= E[−U∗x] + ν∗1E[−V∗1Y2] + ν∗1E[−V∗2x] + λ∗1π1 + λ∗1π1 + λ∗31

= 0

Consequently, from (4.10),(4.15), (4.16) and (4.17) we obtain

0 ∈ ∂g1(ω
∗) + ν∗1∂g2(ω

∗) + ν∗2∂g3(ω
∗) + λ∗1π1 + λ∗2π2 + λ∗31
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Finally, According to first order condition with respect to λ1,2,3 = λ∗1,2,3, respectively. Also. we got

1Tω∗ = 1

where ω∗ ∈ W.

We conclude that ω∗ is the optimal solution for problem (3.2)or (3.4) so from the condition of

Karush-Kuhn-

Tucker condition for the problem and from [14] atω = ω∗ is the same optimal solution for problems

(3.1) and (3.3), respectively. Moreover, once we have the optimal ω∗ we get X = ω∗x we can find

the division Y1 and Y2 where X = Y1 + Y2. see [8].

4.2. Examples and numerical results. We choose the risk measure as a coherent risk measure. In

the following examples, we show how to write dual representations for each risk preference for

each agent (investor). In the first example, two investors will choose risk measure as negative

expected value second example; second example investors choose average-value at-risk and in the

third example one of the investors choose negative risk and others will choose average-value-at-

risk.

Example 1 : see(Two-CVAR)

Let p = 1 and take ρ(Y1) = E[−Y1] for every Y1 ∈ L1, it is easy to check that ρ satisfies properties

for coherent risk measure above. while the dual representation for each investor (agents) risk

preferences, we simply have Q1 = {P} so that D1(Q1) = {1} ⊂ L∞. While second investors will

be of the form ρ(Y2) = E[−Y2] for every Y2 ∈ L2, It is easy to check that ρ satisfies properties for

coherent risk measure above. While the dual representation (2.1) for each investor (agents), we

simply have Q2 = {P} so thatD2(Q2) = {1} ⊂ L∞

Example 2 :

(A verage-at-risk) Let φ ∈ (0, 1) be a probability level. The average value-at-risk at Level φ for first

investor

Y1 ∈ L1 is defined as

AV@Rφ(Y1) :=
1
φ

∫ φ

0
V@Ru(Y1)du

It is well-known that AV@Rφ is a law-invariant coherent risk measure on L1. In the dual represen-

tation in (3.1), we may take Q1 = {Q ∈ M1(P)|P{
Q
P
≤

1
φ } = 1}so that

D1(Q1) = {V ∈ L∞|P{0 ≤ V ≤
1
φ
} = 1}

. While for second investor will be in the same form

AV@Rφ(Y2) :=
1
φ

∫ φ

0
V@Ru(Y2)du
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It is well-known that AV@Rφ is a law-invariant coherent risk measure on L1. In the dual represen-

tation in (3.1), we may take Q1 = {Q ∈ M1(P)|P{
Q
P
≤

1
φ } = 1}so that

D2(Q2) = {V ∈ L∞|P{0 ≤ V ≤
1
φ
} = 1}.

Example 3 :

The first investor choose negative Expected value and the second investor will choose Average

value-at-risk. Let p = 1 and take ρ(Y1) = E[−Y1] for every Y1 ∈ L1, it is easy to check that ρ

satisfies properties for coherent risk measure above. While the dual representation (3.1) for each

investor (agents), we simply have Q∞ = {P} so that D1(Q1) = {1} ⊂ L∞. The measure for the

second investor will be as follows:

AV@Rφ(Y2) :=
1
φ

∫ φ

0
V@Ru(Y2)du

It is well-known that AV@Rφ is a law-invariant coherent risk measure on L1. In the dual represen-

tation in (3.1), we may take Q2 = {Q ∈ M1(P)|P{
Q
P
≤

1
φ } = 1}so that

D2(Q2) = {V ∈ L∞|P{0 ≤ V ≤
1
φ
} = 1}.

For more details see [3].

Numerical Experiment For the financial market model, Let us assume that one risk-free asset and

n risky asset. Also, the initial endowment of agent i ∈ I = {1, 2, ...., m} is given by a portfolio

ω̄ ∈ Rn+1 so that the discount payoff at time t = 1 is

Yi =
ω̄.S̄

1 + r
, i ∈ I = {1, 2, ...., m}

, the market portfolio is given by X = ω̄.S̄
1+r , with ω̄ :=

∑
i∈I ω̄i = (ω0,ω), and S̄ = (S0, S) is asset

Price. Hence, in our problem for cooperative investment. Just we need to replace each Yi and X in

the equilibrium allocation for each investor Y∗i = I+(ciϕ∗) as follows:

Algorithm in real Market :

Step1: finding derivative ofU in (3.7) for each investor (agent i = 1, 2) in terms of yi, respectively.

Step2: by solving cooperative investment (3.3) we get the value of ω.

Step3: the value of the derivative in step 1 and the value of ω in step 3 plug them in the system

(3.9) to get equilibrium price P.

Step4: plug the value of equilibrium price P in equilibrium allocation Y∗i where we can find it as

the positive inverse of derivative ofUi for each investor(agent i = 1, 2 at equilibrium price that we

find it by solving the feasible problem (3.9). Note that, solving the problem (3.3) in CVX-MATLAB

we write inv-pose for derivative ofUi to write Yi in the program.

Real Experiment solving Individual Investment (IV) (3.1) and cooperative investment (CI) (3.3)

with one risk-free =0.01 and 3 risky assets (APA, BA, BK) weekly historical data downloading



18 Int. J. Anal. Appl. (2024), 22:9

from Yahoo finance S&P 500 (January 2022 to May 2022) where r1 = 0.0025, r2 = 0.001 and

π1 = 0.025,π2 = 0.05. We got the result as follows: note that we wrote the coherent risk measure

as a negative risk which is expected shortfall at 100

Risk measure optimal value for CI optimal value for IV (CI-IV) × 100

ρ1(y) +0.0014842 +0.0445431 -0.043 %

ρ2(y) +0.00110 +0.0253 -0.024 %

we can changing the value or r1 and fixed the value of r2,π1,π2 in order to get the whole efficient

frontier. then solve the feasibility problem (3.9) to get the equilibrium price and then equilibrium

allocation as follows. y∗1 = 0.0014822, Y∗2 = 0.001002 which is still better than the optimal value for

individual investment as shown in [3].

5. Conclusion

In this paper, we reformulate cooperative investment risk by writing a dual representation for

each risk preference (coherent risk measure) for each agent (investor) and first, finding an analytic

solution for the problem for both cases individual and cooperative investment problems which

represented in theorems 1 and 2. Second, numerical experiments support our result by getting

better investment in the case of cooperative investment. Hence, we conclude that the cooperative

investment still has better results since sharing creates instruments that on the one hand, satisfy

individual risk preferences but, on the other hand, are not replicable in an incomplete market, so

each agent is strictly better in participating in cooperative investment than investing alone.

This research can be extended in at least two directions. First, solving cooperative investment

with inflation effect in case of initial endowment exist and without. Second, a case study of

applying cooperative investment in Saudi Arabia’s Financial market.
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