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Abstract. This paper is devoted to studying the controlled K — g—frames in Hilbert C*—modules,
some useful results are presented. Also, the concept of controlled K — g—dual frames is given. Finally,

we discuss the stability problem for controlled K — g—frames in Hilbert C*—modules.

1. Introduction and Preliminaires

Frames for Hilbert spaces were introduced by Duffin and Schaefer [2] in 1952 to study some deep
problems in nonharmonic Fourier series by abstracting the fundamental notion of Gabor [4] for signal
processing.

Many generalizations of the concept of frame have been defined in Hilbert C*-modules [3,5,6,9,
11-15].

Controlled frames in Hilbert spaces have been introduced by P. Balazs [1] to improve the numerical
efficiency of iterative algorithms for inverting the frame operator.

Rashidi and Rahimi [8] are introduced the concept of Controlled frames in Hilbert C*—modules.

Let A be a unital C*—algebra, let / be countable index set. Throughout this paper H and L are
countably generated Hilbert A—modules and {H,},c; is a sequence of submodules of L. For each
i €1, Endj(H, H;) is the collection of all adjointable .A—linear maps from H to H;, and End’(H, H)
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is denoted by End’(H). Also let GL™(H) be the set of all positive bounded linear invertible operators

on H with bounded inverse.

Definition 1.1. [10] Let A be a unital C*-algebra and H be a left A-module, such that the linear
structures of A and H are compatible. H is a pre-hilbert A-Module if H is equipped with an A-valued
in product (., )ao'H x H — A such that is sesquilinear, positive definite and respects the module

action. In the other words,
(i) (x,x)4 =0 for all x € H and (x,x) 4 = 0 if and only if x = 0.
(i) (ax+y, z2)a=alx, 2) 4+ (v, z)4 forallac A and x,y,z € H.
(i) (x,y)a=(y.x)% forall x,y € H.

For x € H we define || x||= |[{x, x>A||%. If H is complete with ||.||, it is called a Hilbert A-module or a
Hilbert C*-module over A.
For every a in C*-algebra A, we have |a| = (a*a)% and the A-valued norm on H is defined by

x| = (x*x)% forx € H.
Let H and K be tow Hilbert A modules, A map T : H — K is said to be adjointable if there exists a
map T* : K — H such that (Tx,y)a = (x, T*y)4 forally € K and x € H.

Lemma 1.1. [18] Suppose that Hi and Hy two Hilbert A-Modules H and L1 € Endj(H1, H),
Lo € End(H2,H). Then the following assertions are equivalent:

(i) R(L1) € R(L2),

(i) L1l < N2LoL% for some A > 0,

(iii) There exists a mapping U € End’y(H1, H2) such that L1 = LoU.
Moreover, if above conditions are valid, then there exists a unique operator U such that

(i) U= inf{fa >0 L1L% < al,L%},

(ii) ker(L1) = ker(U),

(i) R(U) € R(LE).

If an operator U has a closed range, then there exists a right-inverse operator UT, (pseudo-inverse of

U) in the following sense.

Lemma 1.2. [I7] Let U € End}(H1,H2) be a bounded operator with closed range R(U). Then
there exists a bounded operator Ut € E ndy(Ha, H1) for which

UUx = x, x € R(U).

Lemma 1.3. [10] Let H and K two Hilbert A-module and T € End(H,K). Then, the following

assertions are equivalent:

(i) The operator T is bounded and A-linear,
(i) There exist k > 0 such that (Tx, Tx) 4 < k{(x,x)4 for all x € H.
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Definition 1.2. [7] A family \ := {\; € End’y(H,H;)}ies Is called a g-frame in Hilbert A module H
with respect to {H;}ie; if there exist constants 0 < A < B < +oo such that for each f € H,
Alf, F)a <) INF A4 < BUF, .
icl
Theorem 1.1. [16] Let A := {\; € End(H.H;)}ie) be a g-frame in Hilbert A module H with
respect to H{;€ I} if and only if there exist constants A, B > 0

AIE Fall < 1D AT AIF) 4

icl

< B|(f. F)all- (1.1)

2. Some Properties of Controlled K-g-Frames

Now, we define controlled K-g-Frames in Hilbert C*-modules.

Definition 2.1. Let C,C' € GLT(H) and K € End’(H), we say that N := {\; € End’y(H, Hi)}ies isa
(C, C")-controlled K-g-frame in Hilbert A-module H if there exist constants 0 < Acc’ < Bec' < +o0
such that for each f € H,

Acc(K*F,K*F)4 <> (NC'F,NCF) 4 < Bed (F, Fa. (2.1)

iel
If the right hand of (2.1) holds, N\ is called a (C,C’)-controlled K — g—Bessel sequence in Hilbert
A-module H with bound Be.
We call N\ a Parseval C, C'-controlled K-g-frame if
(K, K*F)a =Y _(NC'F,NCF) .
icl
If K = Iy, then \ is C, C'-controlled g—frame.
For simplicity, we will use a notation CC’ instead of C, C'.
If N is a CC'-controlled g-frame on Hilbert A-module H, and C*/\j‘/\,—C’ is positive for all i € I, then
for each f € H,
Acc!(F, F)a < [[(CNNC') FIP< Bec'(F, f a.

Now, let

Ri={(C*NNC)F: f e Hyier € (O OH)p.
icl
It is easy to check that R is a closed subspace of (3, ©H)p.

Now, we can define the synthesis and analysis operators of the CC'-controlled g-frames as
Teer - R —H,

1
Teer((CTNNC)? Fier = > (C*ANC'F),
iel
and
TC*C' TH — R,
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1

Tee (f) = (C*'ANC)2 ey

Thus, the CC'-controlled g-frame operator is given by
Scclf = TCC’ Tékc/f
= (C*AINCTF).
i€l

Scer Is positive, bounded, invertible and self-adjoint. Moreover

(Sce'f. F) = (NC'F,NCF)

i€l

and

Accrly < Seer < Beerly.

Lemma 2.1. Let C,C' € GLT(H). A sequence N is a CC'-controlled g-Bessel sequence in Hilbert
A-module with bound Beer if and only if the operator

TCC’ "R — H,

1
Tee ((C*AINC)2F)igr = > (C*AIAC'F)
icl
is well defined and bounded with ||Tcci||< v/ Bcecr.

Proof. We only need to prove the sufficient condition. Let Tger be a well-defined and bounded operator
with || Tcer|< V/Bceer. For each f € H, we have

S UNCENCH A=Y (CNNCF F)a

il i€l

= (> CNNCF ) a

i€l
— (Tea((C*NNC)Z )i, Fha.
Hence,
Tecr (C*NNC)EF)ier, )all < [T ((CANC)Z 0))ielIF]
< T llICAAC)ZE))ielllIF.

But
I(CANC)ER)P= S (NCIFNCE) 4,
el
* Ak 1
I((C*AENCYZ )< [ Tee IFL,
* Ak 1
I((C*AENC) )P T PIIFI1

It follows that

D INC'FNCE) 4 < Bed|[(F, ) all.
i€l
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and this means that A is a CC’-controlled g-Bessel sequence. ([l

Lemma 2.2. Let C,C' € GLY(H). A sequence N\ is a CC'-controlled g-frame sequence in Hilbert
A-module if and only if the operator

Teer - R —H,

Tee ((C*NINC)ZE) = ST CNNCF
el

is well defined, bounded and surjective.

Proof. Suppose that A is a CC’-controlled g-frame in Hilbert A-module. Since, Seer is surjective
operator, so T¢er. For the opposite implication, by Lemma 2.1; Teer is a well-defined and bounded
operator. So Ais a CC’-controlled g-Bessel sequence. Now, for each f € H, we have f = TCC/TgC,f.

Hence

1% = I(F AP
(TeeTEaf P
T TEHIP

STt TELOPINTEE, TE I

<ITEFIPIITE I
< ITENPIFIRD (NCFNCF) 4

icl

We conclude that

UITENDHE OIS D INCEACE) 4.
i€l
I}

Proposition 2.1. Let A be a CC'-controlled K-g-frames in Hilbert A-module H and K has a dense
range. Suppose that (C*NA;C') is positive and also V; = (C*/\;!‘/\,-C’)% for each i € I. Then
(ﬂie/ ker\/,-)J‘ =

Proof. Assume that Acc’ and Bcc’ are the frame bounds of A. Hence,
Acc (K*f, K*F).4 < |[(C*NAC)2|12< Bec (F, ) 4. (2.2)

Since ker K* = (R(K))* and K has a dense range, K* injective. Then from (2.2), for each i € /, we
get

[kerV; C ker K* = {0}.
iel
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Remark 2.1. Suppose that N\ is a CC'-controlled K-g-frame in Hilbert A with lower bound Acc’.
Then, we have Scer > Acc’KK*, so by Lemma 1.1, there exists an operator U € End’(H, R) such
that

TeoU = K. (2.3)

Now, we can obtain optimal frame bounds of \ by the operator U. Indeed, it is obvious that
Bop = [ISccrll= ITeer 1.
By Lemma 1.1, the equation (2.3) has a unique solution as Uy such that
1Uoll® = inf{a > 0O/KK* < aTcerTé}
=inf{a > 0/(KK*f,f) <o(TccTéaf, ), f € H}
=inf{a > 0/(K*f, K*f) < a(T¢c/f, T f), f € H}
=inf{a 2 0/ [(K*F, K* )< al(Tcaf. Tea Il f € H}
=inf{a > 0/|K*f|’< ol Téa fI%. F € H}.
Now, we have
Aop = sup{A > 0\ A|K*F[P< |Tea 1%, F € H)
= (inf{a > 0\ |[K*FIP< a|TEaf|? f e H}) !
= U2
O
In the following, we consider some proper relations between the operators U, K € End(H) and
C,C' € GLT(H) and investigate the cases that {A;U};c;, {A;U*};e; can also CC’-controlled K-g-

frame. Next, by putting connections between the operators Sy, K, C and C’, we reach to necessary

and sufficient conditions that {A;};e; can be a Parseval CC’-controlled K-g-frames.

Theorem 2.1. Let A be a CC'-controlled K-g- frame in Hilbert A module H. and U € End}(H)
such that R(U) C R(K). Then A is a CC’'-controlled U-g-frame in Hilbert A-module H.

Proof. Suppose that Accr is a lower frame bound of A. Using Lemma 1.1, there exists o > 0 such
that UU* < a?KK*. Now, for each f € H. We have (UU*f, f) 4 < a®(KK*f, f) .
We have
ALCI(U*f, Ufya < Acc(K*f, K*f) 4
(a?)
<Y (NC'FNC) A
icl
< Bed'(f, f) 4.
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Theorem 2.2. Let A\ be a CC'-controlled K-g- frame in Hilbert A- module H. Assume that K has
a closed range and U € End(H) such that R(U*) C R(K) Also suppose that U* commutes with
C and C'. Then {A\jU*}c; is a CC'-controlled K-g- frame for R(U) if and only if there exists § > 0
such that for each f € R(U),

U F]I= 8IIK*f.

Proof. Suppose that {A;U*};c; is a CC’-controlled K-g-frame in Hilbert A module H with a lower
frame bound Eccr > 0. If Beer is an upper frame bound of A then for each f € R(U), we have

Ecc (K*f,K*fla <> (INUC'F,NUCFya =Y (NC'UF, NiCU*F) 4,
i€l iel
thus
Ecc(K*f,K*f)a <> (NC'U*f, NiCU*F) 4 < Bec (U*F, U™f) 4,
Therefore -
Ecc|{K*F, K*F) A< 1D _(INCUF, NCUF) all< Bec |[(UF, UF) all
iel

thus Ecc’||[K*f||?< Bed!|U*f|]?. so gggHK*ng ||U*f]|, for the opposite implication, for each
f € H, we have
IUFll= (KT KU FI< 1K UF.
Therefore, if Accr is a lower frame bound of A, we have
AccO?||KT|72(K*f, K*f) < Ace | KT|| 72 (U*F, U*f)
< Aco|K*Uf|1?
<D (NUTCF,NUCF) A
icl
For the upper bound, it is clear that
D (INUCF, NU*CFYa < Bed (U, U*F) 4 < Bec!|[U|(F, ) a.
icl
So, (AjU*)ic; is a CC'-controlled K-g-frame in Hilbert .A-module H with frame bounds Acc/62|| K T||~2
and Bcc'||UJJ? . O

Theorem 2.3. Let A be a CC'-controlled K-g-frame in Hilbert A-module H and the operator K has
a dense rang. Assume that U € End’j(H) has a closed range and U and U* commute with C and C'.
If {A\;U*}ie; and {A\;U};e; are CC'-controlled K-g- frame in Hilbert A- module H, then U is invertible.

Proof. Suppose that {A;U*};c; is a CC’-controlled K-g-frame in Hilbert A module H with a lower
frame bound A;, and By. Then for each f € H,

ALK F K F)a <) (NUC'F,NUCF) 4 < By(f, ) a.
i€l
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We have
IAL(K* K ) A< Y INUTCE, NUTCE) all < (I B1(F, Fall, (2.4)
icl
hence,
ALK FIP< 1D (NUSCTFNURCR) < By,
icl
Since K has a dense range, K* is injective. Moreover, R(U) = (ker U*)* = H so U is surjective.
Suppose that {A;U*}j¢; is a (CC')-controlled K-g-frame in Hilbert A module H with a lower frame
bound A and B>. Then, for each f € H,
Ao(K*F, K F)a <D (NUC'FNUTCFY a4 < Bo(f, ) a
icl
1A (K=, K* ) all < I (NUTCTFNURCE) All< || Bo(F, £ all
icl
Aol K*FIP< 1D _(NUTC'F NUPCH AlI< BalIF 1P,
icl
Therefore U is injective, since ker U C ker K*. Thus, U is an invertible operator. [l
Theorem 2.4. Let A\ be a CC'-controlled K-g-frame in Hilbert A- module " and U € End’(H) be a
co-isometry (i.e. UU* = Idy) such that UK = KU and U* commutes with C and C'. Then {A\;U*};¢,
is a CC'-controlled K-g-frame in Hilbert A-module H.

Proof. Suppose A be a CC’-controlled K-g- frame in Hilbert A-module H with a lower frame bound
Accr. and Beer for each f € H, we have

S ANUCENUCH A =D (INCUF,NCU ) a < Bee (U™ F, U F) 4

i€l il
hence,

D ANUC'FNUCP) 4 < Beo||UFIP(F, F) a.
iel
So, {AjU*}¢; is a CC'-controlled g-Bessel sequence. For the lower bound, we can write

S ANUCENUCR A= (NCUF,NCU F) 4
i€l iel
> Acc{K*Uf, K*U*F) 4
= Accr ((UK)*F, (UK)*F) 4
= Acc (KU)*f, (KU)*f) 4

(
(
(
= Acc{U*K*f, U*K*F) 4
= Acc(UU*K*f, U*K*F) 4
(

= Accr (K, K*F) 4.
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Theorem 2.5. Let A := {A\; € End}{(H. Hi)}ic/ and © = {O; € End}(H,Hi)}ies be tow CC'-
controlled K — g— Bessel sequences in Hilbert A- module H with bounds Bp and Bg respectively.
Suppose that Tp.c,cr and To ccr are their synthesis operators such that T@'CC/T/’\",C’C, = K*. Then N\

and © are CC’'-controlled K and K*-g-frames, respectively.

Proof.
IK*F|* = [(K*F, K*F)all?
= [(To.ccTaccf K ) all®
<N\ TR cofIPITE coK*FI12
=D (NC'FNCHAY (0iCK*F,0,C'K*f)a
i€l el
<Y NCENCH ABo (K K*F) 4l
iel
So,

KK F K Fall< Y (NC'FNCT) 4B
i€l

Thus

B IK*F K*F)all< Y (NC'FACF) A
il
This that A'is a CC’-controlled K-g-frame in Hilbert A-module H with frame operator Sa. For each
f € A, we have T/\:CVC/T(;,CC’ =K

IKFII* = [[{(KFf, KF)al?
= (Tac.o TS cof. KF)all?
< TxcoKFPITS cofII?

=Y (NC'KF,NCKF) 4> (0;C'f,0,C')a

iel iel
<Y (0iC'F, 0iCFABAKE, KF)al.
iel

Thus

By (KT, KF)all< Z(Q/C'ﬁ OiCf)a.

icl

This that © is a CC’-controlled K-g-frame in Hilbert A- module H.
Theorem 2.6. Let A be a g-frame in Hilbert A- module H with frame operator Sp. Also assume
that N\ is a CC'-controlled g- Bessel sequence with frame operator Scc:. Then A is a Parseval CC’-
controlled K-g- frame in Hilbert A-module H if and only if C = (5,°)*® and C" = (5, %)V where ®,
W are two operators in Hilbert A- module H such that ®*V = KK* and p+ g = 1 where p, g € R.
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Proof. Assume that A is a Parseval CC’-controlled K-g-frame in Hilbert A-module #H,
D ANCENCH a = (K*f, K*F)a
icl

= (F.CNNC F)a
i€l

= (£, CNNCF)a

icl
= (f,Sccf)a
= (f, KK*f) 4

Sco(f) =Y C*NNC(F)

i€l

=C*(Q_NNCH()

i€l
= C*SAC'(F).

Hence Scc = C*SAC" and S = KK*. Therefore, for each p, g € R such that p+ ¢ = 1, we obtain
KK* = C*SRSAC.
We define ® = (S3)*C and ¥ = (57)*C’ So
PV = C*SRSIC = KK™.

Conversely, let ® and W be tow operators in Hilbert A- module H such that ®*W = KK*. Suppose
that C = (5,”)*® and C' = (5, 9)*WV are tow operators on Hilbert .AA- module H wherep, g € R and
p+ qg=1, Since

KK* = o*V = C*SKS,‘(C’ = C*S\C' = Sc¢.
So, for each f € H,

(KK*f, f)la=(K'f,K*Fla= (D CNNCF, Fa.
iel

Thus A is Parseval CC’-controlled kK — g— frame on Hilbert A- module H. [l

3. Duals of Controlled K-g-Frames

In this section, by the concept of K-g- dual pair, we present a bounded operator called dual operator
and propose some known equalities and inequalities between dual operator CC’-controlled K-g-frame
in Hilbert A- module H.
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Definition 3.1. Suppose that A is CC'-controlled k-g-frame on Hilbert A- module H with synthesis
operator Ta.c.cr Then A= {/T,- € Endy(H,Hi)}ies is called a CC'-controlled k — g— dual frame ( or
brevityCC' — Kg— dual ) for \ if

* J—
TA'C'C/TT\,C,C’ - K’

(3.1)
and N is a CC'-controlled K — g— Bessel sequence. In this cas, (A, K) is called a CC’-controlled

K — g— dual pair. The following results presents equivalent conditions of the CC'-K-g-dual.

Proposition 3.1. Let AbeaCC —K-— g— dual for N\. Then the following conditions are equivalent :

(I) T/\'C'C,TK,C,C/ = K
(||) TK,C,C,T;{(,CvC, — K*

(iii) for each f,f" € H, we have

AN * *
<Kf'f>_<TK,c,C/f' K,c,c'f>'

Theorem 3.1. IfA be a CC'— K — g— dual for \, then A is a CC'-controlled K* — g— frame in Hilbert
A- module H.

Proof. We have

IKFI* = I{KF, KF).all?

_ * 2
— {ThccT: e o f KO

= (T2 o F Trcenl?

<73 FIPITA coKEIP

.C.C’
< O _INC'FNCH DO INCKE,NCKF) 4)
iel iel
< Be||KFIPQ_(NC'F,NCH) ),
il
It follows that
Bt Acalll(KF KR all< Y (NC'FNCT) 4 < Beall{F, £ all.
iel
Therefore, A is a CC'-controlled K* — g— frame in Hilbert A- module H. O

Theorem 3.2. Assume that Cop and Dop are the optimal bounds of A, respectively. Then
Cop>Bgy.  Dop > Ay,

for which Aop and Bop are the optimal bounds of A, respectively. Assume (A, K) is called a CC’-
controlled K — g— dual pair and J C L. We define

Sgf =Y (C*NNC)(CNNC)F f e H,
ieJ
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and we call it a dual operator.
It is clear that Sy € End(H) and Sz + Sz = K where J¢ is the complement of J. If Biand B
are the bounds of A and A respectively, then, we have
IS7f11? = (HSL|J|O 1(S7f, 9ll)?
gll=
< (sup (Q_II((CAIA, /C)2(CAANC)F))?

lgll=1 =7

< OIS NNC)EFIP)(( sup (ZHC*A*A C')z[))2
€T llgll= IEJ

< B By||f%.

So Sz is bounded. Now, by that operator S we extend some well known equalities and inequalities

for controlled K-g- frames in the following theorems.

Theorem 3.3. If f € H then (X (CNNC)IF (CNNC)IKE) — [Saf|?=
(Ciege (CNNCH2E, (CNNCHV2KE) — [|Sgef 2.

Proof. Let f € H. We can write

(Z (C*ATA iCEF, (C*NINC)2KE) — |S7FI2 = (K*S7f, F) — ||S7F]12

eJ

= (K*Syf, f) — (S5Sf, f)
= ((K = S57)"Szf,f)
= (S7e(K=57).f)
= (SLeKF, ) = (S%Sgef, F)
= (KF, Sgcf) — (Sgef, Syef)
= (Sycf, KF)y — ||Szcfl?

= (3 (CNAC)EE (CANC)EKE)
ieJge

— [ISg<f|1%.

]

Theorem 3.4. Let A\ be a Parseval CC'-controlled K-g-frame in Hilbert A-module H if J C | and
E C J¢, then for each f € H,

1D (CNNCHEP=] D (CANC)F)P
i€JUE i€JNE
= D _(CNNCHP=IY_(CANCEIP+2Re(D_(NC'FNCT KK ).

icJ ieJe icE
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Proof. Let

Sauf =Y (C*NNCHF,
ied
therefore, Sp; + Sp,jc = KK™.

Hence

5/2\,J - S/2\,JC = 5/2\,J - (KK* - SA.J)2
= KK*Sp 4+ SAKK* — (KK*)?
= KK*Sp j — Sp je KK*,

Now, for each f € H, we obtain
ISR JIP=1ISR jellP= (KK*Spf. £) = (SAscKK*F, ),

consequently, for JU E instead of J:

1) (CNNCHEP=] > (CANCHE?

i€ JUE i€ JNE
= (> INC'ENCKKT ) = Y (NCFNC KK
i€ JUE i€JNE
= O _INCENCKK ) = Y - (NC'F,NCKK*F) + 2Re(D (NC'F,NC*KK*f))
ieJ ieJe i€eE
=D (CNNCYIP=I1D (CANCHFIP+2Re(D (NC'FNCTKK*F)).
el ieJe i€eE
0
Theorem 3.5.

Let A be a Parseval CC’-controlled K-g-frame in Hilbert A- module H if J C [/, then for each
feH,

1D (C*ANC)FIP+Re (Z</\,—C’f, /\,-C*KK*f))
ied ieJe

* * * * 3 *
— |€ZJ(C NNCHF||?+Re (EZJU\,-C’f, NC KK f>> > Z||KK f2.
1eJe I

Proof. using the the proof of Theorem 3.4, we have
SR = SR je = KK*Spy — Sp e KK*.

Therefore

KK* 2 (KK*)?2  (KK*)?
5/2\’J+S/2\'Jc:2< 5 —S/\’_j) +( 2) 2( 2).
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Thus

KK*Shy+ S je + (KK*Spy+ S3 o) = KK*Sp s+ S3_jc + SAJKK* + SR e
= KK*(Sns+ Snue) + S35+ SR e > 2(KK*)2.
Now, for each f € H, we obtain
1D (CNNCHFIP+Re(D (NC'FANCTKK®F))
ieJ ied
= (KK*Spif )+ (SR e £) + (KK + S e, £) 4 (FL SR eF) > S(KK®).

0

4. The stability problem of controlled K — g—frames

Stability of the wavelet and Gabor frames under perturbation is one of the important problems in
frame theory. At first this problem was studied by Paley and Wienes for bases and then extended to
frames.But the most important results are obtained by Casazza and Christensen. Here we study the

perturbation of CC’-controlled K-g-frames.in Hilbert A-module H.

Theorem 4.1. Let A\ be a CC'-controlled K-g- frame on Hilbert A- module H with bounds Accr and

Accr. Assume that © := {0, € Endj(H,H;),c,} Is a sequence of operators such that for each f € H
and i€/,

ICATACT = € o ©,C)2f|
< MI(CANC)Y2E| 420 CF ©F ©,C)Y2F| |+ (K* f, K*F)?

where {ci}ic/ Is a sequence of positive numbers such that n := Z,-E, C,-2 <ooand 0 < A, A < 1.
Then © is a CC'-controlled k — g— frame on Hilbert A-module H with bounds:

((1 ~ M)VAco —n)2 ((1 +\1)vBeor +77IIK||>2
1+ ' 1—X '

Proof. For each f € H, we have

||C* @T @,C/)1/2f||: H(C* @T QIC, . C*/\T/\,C,)l/Qf + (C*/\T/\,C/)l/2f||

< (C* ©F 0;C" — C*NENCHY2F|4+(CH AN C) Y2
< MI(CNNC)P 421 C 07 0,C) 24 K™ F, KT F)2 + [+(C A ACYY2F.
Hence

(1= X)|I(C* 0F ;C)2F|I< (1 + A)II(CAIAC)Y2F ||+ (K*F, K* )2
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Since A is a CC’-controlled K-g-frame, so
ITE? = I(CAFAC) 2 F)12

= (NC'F,NCF)a
el
< Bed/(f, f) 4.

Therefore
(1+ M) (CNNCY Y2 |+ (K*F, K*F) 2
W '

(14 X1)VBcd +n||K]||
1—

I(C* oF 0,C)3f| <

I((C* oF O,C)V2FIP< ( )*(f. f)a

Now, for the lower bound we get
1(C* OF ©;CYY2|| = [|C*NINCHY2F — (CNNCT — CF oF ©,;CT) Y2
> [|CNINC)YRE = [(CAINCT — CF oF 0,C)Y2f|
> | CAIAC)Y2E | =g | (CHASACY Y2 E|

— Xo||CF OF OiC)YRF | — i (K*F, K*F)2.

Therefore
(1+X)II(C* OF OiCYY2F|= (1= A)ICANC) Y2 F ||~ c{K*F, K*F)
or )
1= M)|[(C*ANCHY2 || —ci( K* F, K*F)2
* o~k ~ 1/2f > ( 1 i i
[(C"eF ©;C")7=fl|= 1) .
Since,
ITENP= I(CANCY 2= (NCFNCE) 4 = Acc(K*F, K*F) .
i€l
Thus
1— \)VAcc —
ez (L 2VACE T M e gy
(1 + )\2)

O

Proposition 4.1. Let A\ be a CC'-controlled k — g— frame on Hilbert A- module H with bounds Acc
and Bccr. Assume that © == {0, € End(H, H,)
feHandiel,

/e/} Is a sequence of operators such that for each

[(C*NENC = C* 0F ©,C)Y2F||< (K™ f, K*F)2.
where {ci}ie/ is a sequence of positive numbers such that n := >, C,-2 < oo. Then © is a CC'-

controlled k — g— frame on Hilbert A- module H with bounds :

(VAcc —n)?, (v Beer + mlK||)2.
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Proof. For each f € H, we have
(€ 0F @)Y 2FIl = I NCY2F = (CTNC = C of o) V2|
> [[CNNCYZE=(CAACT = C oF 0,C) 21|
> VAco K*F K )2 = n(K*f, K*f)
> (v/Acc — m){K*f, K*f)%.
Thus

I(C* 07 ©:iC)2FIP= (VAce — m)P(K*F, K*F)a.
On the other hand

[C™oF @i C) 2F| = (C 0F ©iC" = CANC) 2 + (AN CHM2F|
< (C*0F i€ = CNNC) V2 |+[(CA; N CHV2E |
1
< V/Beelf, )2 +n{K*f, K*F)

1
< (VBcc +nlKIN{f, )%
Thus
1(C* ©F ©;C)Y2FIP< (V/Bee + Il KA (F, F)a.
O
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