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Abstract. In the geometric theory of space curves, a magnetic field generates magnetic flow. The

trajectories of magnetic flow are called magnetic curves. In the present paper, we obtain magnetic

curves corresponding to killing magnetic fields in Euclidean 3-space E3. The magnetic curves of the

spherical indicatrices of the tangent, principal normal and binormal for a regular space curve are said

to be meant curves. Also, we investigate the magnetic curves of the tangent indicatrix and obtain the

trajectories of the magnetic fields called TT-magnetic, NT-magnetic and BT-magnetic curves. Finally,

some computational examples in support of our main results are given and plotted.

1. Introduction

The magnetic curves on three dimensional Riemannian manifold (M3, g) are trajectories of charged

particles moving on M3 under the action of a magnetic field F . Each trajectory γ may be found by

solving the Lorentz equation ∇γ′γ′ = φ(γ′), where φ is the Lorentz force corresponding to F and ∇
is the Levi Civita connection of g. In particular, the trajectories of (charged) particles moving without

the action of a magnetic field are geodesics, which satisfy ∇γ′γ′ = 0 (see for more details [1, 2]). In

a three-dimensional space, when a charged particle moves along a regular curve, the tangent, normal

and binormal vectors describe the kinematic and geometric properties of this particle. These vectors

and the time dimension affect the trajectory of the charged particle during the motion in a magnetic

field [3, 4]. Moreover, the study of magnetic curves was extended to other ambient spaces, such as

complex space forms [5,6], Sasakian 3-manifold [7,8]. Recently, results of classification for the Killing
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magnetic trajectories on two special 3-dimensional manifolds, namely E3 and S2 × R, were obtained

in [9] and [10], respectively. Barros and Romero proved that if (M3, g) has constant curvature, then

the magnetic curves corresponding to a Killing magnetic field are center lines of Kirchhoff elastic

rods [11]. The curves and their frames play an important role in differential geometry and in many

branches of science such as mechanics and physics. So, we are interested here in studying some of

these curves called magnetic curves, which have many applications in modern physics. In this work,

we investigate the trajectories of the magnetic fields called as TT-magnetic, NT-magnetic and BT-

magnetic curves and obtain some solutions of the Lorentz force equation. We are looking forward

to see that our results will be helpful to researchers who are specialized in mathematical modeling,

mechanics and modern physics.

2. Basic concepts

In this section, we list some notions, formulae and conclusions for curves in three-dimensional

Euclidean space which can be found in the text books on differential geometry (see for instance

[1, 12, 13]). Let E3 denotes the real vector space with its usual vector structure. We denote by

(x1, x2, x3) the coordinates of a vector with respect to the canonical basis of E3. For any two vectors

x = (x1, x2, x3) and y = (y1, y2, y3), the metric g on E3 is defined by

g(x, y) = x1y1 + x2y2 + x3y3.

The norm of x is given by

‖x‖ =
√
g(x, x),

and the vector product is denoted by

x× y = ((x2y3 − x3y2), (x3y1−x1y3), (x1y2 − x2y1)).

The sphere of radius r > 0 with center at the origin is given by

S2 = {x = (x1, x2, x3) ∈ E3 : g(x, x) = r2}.

Let γ = γ(s) : I ⊂ R → E3 be an arbitrary curve in E3, s be the arclength parameter of γ. It is well

known that each unit speed curve with at least four continuous derivatives, one can associate three

mutually orthogonal unit vector fields T , N and B called the tangent, the principal normal and the

binormal vector fields, respectively [14].

Let {T (s), N(s), B(s)} be the moving frame along γ, where these vectors are mutually orthogonal

vectors satisfying

〈T (s), T (s)〉 = 〈N(s), N(s)〉 = 〈B(s), B(s)〉 = 1.
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The Frenet equations for γ are given by [15]
T ′(s)

N ′(s)

B′(s)

 =


0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0



T (s)

N(s)

B(s)

 , (2.1)

where κ(s) and τ(s) are called the curvatures of γ.

For spherical images of a regular curve in Euclidean 3-space, we present the following definition:

Definition 2.1. [16,17] Let γ be a curve in Euclidean 3-space with Frenet vectors T , N and B. The

unit tangent vectors along the curve γ(s) generate a curve γT = T on the sphere of radius 1 about

the origin. The curve γT is called the spherical indicatrix of T or more commonly, γT is called tangent

indicatrix of the curve γ. If γ = γ(s) is a natural representations of the curve γ, then γT = T (s) will

be a representation of γT . Similarly, one can consider the principal normal indicatrix γN = N(s) and

binormal indicatrix γB = B(s).

Let γ be a curve in E3 and consider γT = T (s) as the tangent indicatrix of γ with {TT , NT , BT }
as its Frenet vectors. Then we have the Frenet formula as follows:

T ′T (sT )

N ′T (sT )

B′T (sT )

 =


0 κT 0

−κT 0 τT

0 −τT 0



TT (sT )

NT (sT )

BT (sT )

 ,
where 

TT = N,

NT = −1√
1+f 2T + f√

1+f 2B,

BT = f√
1+f 2T + 1√

1+f 2B,

and

sT =

∫
κ(s)ds, κT =

√
1 + f 2, τT = σ

√
1 + f 2, f =

τ(s)

κ(s)
, (2.2)

taking into consideration that

σ =
f ′(s)

κ(s) (1 + f 2(s))3/2
,

is the geodesic curvature of the principal image of the principal normal indicatrix of the curve γ, sT is

a natural representation parameter of the tangent indicatrix of γ and also it is the total curvature of

the curve γ and κT , τT are the curvature and torsion of γT . Therefore, we can see that τT
κT

= σ. Let

us introduce the following notions [6, 11,18].

Definition 2.2. A magnetic field on a three-dimensional oriented Riemannian manifold (M3, g) is

defined as a closed 2-form F on M3, related to a skew-symmetric (1, 1)−tensor field φ called the

Lorentz force of F , and we have

g(φ(X), Y ) = F (X, Y ), ∀ X, Y ∈ χ(M).
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The magnetic trajectories of F are curves γ on M3 which satisfy the Lorentz equation:

∇γ′γ′ = φ(γ′).

Let V be a Killing vector field on M3, then the Lorentz force can be written as

φ(X) = V ×X, (2.3)

in this case, the Lorentz force equation is given by

∇γ′γ′ = V × γ′.

Note that, for a trivial magnetic field; F = 0, the Lorentz equation becomes ∇γ′γ′ = 0 and then

the solutions are geodesics.

Proposition 2.1. Let γ : I ⊂ R → M3 be a curve in the three-dimensional oriented Riemannian

Manifold (M3, g) and V be a vector field along the curve γ. Then, one can take a variation of γ in

the direction of V , say, a map Π : I × (−ε, ε)→ M3 which satisfies

Π(s, 0) = γ(s),

(
∂Π

∂s
(s, t)

)
= V (s).

In this setting, we have the following functions:

1. the speed function v(s, t) =
∥∥∂Π
∂s (s, t)

∥∥; t is the time dimension,

2. the curvature κ(s, t) and the torsion τ(s, t) are functions of γ(s). The variations of these

functions at t = 0 are given as follows:

V (v) =

(
∂v

∂t
(s, t)

)∣∣∣∣
t=0

= g(∇T V, T ),

V (κ) =

(
∂κ

∂t
(s, t)

)∣∣∣∣
t=0

= g(∇2
T V,N)− 2κ g(∇T V, T ) + g(R(V, T )T,N),

V (τ) =

(
∂τ

∂t
(s, t)

)∣∣∣∣
t=0

=

[
1

κ
g(∇2

T V + R(V, T )T,B)

]′
+g(R(V, T )N,B)+τg(∇T V, T )+2κ g(∇T V,B),

where R is the curvature tensor of M3.

Corollary 2.1. Let V (s) be a restriction to γ(s) of a Killing vector field V of M3, then

V (v) = V (κ) = V (τ) = 0.

3. Magnetic curves of the tangent indicatrix

Definition 3.1. [11, 18] Let γT : I → S2 ⊂ E3 be a tangent indicatrix of a regular curve γ in

three-dimensional Euclidean space E3, and F be a magnetic field on M3, then the curve γT is

(i) TT−magnetic curve if TT satisfies the Lorentz force equation, ∇
TT
TT = φ(TT ) = V × TT ,

(ii) NT−magnetic curve if NT satisfies the Lorentz force equation, ∇
TT
NT = φ(NT ) = V × NT ,

(iii) BT−magnetic curve if BT satisfies the Lorentz force equation, ∇
TT
BT = φ(BT ) = V × BT .

In the light of this definition, we can investigate the following.
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3.1. TT -magnetic curve.

Proposition 3.1. Let γT be a TT−magnetic curve in E3, with the Frenet apparatus

{TT , NT , BT , κT , τT }. Then, we have the Frenet formula:
T ′T (sT )

N ′T (sT )

B′T (sT )

 =


0

√
1 + f 2 0

−
√

1 + f 2 0 σ
√

1 + f 2

0 −σ
√

1 + f 2 0



TT (sT )

NT (sT )

BT (sT )

 ,
and the Lorentz force in the Frenet frame can be written as

φ(TT )

φ(NT )

φ(BT )

 =


0

√
1 + f 2 0

−
√

1 + f 2 0 Ψ1

0 −Ψ1 0



TT

NT

BT

 . (3.1)

where Ψ1 is a certain function defined by Ψ1 = g(φ(NT ), BT ).

Proof. From Definition 3.1, one can write

φ(TT ) =
√

1 + f 2 NT . (3.2)

Since φ(NT ) ∈ span{TT , NT , BT }, we have

φ(NT ) = λ1TT + λ2NT + λ3BT .

Use the following equalities:

g(φ(NT ), TT ) = −g(φ(TT ), NT ) = −
√

1 + f 2,

g(φ(NT ), NT ) = 0, g(φ(NT ), BT ) = Ψ1,

to get

λ1 = −
√

1 + f 2, λ2 = 0, λ3 = Ψ1.

Hence,

φ(NT ) = −
√

1 + f 2TT + Ψ1BT . (3.3)

Similarly, we can easily obtain

φ(BT ) = −Ψ1NT . (3.4)

From Eqs. (3.2), (3.3) and (3.4), we get the required result. �

Proposition 3.2. The curve γT is a TT -magnetic trajectory of a magnetic field F if and only if the

vector field V is given by

V = Ψ1TT +
√

1 + f 2 BT . (3.5)
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Proof. Let γT be a TT -magnetic trajectory of a magnetic field F . Then, by using Proposition 3.1 and

Eq. (2.3), we can easily have

V = Ψ1TT +
√

1 + f 2 BT .

Conversely, we assume that Eq. (3.5) holds, then we get V × TT = φ(TT ) and so the curve γT is a

TT -magnetic curve. �

Theorem 3.1. Let γT be a TT−magnetic curve and V be a Killing vector field on a space form

(M3(K), g). If γT is one of the TT−magnetic trajectories of (M3(K), g, V ), then its curvatures

satisfying the following relations:

Ψ1 = const.,

(1 + f 2)

(
Ψ1

2
− σ

√
1 + f 2

)
= A1,(√

1 + f 2
)′′

+ σ(1 + f 2)Ψ1 − σ2(1 + f 2)3/2 +K
√

1 + f 2 +
1

2
(1 + f 2)3/2 = A2

√
1 + f 2,

where K is the curvature of Riemannian space M3 and A1, A2 are constants.

Proof. Let V be a vector field in Riemannian manifold M3, then V satisfies Eq. (3.5). So, differenti-

ating Eq. (3.5) with respect to s, we get

∇T V = Ψ′1TT +
√

1 + f 2(Ψ1 − σ
√

1 + f 2)NT +
(√

1 + f 2
)′
BT . (3.6)

Since V is a Killing vector then from Corollary 2.1, V (v) = 0 and ∇T V has no tangential component,

i.e., Ψ1 = const. Also, the differentiation of Eq. (3.6) and using Eq. (2.3) lead to

∇2
T V = (1 + f 2)(σ

√
1 + f 2 −Ψ1)TT +

((√
1 + f 2

)′′
+ σ(1 + f 2)Ψ1 − σ2(1 + f 2)3/2

)
BT

+

((√
1 + f 2

)′ (
Ψ1 − 2σ

√
1 + f 2

)
−
√

1 + f 2
(
σ
√

1 + f 2
)′)

NT . (3.7)

Thus, from Eqs. (3.6) and (3.7) and Corollary 2.1, we have (V (
√

1 + f 2) = 0). So, we get

(1 + f 2)

(
Ψ1

2
− σ

√
1 + f 2

)
+ A1 = 0. (3.8)

Similarly, according to Proposition 2.2, when Eqs. (3.6) and (3.7) are considered with the condition

V (σ
√

1 + f 2) = 0, we can easily obtain[
1√

1 + f 2

((√
1 + f 2

)′′
+ σ(1 + f 2)Ψ1 − σ2(1 + f 2)3/2 + g(R(V, TT )TT , BT )

)]′
+
√

1 + f 2
(√

1 + f 2
)′

= 0.

If M3 has constant curvature K, then

g(R(V, TT )TT , BT ) = Kg(V,BT ) = K
√

1 + f 2,
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therefore,(√
1 + f 2

)′′
+ σ(1 + f 2)Ψ1 − σ2(1 + f 2)3/2 +K

√
1 + f 2 +

1

2
(1 + f 2)3/2 = A2

√
1 + f 2. (3.9)

Hence, the proof is completed. �

3.2. NT -magnetic curve.

Proposition 3.3. Let γT be a NT -magnetic curve in E3 with Frenet apparatus {TT , NT , BT , κT , τT }.
Then, the Lorentz force in the Frenet frame can be written as

φ(TT )

φ(NT )

φ(BT )

 =


0

√
1 + f 2 Ψ2

−
√

1 + f 2 0 σ
√

1 + f 2

−Ψ2 −σ
√

1 + f 2 0



TT

NT

BT

 , (3.10)

where Ψ2 is a function defined by Ψ2 = g(φ(TT ), BT ).

Proof. From Definition 3.1, one can write

φ(NT ) = −
√

1 + f 2TT + σ
√

1 + f 2BT . (3.11)

Since φ(TT ) ∈ span{TT , NT , BT }, then we have

φ(TT ) = µ1TT + µ2NT + µ3BT .

Using the following equalities:

g(φ(TT ), TT ) = 0,

g(φ(TT ), BT ) = Ψ2,

g(φ(TT ), NT ) = −g(φ(NT ), TT ) =
√

1 + f 2,

we get

µ1 = 0, µ2 =
√

1 + f 2, µ3 = Ψ2,

and therefore,

φ(TT ) =
√

1 + f 2NT + Ψ2BT . (3.12)

Similarly, we can easily obtain that

φ(BT ) = −Ψ2TT − σ
√

1 + f 2NT . (3.13)

Hence, from Eqs. (3.11), (3.12) and (3.13), the proof is completed. �

Corollary 3.1. Let γT be a curve in E3. Then, the curve γT is a NT -magnetic trajectory of a magnetic

field F if and only if the vector field V along γ is written as

V = σ
√

1 + f 2TT −Ψ2NT +
√

1 + f 2BT . (3.14)

Proof. The proof is similar to that we have considered in Proposition 3.2. �
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Theorem 3.2. Let γT be a NT−magnetic curve and V be a Killing vector field on a space form

(M3(K), g). If the curve γT is one of the NT−magnetic trajectories of (M3(K), g, V ), then its

curvatures satisfying the following relations:

Ψ2 =

(
σ
√

1 + f 2
)′

√
1 + f 2

,

Ψ2σ
2(1 + f 2)− σ

√
1 + f 2

(√
1 + f 2

)′
−Ψ′′2 = KΨ2,(√

1 + f 2
)′′
− 2Ψ′2σ

√
1 + f 2 −Ψ2

(
σ
√

1 + f 2
)′

+K
√

1 + f 2 +
(1 + f 2)3/2(1 + σ)

2
= A3

√
1 + f 2,

where A3 is a constant.

Proof. Differentiating Eq. (3.14) with respect to s, we get

∇T V =

(
Ψ2

√
1 + f 2 +

(
σ
√

1 + f 2
)′)

TT −Ψ′2NT +

((√
1 + f 2

)′
−Ψ2σ

√
1 + f 2

)
BT . (3.15)

Since V is a Killing vector, then from Proposition 3.2 (V (v) = 0), we have

Ψ2 =

(
σ
√

1 + f 2
)′

√
1 + f 2

.

Also, differentiation of Eq. (3.15) together with Eq. (2.2), gives

∇2
T V = Ψ′2

√
1 + f 2TT +

(
Ψ2σ

2(1 + f 2)− σ
√

1 + f 2
(√

1 + f 2
)′
−Ψ′′2

)
NT

+

((√
1 + f 2

)′′
− 2Ψ′2σ

√
1 + f 2 −Ψ2

(
σ
√

1 + f 2
)′)

BT . (3.16)

Thus, from Eqs. (3.15) and (3.16) together with Proposition 2.2 (V (
√

1 + f 2) = 0), we get

Ψ2σ
2(1 + f 2)− σ

√
1 + f 2

(√
1 + f 2

)′
−Ψ′′2 + g(R(V, TT )TT , NT ) = 0.

If M3 has a constant curvature K, then

g(R(V, TT )TT , NT ) = Kg(V,NT ) = −KΨ2,

and therefore

Ψ2σ
2(1 + f 2)− σ

√
1 + f 2

(√
1 + f 2

)′
−Ψ′′2 −KΨ2 = 0. (3.17)

Using the condition V (σ
√

1 + f 2) = 0 in Eqs. (3.15) and (3.16), we obtain[
1√

1 + f 2

((√
1 + f 2

)′′
− 2Ψ′2σ

√
1 + f 2 −Ψ2

(
σ
√

1 + f 2
)′

+K
√

1 + f 2

)]′

+
√

1 + f 2
(√

1 + f 2
)′

+ σ
√

1 + f 2
(
σ
√

1 + f 2
)′

= 0. (3.18)

Integrating Eq. (3.18) leads to(√
1 + f 2

)′′
− 2Ψ′2σ

√
1 + f 2 −Ψ2

(
σ
√

1 + f 2
)′

+K
√

1 + f 2 +
(1 + f 2)3/2(1 + σ)

2
= A3

√
1 + f 2.

(3.19)
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Thus, this completes the proof. �

Corollary 3.2. Let γT be a NT−magnetic curve in Euclidean 3-space with Ψ2 is zero, then γT is a

circular helix. Moreover, the axis of the circular helix is the vector field.

Proof. It is clear from Theorem 3.2. �

3.3. BT -magnetic curve.

Proposition 3.4. Let γT be a BT -magnetic curve in E3 with Frenet apparatus {TT , NT , BT , κT , τT }.
Then, the Lorentz force in the Frenet frame can be written as

φ(TT )

φ(NT )

φ(BT )

 =


0 Ψ3 0

−Ψ3 0 σ
√

1 + f 2

0 −σ
√

1 + f 2 0



TT

NT

BT

 . (3.20)

where Ψ3 is given by Ψ3 = g(φ(TT ), NT ).

Proof. As we mentioned the above, we can write

φ(BT ) = −σ
√

1 + f 2NT , (3.21)

φ(TT ) = υ1TT + υ2NT + υ3BT .

Using the following conditions:

g(φ(TT ), TT ) = 0,

g(φ(TT ), NT ) = Ψ3,

g(φ(TT ), BT ) = −g(φ(BT ), TT ) = 0,

we can obtain

µ1 = 0, µ2 = Ψ3, µ3 = 0.

From this, we get

φ(TT ) = Ψ3NT . (3.22)

Also, we obtain

φ(NT ) = −Ψ3TT + σ
√

1 + f 2BT . (3.23)

Therefore, the proof is completed. �

Corollary 3.3. Let γT be a curve in E3. The curve γT is a BT -magnetic trajectory of a magnetic field

F if and only if the vector field V along γ is written as

V = σ
√

1 + f 2TT + Ψ3BT . (3.24)
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Theorem 3.3. Let γT be a BT−magnetic curve and V be a Killing vector field on a space form

(M3(K), g). If the curve γT is one of the BT−magnetic trajectories of (M3(K), g, V ), then its

curvatures satisfying the following relations:

σ
√

1 + f 2 = const.,

Ψ′3 =
1

2

(√
1 + f 2

)′
,

Ψ′′3 + σ2(1 + f 2)
(√

1 + f 2 −Ψ3

)
+KΨ3 +

(1 + f 2)3/2

4
= A4

√
1 + f 2 ; A4 is constant.

Proof. Since V is a vector field, differentiating Eq. (3.24) with respect to s, we get

∇T V =
(
σ
√

1 + f 2
)′
TT + σ

√
1 + f 2

(√
1 + f 2 −Ψ3

)
NT + Ψ′3BT . (3.25)

Since V is a Killing vector, then we have

σ
√

1 + f 2 = const. (3.26)

Again, differentiating Eq. (3.25) and using Eq. (2.2), we get

∇2
T V = −σ(1 + f 2)

(√
1 + f 2 −Ψ3

)
TT + σ

√
1 + f 2

((√
1 + f 2

)′
− 2Ψ′3

)
NT

+
(

Ψ′′3 + σ2(1 + f 2)
(√

1 + f 2 −Ψ3

))
BT , (3.27)

which leads to

Ψ′3 =
1

2

(√
1 + f 2

)′
. (3.28)

Similarly, using the condition V (σ
√

1 + f 2) = 0 in Eqs. (3.25) and (3.27), we obtain[
1√

1 + f 2

(
Ψ′′3 + σ2(1 + f 2)

(√
1 + f 2 −Ψ3

)
+ g(R(V, TT )TT , BT )

)]′

+Ψ′3

√
1 + f 2 = 0. (3.29)

If K = const., then we have

g(R(V, TT )TT , BT ) = Kg(V,BT ) = KΨ′3,

and therefore

Ψ′′3 + σ2(1 + f 2)
(√

1 + f 2 −Ψ3

)
+KΨ′3 +

(1 + f 2)3/2

4
= A4

√
1 + f 2, (3.30)

thus, this completes the proof. �

Corollary 3.4. Let γT be a BT−magnetic curve in Euclidean 3-space with Ψ3 constant, then γT is a

circular helix. Moreover, the axis of the circular helix is the vector field.

Proof. It is obvious from Eq. (3.26) and Eq. (3.28). �
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Using Eq. (3.30), we obtain the following second-order nonlinear ordinary differential equation

u′′(s)+σ2(1+f 2)u(s)+Ku′(s)+2u3(s)−2A4u(s) = 0, u(s) =
1

2

√
1 + f 2; K and σ

√
1 + f 2 = const.

Now, we can consider the above differential equation in Euclidean 3- space E3, in 3- sphere S3 and

in hyperbolic 3- space H3, respectively.

Case 3.1. Euclidean 3- space E3 (K = 0, σ
√

1 + f 2 = 3) :

u′′(s) + 2u3(s) + 7u(s) = 0,

A sample of individual solutions for this equation is given in the following figures:

Figure 1

Sample solution family:

Figure 2. Trajectories of the curvature κT of B-magnetic curve in Euclidean 3-space.
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Case 3.2. 3-sphere S3 (K = 1, σ
√

1 + f 2 = 3):

u′′(s) + u′(s) + 2u3(s) + 7u(s) = 0,

A sample of individual solutions for this equation is given in the following figures:

Figure 3.

Sample solution family:

Figure 4. Trajectories of the curvature κT of B-magnetic curve in 3-sphere.

Case 3.3. 3- hyperbolic space H3(K = −1, σ
√

1 + f 2 = 3):

u′′(s)− u′(s) + 2u3(s) + 7u(s) = 0, K = −1, σ
√

1 + f 2 = 3,

A sample of individual solutions for this equation is given in the following figures:
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Figure 5.

Sample solution family:

Figure 6. Trajectories of the curvature κT of B-magnetic curve in Hyperbolic 3-space.

Remark 3.1. According to the study that we have considered in the case of magnetic curves of the

tangent indicatrix of γ, we can do similar study for the other spherical indicatrices, the principal normal

indicatrix and the binormal indicatrix.

4. Applications

In what follows, we give two computational examples to illustrate our main results.

Example 4.1. Let α : I → E3 be a regular curve in the three-dimensional Euclidean space E3, can be

written as

α =

(
s

2
cos[ln[

s

2
]],
s

2
sin[ln[

s

2
]],

s√
2

)
,
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taking the first derivative of the curve α we get

T (s) =

(
1

2

(
cos[ln[

s

2
]]− sin[ln[

s

2
]]
)
,

1

2

(
cos[ln[

s

2
]] + sin[ln[

s

2
]]
)
,

1√
2

)
.

Also, we can get the principal normal and binormal vectors of α respectively,

N(s) =

(
−

cos[ln[ s2 ]] + sin[ln[ s2 ]]
√

2
,

cos[ln[ s2 ]]− sin[ln[ s2 ]]
√

2
, 0

)
,

B(s) =

(
1

2

(
sin[ln[

s

2
]]− cos[ln[

s

2
]]
)
,

1

2

(
− sin[ln[

s

2
]]− cos[ln[

s

2
]]
)
,

1√
2

)
,

the curvatures of α are

κ(s) = τ(s) =
1√
2s
.

It is clear that α is a general helix. The tangent indicatrix of α is obtained as follows

αT =

(
1

2

(
cos[ln[

s

2
]]− sin[ln[

s

2
]]
)
,

1

2

(
cos[ln[

s

2
]] + sin[ln[

s

2
]]
)
,

1√
2

)
,

From direct calculations, we can get the Frenet vectors of αT

TT (sT ) =

(
−

cos[ln[ s2 ]] + sin[ln[ s2 ]]
√

2
,

cos[ln[ s2 ]]− sin[ln[ s2 ]]
√

2
, 0

)
,

NT (sT ) =

(
1√
2

(
sin[ln[

s

2
]]− cos[ln[

s

2
]]
)
,

1√
2

(
− sin[ln[

s

2
]]− cos[ln[

s

2
]]
)
, 0

)
,

BT (sT ) = (0, 0, 1) .

The natural representation and the curvatures of αT are respectively,

sT =
1√
2

ln[s], f = 1, σ = 0, κT =
√

2, τT = 0,

In addition, the certain function of αT is Ψ1 = const., it means that αT is a TT -magnetic curve.

Example 4.2. We consider the circular helix γ in Euclidean 3− space defined by

γ(s) =

(
cos

[
s√
2

]
, sin

[
s√
2

]
,
s√
2

)
.

Differentiating this equation, we get the tangent vector T as follows:

T (s) =

(
−1√

2
sin

[
s√
2

]
,

1√
2

cos

[
s√
2

]
,

1√
2

)
.

It follows that, the principal normal and binormal vectors of γ respectively, are given by

N(s) =

(
− cos

[
s√
2

]
,− sin

[
s√
2

]
, 0

)
,

B(s) =

(
1√
2

sin

[
s√
2

]
,
−1√

2
cos

[
s√
2

]
,

1√
2

)
,

and so, the curvatures of γ are obtained

κ(s) = τ(s) =
1

2
.
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From the above calculations, the tangent indicatrix of γ is given as follows

γT (sT ) =

(
−1√

2
sin

[
s√
2

]
,

1√
2

cos

[
s√
2

]
,

1√
2

)
.

The Frenet vectors of γT are given as follows

TT (sT ) =

(
− cos

[
s√
2

]
,− sin

[
s√
2

]
, 0

)
,

NT (sT ) =

(
sin

[
s√
2

]
,− cos

[
s√
2

]
, 0

)
,

BT (sT ) = (0, 0, 1) .

Moreover, the natural representation and the curvature of γT are respectively,

sT =
1

2
s, f = 1, σ = 0, κT =

√
2,

In addition, the torsion and the certain function of γT are respectively, τT = 0 and Ψ2 = 0, it means

that γT is NT -magnetic as well as BT -magnetic curve.

(a) (b)

Figure 7. The circular helix γ and its spherical image γT .

5. Conclusion

The value of this paper is due to the important and prominent role of the theory of curves in

differential geometry as well as magnetic fields that generate magnetic flow whose trajectories give

so-called magnetic curves. In this sense, the idea of this work is devoted to examine some conditions

to construct special magnetic curves of spherical images for a regular curve γ in Euclidean 3-space.

Some characterizations of magnetic curves of the tangent indicatrix of γ are obtained. An application

to confirm our main results is given and plotted.
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