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Abstract. In this paper, we shall extend a fundamental variational inequality which is developed by
Simader in WP to a variable exponent Sobolev space WP The inequality is very useful for the
existence theory to the Poisson equation with the Dirichlet boundary conditions in LPO)framework,
where LP0) denotes a variable exponent Lebesgue space. Furthermore, we can also derive the existence

of weak solutions to the Stokes problem in a variable exponent Lebesgue space.

1. Introduction

In Simader [25], the author derived a variational inequality of a bilinear form. More precisely, let G
is a bounded domain of R? (d > 2) with a Cl-boundary G and 1 < p < co. The author proved that
there exists a positive constant C = C(p, G) > 0 such that

IVullpegy < C sup [(Vu, Vvl for all u € Wol'p(G), (1.1)

orvew? ) IVVILr(6)

where (Vu, Vv)g = fG Vu-Vvdx, V denotes the gradient operator and p’ is the conjugate exponent

of p, that is, % + % = 1. He also considered the case where G is an exterior domain and got a
variational inequality like as in (1.1).

This inequality has many applications. For example, let v € LP(G), then it follows from (1.1) that

the Dirichlet problem for the Poisson equation

{Au:dwv in G,

1.2
u=2~0 on 0G (12)
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has a unique solution in a generalized sense. The equation (1.2) plays an essential role for the existence
of a solution to the Stokes problem (cf. Fujiwara and Morimoto [15] and Kozono and Yanagisawa [20]).
It is also basic for the treatment of the Navier-Stokes equation, for example, see [15], Miyakawa [22].
In this paper, we attempt to derive an improvement of the above variational inequality (1.1) in the
Sobolev opace Wol'p(G) to a variable exponent Sobolev space Wol'p(')(G) (Theorem 3.1). We restrict
ourselves to the case where G is a bounded domain. Though we follow the argument of [25], we have
to proceed the analysis very carefully. The result brings about the existence theory of weak solutions
to the Dirichlet problem for the Laplacian in the variable exponent Sobolev space, that is, for given
functions f € W—1P()(G) and g € Tr(WLPO)(G)), where WLPL)(G) is a variable exponent Sobolev
space, W—1P()(G) is the dual space of Wol’p/(')(G) and Tr(W'P()(G)) denotes the trace space,

—Au=f ingG,
u=g on 0G

has a unique weak solution. According to our best knowledge, the result for the Dirichlet problem in
a variable exponent Sobolev space is simplest. Furthermore, we show that the Stokes problem in a
variable exponent Sobolev space has a unique weak (strong) solution by a new approach which is an
application of Theorem 3.1.

The study of differential equations with p(-)-growth conditions is a very interesting topic recently.
Studying such problem stimulated its application in mathematical physics, in particular, in elastic
mechanics (Zhikov [29]), in electrorheological fluids (Diening [10], Halsey [18], Mihdilescu and R&d-
ulescu [21], Razicka [23]).

For the Neumann case of the variational inequality, we gave a result in the previous work Aramaki [5]
(cf. Simader and Sohr [24] for the case p(-) = p = const.).

The paper is organized as follows. In section 2, we give some preliminaries on variable exponent
Lebesgue-Sobolev spaces. In section 3, we give main theorems (Theorem 3.1) which is an extension
of variational inequality of type (1.1) to one in a variable exponent Sobolev space. Section 4 is a
preparation of a proof of the main theorem. In section 5, we give a proof of the main theorem. In
section 6, we consider the Dirichlet problem of the Poisson equation. Finally, section 7 is devoted to

the existence of a weak (strong) solution for the Stokes problem by a new approach.

2. Preliminaries

Throughout this paper, we only consider vector spaces of real valued functions over R. For any
space B, we denote B9 by the boldface character B. Hereafter, we use this character to denote vectors
and vector-valued functions, and we denote the standard inner product of vectors a = (a1, ..., ad)
and b= (by, ..., bg) inRY by a-b =% ab; and |a| = (a-a)'/2. Occasionally, we also use the
same character for matrix values functions. Moreover, for the dual space B’ of B (resp. B’ of B), we

denote the duality bracket between B’ and B (resp. B’ and B) by (-, -)g.5 (resp. (-,*)p/.B)-



Int. J. Anal. Appl. (2022), 20:13 3

In this section, we recall some well-known results on variable exponent Lebesgue-Sobolev spaces. See
Diening et al. [11], Fan and Zhao [14], Fan and Zhang [12], Kovacik and Racosnic [19] and references
therein for more detail. Let G be a (Lebesgue) measurable subset of RY (d > 2) with the measure
|G| > 0. Then we define a set of variable exponents by P(G) = {p; G — [1, 00); p is measurable in G}
and for p € P(G), define

p~ =essinf p(x) and p* = esssup p(x).
xeG x€G

For any real valued measurable function v on G and p € P(G), a modular pp.) g is defined by

ot () = [ 0G0
The variable exponent Lebesgue space is defined by
LPO(G) = {u; u is a measurable function on G satisfying p,(.) g(u) < 0o}

equipped with the Luxemburg norm

lull Looray = |nf{>\ > 0; 0p().6 (A) < 1}

Then L”(')(G) is a Banach space and it is separable if pT < oo and reflexive if 1 < p~ < pt < .
Define

Pi(G)={peP(G)il<p <p" < oo}

The following proposition is well known (see Fan et al. [13], Wei and Chen [26], [14], Zhao et
al. [28], Yiicedag [27]).

Proposition 2.1. Let G be a measurable set of RY, p € P, (G) and let u, u, € LPO(G) (n=1,2,...).
Then we have

() llull ety < U(=1,> 1) <= pp(y,6(u) <1(=1,>1).

.. - +

(i) Nulloo ey > 1 = 10l gy < o6 () < Ul g,

+ —

(i) 1wl < 1= 16l g, < Pot6(8) < 1ullZhr .

(iv) limp—seo [lun — UHLP(-)(G) =0 <= limp—c0 Pp(),6(Un — u) = 0.

(V) llunllotr(gy = 00 as n — 00 <= pp(y,6(Un) — 00 as n — oo.
The following proposition is a generalized Holder inequality.

Proposition 2.2. Let G be a measurable set of RY and p € P.(G). For any u € LPO(G) and
ve LPO(G), we have

1
/ luvldx < ( + ()~ ) ||U||Lp()(<; HV”Lp’()(G) < 2||UHLP()(G)||V”LP O(G)"

where p'(-) is the conjugate exponent of p(-), that is, (X) + =1

P (X)
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When G is a domain (open and connected subset) of RY and p € P, (G), we can define a Sobolev

space, for any integer m > 0,

WmPO(G) = {u e LPU(G); 8%u € LPO(G) for |a] < m},

where a = (ag, . . ., ag) is a multi-index, |a| = Z,d:l aj, 6% =97 --- 957 and §; = 8/0x;, endowed

with the norm
lullwmsr gy = D 10%ull o).
la|<m

Of course, WOP()(G) = LPO)(G). The local Sobolev space is defined by

W™PO(G) = {u; for all open subset U € G, u € W™PO(U)},

loc

where U € G means that the closure U of U is compact and U C G.
For p € PL(G), define

dp(x) ;
sy = { dee TPO) < d,
00 if p(x) > d

and
() = { e 7 p(x) <d.
00 if p(x) >d.
Proposition 2.3. Let p € P+(G) and m > 0 be an integer. Then we can see the following properties.
(i) The space W™PL)(G) is a separable and reflexive Banach space.
(i) Let G be a bounded domain of R?. If q(-) € P, (G) satisfies q(x) < p(x) for all x € G, then
WmPO)(G) — W™IC)(G), where < means that the embedding is continuous.
(i) Let G be a bounded domain of RY. If p, q € P.(G) N C(G) satisfies that q(x) < p*(x) for all
x € G, then the embedding W*P()(G) — LIC)(G) is compact.

Next we consider the trace. Let G be a domain of R? with a Lipschitz-continuous boundary 8G
and p € P, (G). Since WmPL)(G) C m(’fél(G), the trace vo(v)
WmPC)(G) is well defined as a function in LL_(8G). We define

loc

= U‘@G to 8G of any function v in

Tr(W™PO(G)) = {f;y0(u) = f for some function u € WP (G)}
equipped with the norm
[l rewmeer gy = Inflllullwmee gy U € WmPC)(G) satisfying Yo(u) = f on G}

for f € Tr(W™P()(G)). Then Tr(W™P()(G)) is a Banach space. More precisely, see [11, Chapter
12]. We define a space

W mPO(G) = W™PO(G) nW(G),
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For a general measurable subset G of RY, we say that p € P'°9(G) if p € P.(G) and p has the
globally log-Holder continuity and globally log-Holder decay condition in G, that is, p : G — R satisfies
that there exist a constant Cioq(p) > 0 and ps € R such that the following inequalities hold:

CIog(P)
X) — < for all x,y € G,
Ip(x) p(y)|_log(e 1/x —y]) y
and
Clog(p)
— < 22 7
|p(X) — Pool ioa(e + x]) for all x € G,

respectively.

Proposition 2.4. If G is a domain of R? and p € P'°9(G), then p has an extension q € P'°9(RY) with
Ciog(q) = Ciog(p), g~ = p~ and gt = p*. If G is unbounded, then additionally Gsc = Poo.

For the proof, see [11, Proposition 4.1.7].
We note that if G is bounded, the global log-Holder decay condition always holds. For a domain
G, we write PI°9(G) = P'°9(G) NP4 (G). Let G be a domain of R? and p € P29(G), define

W PO(G) = the closure of C°(G) in W™P0)(G).

From definition, we can easily see that WO'"”’(')(G) C V(\)/m'p(')(G) and Vcl)/’”'p(')(G) is a closed sub-
space of W™P()(G). When p(-) = p is a constant, Wy"P(G) = VT/””’(G), however, in general,
Wy #0(G) € WP (G)

Theorem 2.5. If G is a bounded domain with a Lipschitz-continuous boundary 0G and p € Pfg (G),
then

(i) C*(G) is dense in W™ P()(G).

(i) Wé"’p(')(G) = \/?/m’p(')(G), In addition, when m > 3, assume that G has a C™-boundary. Then

we have

Wom’p(')(G) = {ue W™PO(Q);ivo(u) = -+ = Ym_1(u) =0 a.e. on dG},
where v;(u) = % = D jaj=; 1°0%u, n = (m, ..., ng) is the outer unit normal vector to 8G and

n®=nft---nJe.
For the proof, see [14, Theorem 2.6] and Galdi [16, Theorem 3.2].

Lemma 2.6. Let G be a bounded domain of RY with a Lipschitz-continuous boundary Q2 and let
p € Pfg(@). Assume that q € P'fg(GQ) such that q(x) < p2(x) for all x € dG. Then the trace
operator Tr = vy : WLPO(G) = LIO(BG) is compact, In particular, Tr : WEPO)(G) — LPO(BG) is

compact.

For the proof, see Deng [9, Theorem 2.1].

Frequently we use the following Poincaré inequality later.
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Theorem 2.7. (i) If G is a bounded domain of R? and p € Pfg(G), then there exists a constant c

depending only on d and Ciog(p) such that
HUHLp(-)(G) < cdiam(G)HVUHLp(.)(G) for all u € Wolvp(‘)(G),

where diam(G) denotes the diameter of G.
(ii) If G is a bounded domain of RY with a Lipschitz-continuous boundary G and p € ’Pfg(G),

then there exists a constant ¢ depending only on d and Ciog(p) such that
lu = ()6l Lpir gy < € diam(G) |V ull ooy () for all u € WHPOI(G),
where (u)g = |—é‘ J udx.
For the proof, see [11, Theorem 8.2.4].

Corollary 2.8. Let G be a bounded domain of RY with a Lipschitz-continuous boundary and let
pE Pfg(G). Furthermore, let A C G such that |A| = |G|. Then there exists a constant ¢ depending
only on d and Ciog(p) such that

lu = (u)all por gy < € diam(G) [V ull ooy for all u € L (G) with Vu € LPO(G).

For the proof, see [11, Corollary 8.2.6].
We introduce a generalized Poincaré inequality which is found in Ciarlet and Dinca [8, Theorem
4.1].

Theorem 2.9. Let G be a bounded domain of RY with a Lipschitz-continuous boundary I = 09, G
being locally on the same side of I'. Moreover, let g be a measurable subset of [ such that | g| > O,
and let p € P'°9(G). Define

U= {veWwO(G); V‘FOZ 0}.

Then there exists a constant C = C(p, d, U) such that

VIl a6y < Caiam(G)[Vvllsors) for all v € U

3. The weak Dirichlet problem for the Laplacian A in a variable exponent Sobolev space in a

bounded domain

In this section, we state main theorems of this paper. Let G be a bounded domain of RY (d > 2)
and p € P'fg(G). Then taking the Poincaré inequality (Theorem 2.7) into consideration, we may
assume that the space W&‘p(')(G) is equipped with the norm ||V v|[s0)(g)-

The first theorem is a variational inequality in Wol’p(')(G).
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Theorem 3.1. Let G be a bounded domain of RY (d > 2) with a C'-boundary and p € P'?9(G).
Then there exists a constant C, = C(p, G) > 0 such that
[(Vu, Vv)

IVull oy <Cp - sup v S| for all u € WiPO(G). (3.1)
0vew” 06y Y VIIr O(6)

The second theorem is a functional representation in Wol’p(')(G) which shows existence of weak

solution to the Dirichlet problem of the Poisson equation in a bounded domain G.

Theorem 3.2. Let G be a bounded domain of RY (d > 2) with a C*-boundary and p € P'?%(G). For
every F' € (Wol'pl(')(G))’ = W1P0)(G), there exists a unique u € Wol'p(')(G) such that

F'(v) =(Vu,Vv)g forall v e Wol'p,(')(G). (3.2)
Furthermore, with C, > 0 in Theorem 3.1, the following inequality holds.

Co IV ull i) < HF/H(WOI'”,(')(G))/ < 2[Vull ooy (3.3)

where

IF] = sup{|F'(V)|; v € Wy P (G) and | Vvl iy ) < 1}

WGy

Before a proof of Theorem 3.1, we show that Theorem 3.1 implies Theorem 3.2. For this purpose,

we use the following proposition (cf. Amrouche and Seloula [1, Theorem 4.2]).

Proposition 3.3. Let X and M be two reflexive Banach spaces, and a be a continuous bilinear form
defined on X x M. Assume that A € L(X, M') and A" € L(M, X") are operators defined by
(Au,v) = (u,A'v) = a(u,v) forue X,ve M
and put V= KerA. Then the following statements are equivalent.
(i) There exists B > 0 such that
inf  sup _alv.w) > . (3.4)
o£weMozvex |IV[xIIwllm
(i) A: X/V — M’ is an isomorphism and 1/83 is the continuity constant of A~*.
(i) A : M — V+ = {f € X":(f,v) = 0 forallv € V} is also an isomorphism and 1/8 is the

continuity constant of (A’)~ 1.

Let X = Wy P(G). |1V - [l o)) and M = (Wo P (G, IIV - [lr0q))- Since p,p' € PO(G),

X and M are reflexive Banach spaces (Proposition 2.3). Define
a(u,v) =(Vu,Vv)s = / Vu-Vvdx forue X,ve M.
G

Then clearly a is a bilinear form on X x M, and it follows from the generalized Holder inequality
(Proposition 2.2) that a is continuous. If u € KerA, then a(u, v) = (Au,v) =0 forall v € Wol’p/(')(G).

From Theorem 3.1, we have Vu = 0 in LP()(G). From the Poincaré inequality, we have v = 0 in
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LPC)(G), so KerA = {0}. From Theorem 3.1, (i) in Proposition 3.3 holds with 3 = 1/C,. Thus for
any F' € (Wol‘p/(')(G))’ = M, there exists uniquely u € Wol'p(')(G) such that F’ = Au, that is,

F'(v) = (Au, v) = (Vu, V)¢ for all v € WHPO)(G)

and

1
||VU||LP(‘)(G) S EHF’H(WOl,p/(-)(G))/.

Therefore,

—1
G IVullo ey < IF N aro 6y

Since by the generalized Holder inequality (Proposition 2.2),

Il sup{|F'(v)|; v € Wo® (G, V¥l iy < 1}

")y
= sup{|(Vu, Vv)gl; v € WeP(G), IVl sy < 1}

IN

2[Vull ooy,

we can see that (3.3) holds.

4. Preparation to a proof of Theorem 3.1

We use the localization method for a proof of Theorem 3.1. For any open set G C RY (d > 2)
(not necessarily bounded), we say that G satisfies (GA) if G has a C!-boundary and there exists a
non-empty open set K in R such that G = RY \ K.

Definition 4.1. /f G satisfies (GA) and p € P'fg(G), define
V\/\Ol’p(')(G) ={v:G = R;v is measurable in G, v € LP*)(Gg) for each R > 0,

Vv e LPO(G), there exists a sequence {v;j}?2, C C5°(G) such that

v = Vil Let) Gy = O for each R >0 and [|[Vv — V|| o)) — 0 as i — oo},
where Gr = G N Br, Br = {x € RY; |x| < R}.
Definition 4.2. /f G satisfies (GA) and p € P'fg(G), define
W.l’p(')(G) ={v:G = R;v is measurable in G, v € LP*)(Gg) for each R > 0,
Vv e LPO(G) and for any n € CF(RY), nv € Wol’p(')(G)}.
We note that if G is bounded, then
WOI,P(')(G) _ WOLP(')(G) _ W.l’p(')(G).

We examine the properties of the spaces /\/\73"’(')(6) and /\/\7.1")(’)(6).
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Lemma 4.3. Suppose (GA). Let p € Pfg(G) and let v € W.l’p(')(G). Then for every R > 0, there
exists a sequence {v;} C C§°(G) possibly depending on R > 0 such that

v —=vill Loty (Gr) T IIVV = VVill Loy Gy — 0 as 1 — o0.

Proof. For given R > 0, choose n € C§°(Bzg) such that n =1 on Bg. Since nv € W&'p(')(G), there
exists a sequence {v;} C C§°(G) such that [[nv — villy1p)g) — 0 . Since n =1 on Bg, we have

v — ViHlep(-)(GR) — 0. O

Theorem 4.4. Suppose (GA) and let p € Pfg(G ). Then the following properties hold.
(i) WEPO(G) c WEPD(G) c WHPD(6).
(ii) Forv e W.l’p(')(G), IV VI o) Gy 75 @ norm on W.l'p(')(G).
(iii) The space W.l'p(')(G) equipped with the norm ||V - || ) Is a reflexive Banach space.
(iv) The space V\/\Ol’p(')(G) is a closed subspace of WXP)(G) and

W()l'p(')(G) = the closure of Cg°(G) with respect to ||V - || (o) (gy-norm.
(v) The space WiPY(G) is dense in WP (G) with respect to ||V - L6t (G)-norm.

(vi) If we define EZ(G) = {V¢; ¢ € C°(G)} and EPV(G) = {Vv;v € WEPY(G)}, then the
closure of E®(G) in LPO)(G) is equal to Eg(')(G).

Proof. (i) It is trivial that Wol’p(')(G) - Wol’p(')(G). Let v € W(}’p(')(G) and let n € C5°(RY). Choose
R > 0 so that suppn C Bgr. By definition of /\/\701"’(')(6), there exists a sequence {v;} C C§°(G) such

that [|v — vill o)) = 0 and [[VV = Vil o)) — 0 as i — oo. Then nv; € C5°(G) and

v —nvillwreo ey < Crlllnlli=e) + 1IVnllee@)Ilv = vill Loy 6
+ ColInll L (6)[IVV = Vil Loty 6y = 0.
Thus nv € Wol'p(')(G), so v e WiPO(G).

(ii) Clearly W2PO)(G) is a linear space. If v € W}PO)(G) satisfies IV V[ o026y = O, then we show
that v=01in G. To do so, it suffices to show that v = 0 in Gg for every R > 0. Choose n € Cgo(Rd)
such that n =1 on Bg and suppn C Bsg. Since nv € Wg’p(')(G) by definition of W.l’p(')(G), there
exists a sequence {v;} C C§°(G) such that [[nv — villyreo Gy — 0. Thus nv € Wol'pf(GgR) and
Inv — V’||W1-P‘(GzR) — 0. By [25, Lemma 1.2], we have

1ill o~ 6oy < CRYP Y21V -

By the limit process, we have
VIl gy < CRYP VPV - 60y

Since LPO)(Gg) < LP (Gg) and Vv =0 in LP (Gg), we have v = 0 in Gg. The other properties of

norm clearly hold.
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(iii) We already showed that W.l'p(')(G) is a normed linear space. We derive the completeness of
W.l'p(')(G) equipped with the norm [V - [ o) (gy- Let {vi}2; C W.l'p(')(G) be a Cauchy sequence,
that is, ||Vv; — ij||,_p(.)(G) —0asi,j—oo. For k€N, put Gx = GN Bg. Then there exists kg € N
such that for k > kg, Gk has a portion 'k of OG with || > 0. Since v; € Wl'p(')(Gk) and Vf‘rk: 0,

it follows from a generalized Poincaré inequality (Theorem 2.9) that
Vi = Vill ey g, < CUNVVE = Vil o6,y < CUONIVVE = Vil o0y 6)-

Thus {v,-|Gk} is a Cauchy sequence in LP()(Gy). Therefore, there exists v(K) € LP()(Gy) such that
v,-|Gk—> v in Lp(')(Gk). After choosing a subsequence, we may assume that v,-]Gk—> vK) ae. in
Gi. Eventually after changing v(k*t1) on a subset N, C G with measure zero, we may assume that
v(k+1)|Gk: v(K) . Define a unique measurable function v : G — R so that v(x) = v(K(x) for x € Gy.
Hence for each R > 0 |[vi — vI[ p()(g,) — 0 as 1 — oo. Since {V;} is a Cauchy sequence in LPO)(G),
there exists f = (fi,..., f4) € LPO(G) such that Vy; — f in LPO)(G). Let ¢ € C5°(G). Then
supp @ C Gk forsome ke N. For =1, ..., d,

(v.01)6 = iiTo<Viva/¢>Gk = (Ovi, d)g, = —(fi. d)c.

— lim

1—00
Hence gyv = f; € LPO)(G), so Vv = f € LPU)(G). For n € C(RY), choose R > 0 such that
suppm C Bg. Choose ¢ € C5°(Bagr) so that 0 < ¢ < 1 and ( =1 on Bg. Since (v, € Wol'p(')(G)
by definition of W.l’p(')(G), there exists ¢; € C3°(G) such that ||Cv; — ¢i||wl~n<‘)(c) < 27", Since

nv = ncv, we have

[mv — 77¢/||Lp(<)(c) = |[In¢v - 77¢i||Lp<A>(G)

IN

InCv = nvill Loorgy + [IMCVi = Ndill oo 6y

A

< Al @y 1€V = CQVill ooy gy + 1€V = Bill oo ))

< ll ey (v = Vill Loty gy +27') = 0 as i — oo
and
V(v =10y = [IV(MCv —ndi)ll oo o)
< IV(nCv = n¢vi)ll ety gy + IV (MCVi = n9i)ll oo 6y
M€ Lo ray ([IV (v = Vi)l o0 )
VMO Lo ray Vi = Bill Lo (6

A

IN

(Il ey + 1971 e ICY; = Billwreor oy

— 0

as I — oo. Since m¢p € C5°(G), we can see that nv € W(;L'p(')(G), so v € WHPD(G). Hence
WEPO(G) is complete.
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We show the reflexivity of W.l’p(')(G). If we define
ELV(G) = {Vv;v e WrPO(G)},

then the gradient operator V : WP (G) — EPY)(G) is isometric isomorphism. Since WiP1(G) is
complete, Ef(')(G) is a closed subspace of a reflexive Banach space LP()(G). Therefore, Ef(')(G) is
reflexive, so W.l'p(')(G) is also reflexive.

(iv) Let {v;} C Wol‘p(')(G) and v € W}PY(G) such that |Vv — VVill ooy gy — 0 as i — oo. By
definition of Wol'p(')(G), there exists ¢; € C5°(G) such that [|Vv; — V| o0 gy < 27" Hence

IVV = Vil o) < IVV = VVill oy gy + [IVVi = Vil o)) — 0 as i — oo
By the generalized Poincaré inequliaty (Theorem 2.9), for large R > 0,
v = ill Loy < CARIIVV = Vil 1oy (g) < C(R)IVV = Vil 1oty 6y = O

From definition of /\/\701”’(')(G), we can see that v € /\/\701”’(')(G), so W()l'p(')(G) is a closed subspace of
/W.I.P(')(G)'

Since C5°(G) C /\/\701”3(')(6), the closure of C5°(G) with respect to ||V - || p()(g) is contained in
the closure of /Wol'p(')(G) with respect to ||V - [ ) gy which is equal to /\/Vol'p(')(G). Conversely, let
v € WyP(G). Then there exists {¢;} C C§°(G) such that [|[Vv — V[l o) — O as i — .
Thereby v is contained in the closure of C§°(G) with respect to ||V - | o) (gy-norm.

(v) By definition of W} "*1)(G), the space C3°(G) is dense in W2 *)(G) with respect to || V- o0 (6)-
norm. Since C$°(G) C Wol’p(')(G) C /VVol’p(')(G), we see that Wol'p(')(G) is dense in /Wol’p(')(G) with
respect to ||V - || o0 (g)-norm.

(vi) From (iv), it is clear that the closure of Eg°(G) in LPC)(G) is contained in Eg(')(G). Let
v E /V\701'p(')(G). Then there exists a sequence {¢;} C C§°(G) such that [Vv — V|| 00y = 0 as
i — oo. Therefore, Vv is contained in the closure of ES(G) in LPO)(G). O

We can improve Lemma 4.3.

Lemma 4.5. Suppose (GA). Let p € Pfg(G) and let v € W.l’p(')(G). Then there exists a sequence
{vi} € C§°(G) such that for every R > 0,

v — V/||Lp(<)(GR) + Vv - VV/||Lp(~>(GR) — 0 asi— oo,
that is, we can choose {v;} C C5°(G) independent of R > 0.

Proof. Choose ¢ € C§°(G) such that 0 < ¢ <1, and ((x) = 1 for |[x| < 1 and { = 0 for |x| > 2.
Put ¢i(x) = ¢(i1x). By definition of WiP)(G), we see that ¢;v € W&'p(')(G). Hence there exists
{vit € C§°(G) such that [|Giv — villyreer gy < i~1. For each R >0, let i > R. Then

v =il ety gy + IVV = VVill Loty (6) < it = 0asi— oo.



12 Int. J. Anal. Appl. (2022), 20:13

Here we characterize of W.l’p(')(G).

Theorem 4.6. Suppose (GA) and let p € Pfg(G). Then we have W.l‘p(')(G) = My, where

Mpy ={v: G — R; v is measurable , v € LPO)(GR) for each R > 0,
Vv e LPY)(G) and there exists {v;} C C3°(G) such that
v =il Loty Gy + IVV = Vil Loty gy — O for each R >0 as | — oo}.

Proof. By Lemma 4.5, /\/\7.1"’(')(6) C Mp(y. Conversely, let v € M.y, and let n € Cs°(RY). Choose
R > 0 such that suppn C Bgr. Then

lnv — 77V/||Lp<«)(c) < H77||L°°(Rd)||v - V/HLP(-)(GR) -0

and

V(v — nvi)lleogy < Inllie@a|VV = VVill oo gry + IV Lo @ayllv = Vill ooy — O-
] Since nv; € C(G) and nv; — nv in WEPL)(G), we see that nv € Wol’p(')(G), sov e WrPY(G). O
Definition 4.7. Let G be a domain of RY (d > 2) such that R\ G # 0, and let s € Pfg(G).

(a) We say that G has the property P,(s) if there exists a constant Cs = C(s, G) > 0 such that

IVull sy < Cs sup [NVu Vsl po oy e w0 ). (4.1)

orvem*O6) IV Vllsore)
(b) Let the bounded linear operator o5 : Wi*)(G) — (W' )(G)Y be defined by
os(U)(@) = (Vu, V)¢ for u € WE*(G) and ¢ € WLV (G). (4.2)

We say that G has the property Py(s) if s is a bijection and there exists a constant C.=C (s,G)>0
such that

< 2||Vullpsrgy for all u e w0 (a). (4.3)

65||VU||L5(-)(G) S ||US(U)||(W.115,(')(G))/ —

Theorem 4.8. Let G be a domain of R? (d > 2) such that R\ G # () and let p € P'?9(G). Then

G has the property P4(s) for s = p and s = p’ if and only if G has the property Py(s) for s = p and

s=p.

Proof. Assume that G has the property P,(s) fors=pand s=p'. Let u € /\/\7.1'5(')(6) and define
So(u) = sup{(Vu, V)i & € Wa"(G), IVl yg) < 1}

By (4.1) and the Holder inequality (Proposition 2.2),

CS_1||VUHL5(')(G) < SS(U) = HO-S(U)”(W.LS’(‘)(G))/

< 2||Vull sy gy for all u € /V\7.1’5(')(G).
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Hence (4.3) holds with C; = C;1. From this, we see that US(W.I'SI(')(G)) is a closed subspace of
(/\/V.l’s/(’)(G))’. Suppose US(W.I'S(')(G)) - (/W.l'sl(')(G))’. By the Hahn-Banach theorem, there exists
F" e (WO (G))" such that F” # 0 and

F o sy = O

Since W.l‘s,(')(G) is reflexive, there exists uniquely ¢ € /\/\7.1’5/(')(6) such that F”(F’) = F'(¢) for
all F/ € (WHO(G)) and IFll 206y = IVllee(sy > 0. On the other hand, for all u €
we=D(a),
0= F"(os(u)) = os(u)(¢) = (Vu, V)s.

By the property Pu(s'), we have [[V@|, sy < CsSe(¢) = 0. This is a contradiction.

Conversely, assume that G has the property Py(s) fors=pands=p'. Letu € W.l’s(')(G). Since
o4 is a bijection, for F' € (WL*1)(G)), there exists uniquely ¢ € Wi )(G) such that F’ = a4/(¢).
Hence

F'(u —1 <
||VUHL5(A)(G) = sup {HF/|:,\()|’O 7& ,_—/ c (W.ls()(G))/}
We*O6)y

(Vu,Vo)s| Y }
ol 0£PpeWe M (G) ;.
{C5/||V¢|Ls/(-)(6)

Thus (4.1) holds with Cs = C;?. O

Sl

Now we consider the case G = RY.
Lemma 4.9. If we define M := {Av;v € D(RY) := C*(RY)}, then M is dense in LPL)(RY).

Proof. Suppose that M ¢ LPO)(RY), where M is the closure of M in LPO(RY). By the Hahn-
Banach theorem, there exists F' € (LPC)(RY))’ with I1F" (Lo (Rayy > 0 and F,‘V
regard (LPO(RY)) = LPO(RY) isometrically, there exists v € LP()(RY) such that ||v||,_,,/(.)(Rd) =
IFll(Lp0mayy > 0 and F'(w) = (v, W)y := Jra vOX)w(x)dx for all w € LPO)(RY). Since F/‘W: 0,
we can see that (v, A@)gps = 0 for all ¢ € D(R?), so Av = 0 in D'(R?). By the hypoellipticity of the

Laplacian, we can regard that v € C®(RY) (eventually after change of a set of measure zero), so v

= 0. Since we can

is harmonic in R?. For any x € R fixed, it follows from the second mean value theorem for harmonic

functions that
1

BRI a0
where Br(x) = {y € R? : |y —x| < R} and |Br(x)| denotes the volume of Br(x). By the generalized

v(x) v(y)dy,

Holder inequality (Proposition 2.2),

2
()| < m”VHLP/(-)(BR(X))||1||LP(')(BR(X))'
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Since (11l 1p0)(Br(x)) < pp(.),BR(X)(l)l/p* = |Br(x)|'/P" for large R > 0 and p~ > 1, we have
lv(x)| < 2|BR(X)|_1+1/"7||v||Lp/(.)(Rd) —0as R — oo.
Therefore, we have v(x) = 0. Since x € R? is arbitrary, v = 0 in RY. This is a contradiction. ]

Define V2v = (8;0;v), j=1
that

¢ for v € D(RY). Then there exists a constant C = C(p, d) > 0 such

C||V2v||Lp(.)(Rd) < [[AV|| o0 (ray for all v € D(RY). (4.4)

For the proof, see [11, Corollary 14.1.7] (cf. when p(-) = p (constant), see Gilbarg and Trudinger [17,
Corollary 9.10]).
For p € Pfg(]Rd), we have EPO(RY) = {Vu,u e Lp(')(]Rd), Vu e LPO(RY)} by definition.

loc

Lemma 4.10. Let p,q € PO(RY). Ifu e LIO(RY) with Vu € LIO(RY) satisfies

loc

T Il _ o
0#£vED(RY) ||VV||LP'(-)(]RCI)

then u € Lf;(c')(Rd) with Vu € LPO(RY). Furthermore, there exists a constant C; = Cy(p,d) > 0
such that

(4.6)
0#£vED(RY) ||VV||LP'(-)(Rd)

for all u € LPO(RY) with Vu € LPO(RY).

loc

In particular, if u € LPO)(RY) with Vu € LPO(RY), then

loc

IVullpooey = €1 sup [V, Vv)gs|

(4.7)
0#£veD(RY) HVV||Lp'<~)(Rd)

Proof. Let u € Lq(')(Rd) with Vu € LYO(RY). Forevery i=1,..., d, using (4.4),

loc

(Vu, VV)gdl
0 > sup R
0#£veD(RY) ||Vv||LP/(‘)(]Rd)
> sup (Vu, V(Oiw))gd
ozwep®d) VoWl 1w (ga
S sup |<82iU1AW>Rd|
0weD®?) [V Wl o0 ey
|(Giu, Aw)ga|

> C sup _— (48)
0£weD(RY) ||AWHLP’(-)(Rd)

where C is the constant in (4.4). Define a bounded linear functional L* by

L*(Aw) = (8;u, Aw)ga on the dense subspace M of LP()(RY)
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(cf. Lemma 4.9). Then the functional L* has a unique and norm-preserving extension as a continuous
linear functional on LP()(R9). Thus there exists g € LP()(RY) such that (8;u, v)gs = (g, v)ga for all
v € M, that is,
(Bju — g, Aw)gs = 0 for all w € D(RY).

If we define W = 8;u — g, then AW = 0 in D'(RY), so W is harmonic in RY. By the same argument
as in the proof of Lemma 4.9, we can regard W(x) = 0, so d;u = g € LPO(RY). Hence we have
Vu e LPO(RY). Since Vu € LPO(RY) and u e LIV (R) c LL (RY), for any ball B, it follows from
Theorem 2.7 (ii) that

lu = (u)ellrosy < Clp. d. B)IVUll ooy
This implies that u € sz)(c')(Rd), that is, Vu € EPC)(R?). By continuity, we have
[(Biu, Aw)pa| [(Giu, Fpdl

sup sup T = lGiull ey mey.
0£weD@®) 1AW w0 ray  ozrersoma 1FllLoo oy B
From (4.8),
B (Vu, Vo)l
186l oy ey < Cp* INZIIES
iUlieoray = &p 026eD®?) [Vl L) (Ra)
Therefore, we get (4.6). -

Remark 4.11. We can show that (4.6) implies (4.4). Indeed, let ¢ € D(RY) and put u = 8;¢. From
(4.6) replaced p with p',

V 8,' ,VV
Cilp)  sup (V(8i¢), VV)Rd|
0£veD®d) |V VI Le) (e

Ag,
< Gp) sp o8IV
o£veD®d) |1V VI L) (e

2C1(p)l|Ag|l LPO)(RY)

||V(al¢) H[_n’(-)(Rd)

IN

IN

Next we consider the case where G is a half-space or a bended half-space. Let w be a C'-function de-
fined on R H={x= (X, xq): X' = (x1,..., Xg—1) €ERI™ xy < 0} and Hy, = {x = (X', xq); x4 <

w(x)}.

Lemma 4.12. Let w be a C'-function defined on R~ with ||V'w||jec(ge-1y < oo, where V' =
(61,..., 84-1), and let p € PX°(H,). Then we have WEPO(H,) = W()l'p(')(Hw).

Proof. Step 1. Let 0 < p < 00,0 < R < oo and put
29 ={x= (X, xq) ERY[X| < p,—R < xg < w(x')}.

Assume u € /W.l'p(')(Hw). Then since u}an: 0, it follows from the generalized Poincaré ineequality
(Theorem 2.9) that there exists a constant C = C(d, Ciog(p)) such that

ell sz < Clo+ RVl 2, (4.9)
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Since [w(x") = w(0)| < |V'w||poe(ra—1)IX| < IV'w]| oo (ga-1yp for [X']| < p.
Hence |w(x)| < |V'wl|pso(ga-1y0 + wo, where wo = |w(0)].

Step 2. Choose T € C3°(R?) such that 0 < 7 < 1 and 7(x) = 1 for x| < 1 and 7(x) = 0 for
x| > 2, and for k € N, put Tk(x) = T(k~'x). Then [V7x(x)| < k7 H|VT| 1w (ga), and supp(VTx) C

Ak = {x € RY k < |x| < 2k}. Put px = 2k, Ry = 2k(||V'w]| fso(pa-1y + 1) + wp and Z = Z% o . If
X € Hy N Bok, then x| < 2k and —2k < x4 < w(x’). Hence
Ww(X) = Rk < [|[V'wll oo (ra-1)2k +wo — Rk = =2k < xg < w(x').
Therefore, H, N Box C Zk. From (4.9), we have
||UVTk||Lp<«>(Hw) < kil||V/W||Loo(Rdfl)||UHLP<»>(me52k) (4.10)
"<k HIV W e ey Ul Lot (2,
< ChkHIV'Wll o qra-1y (o + RNV Ul ot (1,
<

C1||VU||LD(»)(HW),
where Cy is a constant independent of k. By definition of WiP")(H,,), meu € WEPO(H,)
Wo "0 (Ha).

Step 3. Let F’ € (WXPO(H,)), that is,

F'(®)] < IIF VIVl rr 4, for all ¢ € WHPO(H,).

|| (W'LP(‘)(HM)

Since WP (H,) is complete and Eg(')(Hw) is a closed subspace of LP()(H,,), we can regard F’ as
a continuous linear functional on Eg(')(Hw). By the Hahn-Banach theorem, F’ may be extended to

a functional F’ € (LPO)(H,))" which is norm-preserving. Hence there exists f € LP()(H,,) such that
1l ooy = IF cemor )y = IF N 200 41,y @Nd
F'(¢) = F/(¢) = (F, V)p, for all ¢ € WP (H,).
Then
F'(u) — F'(gu) = (1 — 1) f, Vi), — (F, uV T,
We have
(A =7)F. Vuyr,| < 2[(1 =T Fll ooy ) IV Ull Lo (1) -

By the Lebesgue dominated convergence theorem, we have

Pty (1= Ti)F) = / (1= 1) FIP X dx — 0 as k — oc.

So it follows from Proposition 2.1 that ||(1 — Tk)f||,_pr(,)(Hw) — 0 as k — oo. By (4.10) and
supp(V7i) C Ay,

|<f, UV’Tk>Hw’ < 2C1”f||LP'(')(HwﬂAk)HVU”LP“(HUJ) — 0 as k — oo.
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Hence F'(T¢u) — F'(u) as k — oo. Since F' € (W.l'p(')(Hw))’ is arbitrary, we see that Txu — u
weakly in WP (H,). By Step 2, T4u € W&‘p(')(Hw). Since Wé‘p(')(Hw) is a closed subspace of
WP (H,) (Theorem 4.4), it is weakly closed. Therefore u € Wol’p(')(Hw). O

Lemma 4.13. Let p € P'2%(H). For x € RY, define

- p(x) for x4 <0,
p(x) = X
p(x’', —xq4) for x4 > 0.

Then clearly p € PP9(R?). For u € WP (H), define

u(x) for x4 <0,
m(x)=4¢ 0 for x4 = 0,

—u(x', —xq) for xg > 0.

Then u; € Wl";(')(]Rd), Vuy € LPO(RY), and furthermore,

loc
(Oiu)(x) for x4 < 0,
Oiui(x)=4¢ 0 for x4 = 0,
—(Bju)(x', —xq) for x4 >0
fori=1,..., d—1 and

(Oqu)(x) for x4 < 0,
(Oqu)(X', —x4)  for xq4 > 0.

Oqun(x) = {
In addition,
||VU||Lp(-)(H) < ||VU1||L5(Rd) < 2||Vu||,_p(.)(H).
For ¢ € D(RY), let (T1)(x) = ¢(x) — d(x', —x4) for x € H. Then Ty € WyP)(H) N CH(H),
(T19)(X',0) = 0 and there exists R = R(¢) > 0 such that (T1¢)(x) =0 for |x| > R and
V(T ey 1y < 21Vl 150) (e
Furthermore, for u € Wol’p(')(H) and ¢ € D(RY),

(Vur, V@)ra = (Vu, V(T1¢)) 1
Since this lemma follows from elementary calculations (cf. [25, Lemma 2.3]). we omit the proof.

Lemma 4.14. Let p,q € PO(H). Ifu € W()l’q(')(H) satisfies
) sy 0T
02peCs(H) IVl ooy
then u € WyPY)(H) and
IV ull ooy (my < C2(P)Sp(u),
where Co(p) = 2C1 > 0, Cy is a constant as in (4.6).
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Proof. For any function ¢ € D(RY), we consider T1¢. If supp¢p C Bgr, then suppTi¢ C Br,
(T19)(x',0) = 0 and V(T1¢) € L>®(H). Choose n € C®(RY) such that 0 < 1 <1 and n(x) =1
for [x| > 1 and n(x) =0 for |x| < 1/2. For k € N, put nx(x) = n(kx) and ¢x(x) = nk(x)(T1¢)(x).
Then for s = ¢ and s = p/,

IV(T10) = Vorll sy < 11 = m()V(T2d) 501y + (VM CO) T2 150 (1 -
Here from the Lebesgue dominated convergence theorem,

(1 = k(X)) V(T1d) | s (1) — O as k — 0.

Since suppmx C {x € RY1/(2k) < |x| < 1/k} =: A, It follows from the Poincaré inequality
(Theorem 2.9) that

(VO T1l sy < KNIV oo mey IT1B 150 ()
1
< KVl oo ey L IV (T2d) 0 iy = IV o) IV (TL O L0 () = O

as k — oo. Therefore, since u € W&’C’(‘)(H), we have

(Vu, Vi) Hl . (Vu, V(T1¢))Hl
||V¢kHLp’(-)(H) ||V(T1¢)||Lp’(-)(H).

Hence for 0 # ¢ € CS°(RY) such that T1¢ # 0, by Lemma 4.13

[(Vur, Vé)gal _ [V, V(T19)) 4l
IVl pomey —  IVTadlloom)

Sp(u) >

< 25,(u).

By Lemma 4.10, we see that Vu; € LP(RY), so Vu € LPO)(H). Since u € /\/\701"7(')(H), we can see
that v € /\/\701"’(')(H) as in the proof of Lemma 4.12, and

IVull ooy my < IVl ey rey < 2C15p(w).
O

Lemma 4.15. Let w be a C'-function on RY™1 such that there exists R = R(w) > 0 such that
w(x') =0 for |x'| > R and let p € Pfg(m). Assume that there exists a constant K, = K(p, d) >0
such that

||V’w||,_oo(Rd_1) < Kp.

Then there exists a constant Cs(s) = Cs(s, d, Kp) > 0 such that for all u € /VVOLS(’)(H&,),

Vu,Vo)u,
IVulliog < Ca(s)  sup LV VOlns|

(4.11)
02peCs(Ho) IVl o0 (1)

fors=p,p.
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Proof. Let y : R — RY be a map defined by

{y,-(x)—x,- fori=1,..., d—1,
Yd(x) = xg — w(xX')

Then y is a C'-map and bijective, y(Hy,) = H,y(8Hy) = OH and the Jacobian J(y(x)) = 1 for

x € R?. The inverse map x : R — R is given by

{ xi(y) =y fori=1,..., d—1,
Xa(¥) = ya +w(y’).

For s € PRI(H,), define 5(y) = s(x(y)). Then 5 € P9(H). If u € /\/\701’5(')(Hw) and define
u(y) = u(x(y)) for y € H, then u € /\/\7015(')(H). Conversely, if U € /\/\7015(')(H), then u(x) = u(y(x))
for x € H,, belongs to Wol’s(')(Hw). Since

{ Biu(x) = (B,0)(y(x)) ~ (D) (Y ())Bw(x') fori=1,...,d 1,
Bgu(x) = (94T)(¥(x)).

there exists a constant di(s) = di(s, d) > 0 such that

IVull s,y < di(8) (1 + V'Ol powa-) ) I VUl 50y,
IVUll sy < di(S)A+ VWl oo wa- 1)V ull 50014, )

Thus the map Wol's(')(Hw) SurmueE Wol’g(')(H) is continuous, linear and bijective.
Let u e /Wol’s(')(Hw) and ¢ € Wl'sl(')(Hw). By elementary calculations, we have

V0,99, = [ V- Va(dx = [ (VB0) - (VH))dy - BIVE V4]
where
BV, V] = Z / (©a@)(@9) + (B1)(0:d)Ow()dy + [ (2@ Ve
By the generalized Holder inequality, there exists a constant dx(s) > 0 such that
|Bu[VT, VPl < dao(8) | V'wl] oo -1y (1 + ||V/w||Loc(Rdfl))||VU||L§(-)(H)||V5HL?(->(H)
Therefore, for 0 # ¢ € /VVOLS/(')(HQ,),

|<vU,v¢>Hw|>(d N Y N >‘1{|<vav$>H|
o) > () (L + VWl oo (o)) Sz

— a(S)IV'w|l oo a1y (1 + ”v/wHLOO(Rd—l))HVJHL'S“(‘)(H)}'

Define
K, = min {; min {(4Ca(s)da(s)) 1is = p, p’}} ,



20 Int. J. Anal. Appl. (2022), 20:13

where Co(s) > 0 is a constant defined in Lemma 4.14. If |[V'w]| oo (ga-1) < Kp, then

VU, V) ul

{(Vu, Vo),
sup o TP el _
0zbewr 3O (H) IVl 570y

> (2d1(s’))1{
0#£peW, ) (Hy) IIV(p”LS"‘)(Hw)
- 2d2(5)((4C2(5)d2(5))_1||V5|LE<‘>(H)}
> (4ds(s')Cs($)) "M IVl sy = Ca()IVull =01
where C3(s) = (8ds(s)d1(s")Ca(s)) 1. O

Lemma 4.16. Suppose (GA). Let xg € G and Br(xp) € G, and let p € Pfg(Rd). Then for
0 < R < R, there exists a constant C3(p, R, R") > 0 such that

IVl < Ca(p. RR)  sup Tt Vgl
0vecs (Br() IV VIILr0 (Bax0))

for all u e W.l’p(')(G) andn € C§°(Br/(x0)).

Proof. Let p € D(Bgr(xp)) such that 0 < p < 1 and p(x) = 1 for x € Bri(x0). If ¢ € D(RY), put
Cp = m fBR(XO) ¢dx and v = p(¢ — cp). By the Poincaré inequlity (Theorem 2.7),

16 = collLr0B,00)) = CRIVVILYO (Br(x0))-
Here we have
||VV||Lp’(-)(BR(XO)) <1+ CRHVIOHLOO(BR(X(])))||V¢||LP'(')(]R0')'

Since Vp =0 on Bri(xp), p =1 0on Bri(xg) and Vv = (Vp)(¢ — cp) + oV, we see that Vv = V¢
on Bri(xg). If ¢ #0 and v # 0, then we have

[(V(nu), Vo)gd|
IVl oo rey

By Lemma 4.10, we can see that

[(V(nu), Vo)s|
IVl (Br(o))

<1+ CRHP||L°°(BR(X0)))|

V(nu),V
IVl < Calp) sup VI Ve
ozpece®d) IVl Lo me

V(nu), Vv
< Ci(p)(1 + CrIIVoll L (ray) sup |<V ), Vel
0vece(Br0)) IV VIILr 0 (Br(x0))

]

Lemma 4.17. Suppose (GA) and p € Pfg(@). For each xy € 0G, there exist R = R(p, x0,0G) >0
and a constant Cs = Cs(R) > 0 such that

V(nu), Vv
HV("?U)HLD(»)(@ < Csy sup [(V(nu) )Gl

(4.12)
0£vEWLY ) (GRr(x0)) ”VV”LP’(')(GR(Xo))

for all u € WEP(G) and n € C5°(Brya(x0))-
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Proof. There exist p > 0 and a C!-function o on B,(xp) with (Vo)(x0) # 0 such that G N B,(x) =
{x € By(x0);0(x) < 0} and G N Br(x0) = {x € By(x0);0(x) = 0}. Then |Vo(x)| Vo (x)
is the unit outer normal vector at xp. Hence there exists an orthogonal matrix S such that
S(|Vo(x)|"*Vo(x)) = eq = (0,..., 0,1)t. Define a transformation y = y(x) = S(x — xp).
Then y : By(xo) — §p(0) = {y € R%y| < p} is a Cl-bijective mapping and define 5(y) =
o(xo + S7ty) = o(x). Hence (V,0)(0) = S(Vio)(x0) = |Vo(x)|es, so (V,5)(0) # 0 and
(8,,0)(0) = |Vo(xo)] > 0. By the implicit function theorem, there exist 0 < p’ < p, h > 0 and
S Cl(Big,), where B/, = {y’ € RY"!; |y’| < p'}, such that

Z=Zyn={y =" yq) €ER%|Y| < 0. |yal < h} C B,(0),

v, P()) e Zify € B;, and a(y',¢¥(y'")) = 0 for y/ € B;,, Conversely, if (y',y4) € Z and
o(y'.ya) = 0, then yg = %(y’), ¥(0) = 0 and V{,4(0) = 0. Then clearly, GNZ={y=(/ yq) €
Ziyg < $0/)} and 06 NZ = {y = (v'.va) € Ziva = W)} $(0) = 0 and (V},)(0) = 0.
Put G, = G N By(x0), G = SG and G, = G N B,(0). For p € P(G,), u € Wi")(G,) and
v e WEPO(G,), define Bly) = p(xo+ S~ 1y), U(y) = u(xo+S~1y) and V(y) = v(xo+ S~1y). Then

by the elementary calculations, we have
(Vu, V?>§p =(Vu,Vv)g,

and [Vill 50 g,) = IVUlleoa,)-
Let n € D(RY"1) such that n(y’) =1 for |y/| < 1 and n(y’) =0 for |y/| > 2. For 0 < X < 0/2,
put m(y') = n(A~1y’), and define

Wi (y') = my ) for [y <0,
0 otherwise .

Then Vwx(y") = (V' (Y)U(Y') + V' (y"). Since ¥(0) =0 and ¢ € Cl(Big,), using the mean

value theorem,

W) = [w(y) —9(0)] < (V') (0y)lly'| < 2X|(V'9)(8y)| for some 0 < 6 < 1.
Hence

(VM NDO < 20 (VM)A (8Y)] = 2/(Vm) (X)) IV'9(6y)].
Therefore, we have

sup [(Vm (Y )NY () < IVl poga-1y sup [(V')(y')| — 0
ly'I<p [y']<2X

as XA — 0 because V' is continuous function and V'4(0) = 0. Moreover,

sup (Y )V (y)] <

sup |1l Lo -1y (V') (y')| = 0 as A — 0.
ly'1<p [y']<2
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Thereby, if we choose A > 0 small enough, then [[V'wy ||y« g1y < Kp, where K, is as in Lemma
4.15. Let R = R(p,0,8G) = X. Then Hy, NBr = GNBg. If n € D(Bg/p) and u € We")(G), then
nu € Wol’ﬁ(@) by definition of W.l'ﬁ(@) and 10 vanishes outside G N Br = Hw, N Bgr. We extend nu
by zero to H,,. Then nu € Wol'f’(Hw) C Wol"?(Hw). By Lemma 4.15, we have

g V(nd), Vo),
IV ()l rogr,) < C3(p)  sup (V(nu), VV)n,|

L (4.13)
oxvece(H)  IIVVILso (k)

We show (4.12). Let p € C§°(BRr) such that 0 < p <1 and p(x) =1 on Bgyp. If Ve /\/V.l’ﬁ(')(Hw),
then pv € Wol'ﬁ(')(Hw) and by Poincaré inequality,

IV (00 5001,y < 190050 1702,y + 195,
< (IV0ll () CR + DIVl 1501y,

If V# 0 and pv # 0, then we have
(V(nE), Vi), |

(V(nu), V(oV))H,, |
||VVHL5'(-)(HW) .

||v(pV)HL5'(-)(HwA)

< (IVpll=(rycR + 1)
Thus (4.12) follows from Lemma 4.15 with Cs = C2(p)(I|Vpl[eo(8r)CR + 1). O

5. Proof of Theorem 3.1

First we derive the uniqueness.

Theorem 5.1. Let G be a bounded domain of R? (d > 2) with a C'-boundary 8G, and let p € P'%9(G).
If ue WHPY(G) satisfies
(Vu, V) =0 for all p € WLP(G),

then we have u =0 a.e. in G.

Proof. Since p(x) > p~ for all x € G and G is a bounded domain, we see that Wol’p(')(G) C Wol’pf(G).
Since D(G) € WP )(G), we have (Vu, V) = 0 for all ¢ € D(G). Hence it follows from the fact
that D(G) is dense in W1(P7)(G) that we can see that

(Vu, V) =0 for all g € WP O(G)
by continuity. Therefore by [25, Theorem 3.1], we have u =0 a.e. in G. Il
We give a proof of Theorem 3.1. Suppose that (3.1) does not hold. Then there exists {ux}2°; C
Wg'p(')(G) such that
IV Ul ooy =1 (5.1)

and
_ (Vuk, Vo)l
€k = sup - = T2

— 0 as k = oc. (5.2)
O;ﬁd)GWol'p,(A)(G) ||V¢||LP’(‘)(G)
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By the Poincaré inequality and (5.1),
ukll Loy < cdiam(G) ||V ukll o0y (g) = ¢ diam(G).

Hence {ux}?2 is bounded in a reflexive Banach space Wg'p(')(G), so passing to a subsequence (still
denoted by {ux}), we may assume that there exists u € Wol’p(')(G) such that vy — u weakly in
WIPO(G). For each ¢ € WP )(G), from (5.2), we have

(Vu,Vo)c = k|i_>m (Vue, Vo) = 0.

Therefore it follows from Theorem 5.1 that u = 0. Since G is bounded, the embedding W&‘p(')(G) —
LPO)(G) is compact (cf. [11, Theorem 8.4.2], so ux — 0 strongly in LPO)(G).

By Lemma 4.17, for each xg € 0G, there exist Ry = Ro(p, X0, 0G) > 0 and Cs = C5(Rg) > 0 such
that

(5.3)

||V(77U)||Lp(«)((;) <Gs 1,,/?)UD ||V|<\/K(7/7(U)) Vil
0£VEW, " (GNBR, (x0)) LP(GNBRy(x0))
for all u € Wol’p(')(G) and n € C§°(Bg,/2)(x0)). Since 8G is compact, there exist finitely many
X €0G (i=1,..., M), R; > 0 and C' > 0 such that G C UM, B;, where B; = Bg /4(x;), and
(5.3) holds with Ry = R; and Cs = C'. We note that Gy := G \ (UM, B;) is compact and G; C G.
According to Lemma 4.16, for each xg € Gi, thete exist Ry > 0 such that Bg,(xp) C G and C3 > 0
such that

V(nu), Vv
Hv(nU)HLP(')(G) S C3 SLlp |< (n ) >G|

(5.4)
0£veW; Y (GNBgy (x0)) HVVHLP’(')(GQBRO(Xo))

forallu e Wol‘p(')(G) and n € C°(BRr,/2)(x0)). Since Gy is compact, there exist finitely many x; € G,
Ri>0and C'">0(i=M+1,..., N) such that Gy C UN,,.;B;, where B; = Bg, /4(x;) and (5.4)
holds with Rg = R; and C3 = C'.

Foreachi=1,..., N, choose ¥; € C°(Bj), where B} = Rg, />(x;) such that 0 <; <1, 9; =1
on B, and denote G; = G N Bg,/4(x;). Then from (5.3) and (5.4), we have

: V ’(,U,'LI ,VV
Vel oy < IV@lpoe < € sup VA Vel
O;évewolvp/(‘)(Gi) || V||LPI(')(GI)

L dj (5.5)
Fix i =1,..., N. For each k € N, there exists v, € W&'p/(')(G,) satisfying ||vvk||LP'(‘)(G,) =1 and
0 <dl — (V(iuk), Vvk)g| < 1/k. Therefore,
; 1
0<d < T (Vue, V(ivi)) el + KV uk, e Vi) gl + Kuk Vi, Vvi)gl| (5.6)
1
< ¢ Ted Vvl ) + (Vue vieViiel + Kuc Vi, Vvidl.

Using again the Poincaré inequality, we can see that the sequence {vx}72 ; is bounded in W&'p/(')(G/).

Passing to a subsequence (still denoted by {vk}), there exists v € W&'p/(')(G,-) such that vy — v
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weakly in Wol’p/(')(G,-), so v — v strongly in LP()(G;). We estimate the right-hand side of (5.6). By
the Holder inequality,

[(Vue, i) Vi) 6| < [(Vuk, (vie = v)V )6l + (Vuk, vV )6l
< 2[[Vukll ooy IVWill Ly lvie = VIl ooy 6,y + {V Uk, vV 6| — 0 as k — oo

and
Kuk Vi, Vvigel < [ucVYill o,y < IVWill ey lukll oo () — 0 as k — .

By the Poincaré inequality,
||Vk||Lp’('>(G,.) < Cdiam(Gi)HVVkHLP’()(G,) = cdiam(G;j).
Hence

IV@ivi)ll o6y < IVl oy + 19 Vil o6y < IVl s (s diam(G)) + 1.

Summing up the above, we see that d,i —0as k—ooforeveryi=1,..., N. Since G C U,’.\’:IB,-,
N N
IVl ety gy < Z IVuklleor gy < Z di — 0 as k — .
i=1 i=1

This contradicts [|Vukl| s gy = 1. This completes the proof of Theorem 3.1.
We can derive the LPO)-regularity.

Theorem 5.2. Let G be a bounded domain of RY (d > 2) with a C'-boundary. Assume that

p.q e ’Pfg(G) satisfies q(x) < p(x) for all x € G. If u € Wol’q(')(G) satisfies
[(Vu, Vo)sl

Sp(u) = sup =—— <00, (5.7)
g 02peCs(G) IVl ooy

then u € Wol'p(')(G) and
||VU||LP(')(G) < Cpsp(u), (58)

where C,, is the constant in Theorem 3.1.
Proof. Define a functional F" such that F'(¢) = (Vu, V@) for ¢ € D(G). From (5.7),
F ) < 1F 019l L0, for & € D(G).

where || F/|| = Sp(u). Since D(G) is dense in Wol’p,(')(G) with respect to the norm ||V -

(Wol'p/(')(G))’
||L,,/(_)(G), F’ has an extension F’ € (W&'p(’)(G))’ which is unique and norm-preserving, by continuity.
By Theorem 3.2, there exists uniquely u, € Wol’p(')(G) such that (Vu,, Vo) = :E’(db) for all ¢ €

Wol'p/(')(G). Hence
(Vup,, V) = F/(¢) = F/(¢) = (Vu, Vo)
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for all € D(G). Since D(G) is dense in Wol’q/(')(G) with respect to [|V - || ¢()(g)-norm and q(x) <
p(x) forall x € G, so u—up € Wol’q(')(G), we have

(V(u—up), Vo) = 0 for all ¢ € W27 (G).
By Theorem 5.1, u —up =0, s0 u=up € Wol‘p(')(G) and (3.1) holds, so (5.8) follows. O

Corollary 5.3. Let G be a bounded domain of RY (d > 2) with a C*-boundary. Assume that p, q €
P'fg(G) satisfies q(x) < p(x) for all x € G. Suppose that u € Wol'q(')(G) and there exists f € LPO)(G)
such that

(Vu, Vo) = (f,Vo)s for all p € D(G). (5.9)
Then u € Wol’p(')(G) and satisfies (5.7). Moreover, we have
IVull ety < 2Coll Fll ety 6y,

where Cpis the constant in Theorem 3.1.

Proof. By the generalized Holder inequality,

[(Vu, Vo)ol = [(F. V)6l < 2[fl o0y ) IVl iy (6 Tor all ¢ € D(G).
Hence (5.7) holds and Sp(u) < 2[[f[[Le()(g). Hence we have

IVull ooy < CoSp(u) < 2G|l Loy (6)-

6. Dirichlet problem for the Poisson equation

Let G be a bounded domain of RY (d > 2) with a Cl-boundary 8G. We consider the following

Dirichlet problem for the Poisson equation.

{ ~Au=f inG, 6.1)

u=g on 0G.

We are in a position to state the main theorem of this section.

Theorem 6.1. Let G be a bounded domain of R? (d > 2) with a Ct-boundary 8G and let p € Pfg(G).
Assume that f € W—1P()(G) and g € Tr(WLP()(G)). Then the system (6.1) has a unique weak

solution u € WP()(G) in the sense that u!aG: g and

(Vu, Vv)g = (f, V) for all v € WP 9(G). (6.2)

w-1r0(6).5 7 0(6)

Furthermore, there exists a constant C = C(p, d, G) > 0 such that

lullwroor ey < CUFllw-100 6y + N9lmawrro6)))- (6.3)
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Proof. First we reduce the problem (6.1) to the homogeneous Dirichlet problem. Since g €
Tr(W1P0)(G)), there exists w € WLPU)(G) such that wl,.= g and

| WHWLP(')(G) = HgHTr(leP(-)(G))- (6.4)

Indeed, by definition of [|glr 106y there exists {w;} € WPO)(G) with w;|,.= g and
9l wrro6)) = J"jgo Iwjllw2eo (6y)-

Hence {w;} is bounded in a reflexive Banach space W'P()(G), so passing to a subsequence of {w;}
(still denoted by {w;}) we may assume that w; — w weakly in W'P()(G). By Lemma 2.6, vvj|aG—>

W‘aG in LP()(8G), so W}aG: g. Therefore,

9l owreo 6y < Wil gy < lim inf IWillweor gy = 19llrrwreo 6))-

Since Aw € W—1P0)(G), if we replace an unknown function v with v = u — w and a known function
f with F = f + Aw € W=1P0)(G), the problem (6.1) is reduced the following problem.

—Av=F ingG, (6.5)
v=20 on 0G. '
Therefore, we consider (6.5), that is, find v € Wol’p(')(G) such that
(Vv V)6 = (F )y sy i) For all B € wiP(G). (6.6)

According to Theorem 3.2, there exists a unique v € Wol’p(')(G) such that (6.6) holds and

Co M VoG < IFllw-1r0(6)
< Nfllw-1r06) + 1AWy -100(6)
< HfHW*l-p(J(G) + C(p. G)||W||W1,p(~)((;)
<

11l -1e0r6) + C(P. GGl e o 6))-
By the Poincareé inequality, [[v][y1e06) < C1(p. G)IIV Vo). If we put u = v+ w, (6.2) and the

estimate (6.3) follows. O

Remark 6.2. The authors in [11] showed that if G is a bounded domain with a C1*-boundary and
f e LPO(G), g € Tr(W2PO)(G)), the system (6.1) has a unique strong solution u € W2P()(G) and

there exists a constant C depending only on p and G such that

lullwzrocy < CUFN Lo 6y + N19lTenzet (6)))- (6.7)

They used the Newton potential, and only announced the existence of a weak solution as in Theorem
6.1. However, we can easily show that Theorem 6.1 holds using Theorem 3.1 and 3.2 under the

weaker assumption of the regularity of boundary.
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7. An approach to the Stokes problem

In this section, let G be a bounded domain of RY (d > 2) with a C'-boundary ' = 8G. We consider

the following homogeneous Stokes problem.

—Au+Vm=Ff inGgG,
divu=0 in €,

7.1
u=20 onl, (7.1)

m=20 onl.

We have the following theorem.

Theorem 7.1. Let G be a bounded domain of R (d > 2) with a C-boundary T = 0G and let
p € Pfg(G). Assume that f € LPC)(G). Then the problem (7.1) has a unique weak solution
(u, ) € WFPO(G) x WEPL(G), in the sense of

(Vu,Vv)g +(Vm,v)g = (f,v)g forall v € Wol'p/(')(G), (7.2)
and there exists a constant C = C(p, d, G) > 0 such that
||U||W1~p(~>(<;) + ||7r||W1,p(v)(G) < C||f|\,_p(.>(G). (7.3)

Furthermore, if G is of class CY', then u € W2PO)(G) and (u,T) is a strong solution of (7.1).

Moreover, we have
HUHWZD(-)(G) + ||7T||lep(-)(G) < C/Hf”/_p(-)((;)

where C' is a constant depending only on p, d and G.

Proof. First we consider the following Dirichlet problem for the Laplacian A.

Am=divf in G,
{ (7.4)

=0 onl.

Suppose that f € LPO)(G). Since divf € W~LPO(G), if follows from Theorem 6.1 that (7.4)
has a unique weak solution ™ € Wol'p(')(G) and there exist positive constants C = C(p, d, G) and
C1 = Ci1(p, d, G) such that

I7llwieor gy < Clldiv il 1o 6y < CLllFll oo (6)- (7.5)
We note that
f — Ve LPY)(G) and div (f — V) = 0 in the distribution sense. (7.6)
We apply Proposition 3.3. For this purpose, define

XPO(G) = {u e WFPO(G);divu=0in G}.
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Then clearly XP()(G) is a closed subspace of a reflexive Banach space W&'p(')(G), so XPO)(G) is also
reflexive Banach space. Since XP()(G) W&‘p(')(G), if follows from Theorem 3.1
[(Vv, Vu)g|

0<Ct < inf sup (7.7)
P 0ueW () g zvew O 6y | VUL (6) [V Voo
< inf sup (Vv. Vu)e|

0£UEXPD(G) sy O) (G IVull oy IV VI o6y

Taking the Poincaré inequality into consideration, let X = Wol’p,(')(G) equipped with the norm ||v||x =
Vvl poG) and M = XPC)(G) equipped with the norm |luly = IVull ey (g)- Define a(v, u) =
(Vv,Vu)s for v e X,u € M. By the generalized Holder inequality, we have

a(v, u)] < 2|Vl ) I Vull o) = 2lvIixlulu.

Thus a(v, u) is a continuous bilinear form on X x M. Define bounded linear operators A : X — M’ and
A M — X" by (Av,u) = (v, A'u) = a(v,u). Then (v, Au)| < 2||v||x]||ullp for all v € X, u € M.
From (7.7),

|a(v, u)]

C;t< inf  sup ————
p 0£ueM ozvex [[VIx|lullm

Put V = KerA.
We characterize V = KerA.

Lemma 7.2. /t follows that V = {v = (=A)"Vp;p € LPO(G)}. Here v = (-A)"1g, g €
W-LP'()(G) means that v € W&‘pl(')(G) is a unique weak solution of the following problem.

—Av = n G,
v=9 m (7.8)
v=20 onl.

Proof. Let v € V. Then (Av, u)py p = 0 for all u € M, that is,

(—Av, u) = (Vv,Vu)g = (Av,u)py.»y =0

W—l,p/(»)(G)’WOl,P(')(G)
for all u € XP()(G). By the de Rham theorem (cf. Aramaki [3,4]), there exists ¢ € LP()(G) such
that —Av = Vo in W—1P()(G). Since v=0o0n T, we have v = (—A)"1V¢p. Thus we have

V c{v=(-0)"'Vy; pe LFOG)}.

Conversely, let v = (=A)~1V for some ¢ € Lp'(')(G). Then v is a unique weak solution of (7.8)
with g = V. For any u € XP()(G), we have
(AV, u>M',M = <VV, VU)G = <—AV, u>W_1-F’/(')(G),Wol'p('>(G)

= (Vo, u) = —(p,divu)g = 0.

w1 0(G) W *(G)

Hence Av =0 in M’, thatis, v € KerA = V. O

Denote that V- = {f € X' = W LPO)(G); (f, v)x: x = 0 for all v € V}.
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Lemma 7.3. If g € LPO)(G) satisfies divg = 0, then g € V.

Proof. According to Lemma 7.2, for any v € V, there exists ¢ € LP()(G) such that v = (—A)"1V.

Thereby, we have
(g.vixx = (g, (—A)_1V<P)W,1,p<‘)(G)VW01,p'<-)(G)
= <(—A)_19,V<P>W01,p(-)(G)wal,p/(.)(G)
= —(div(-2)""g. ¥)s.
If we put w = (—A)"1g, we have —Aw =g in Q and w = 0 on I". Hence
(=A)divw = —divAw = divg = 0.

Therefore, (—A)~1(—A)divw = divw = 0, that is, div(—A)~1g = 0. Thisimplies that (g, v)x'x =0
forallveV. Thus g € V. O

We continue the proof of Theorem 7.1. From (7.6), we know that f — V7 € LP()(G) and
div(f — Vm) = 0. By Proposition 3.3, A’ : M — V1 is an isomorphism and C, is the continuity
constant of (A)™1. By Lemma 7.3, we see that f — V7 € V1, so there exists a unique u € M such
that Au=f — V, that is, dvu=0in G, u=0on I and

(Vv,Vu)g =(v,f —Vm)x x forall v € Wol'p/(')(G),

so (7.2) holds. Furthermore, we have

lullwiroy < Collf = Vil 1e06)
< C;/pr - V7T||Lp<~)(G)
< Glflloe) + IVTlleos))
<

Collfll Loty 6y

Summing up this inequality and (7.5), we get the estimate (7.3).
If, in particular, G is of class C1'1, since —Au = f — V€ LPO)(G) in G and u =0 on T, it follows
from [11, Theorem 14.1.2] that u € W2P()(G) and

lullwzeer gy < ClIIF = VTl o6y < Cllfll oo 6y

O
Now we consider the inhomogeneous Stokes problem.
—Au+Vm=Ff inGgG,
divu = in G, (7.9)
u=g onl,

T = T onl.
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Theorem 7.4. Let G be a bounded domain of R with a C'-boundary T and let p € P'%9(G).
Assume that f € LPO)(G), mg € Tr(WLPO(G)), ¢ € WEPO)(G) and g € Tr(W?2P()(G)) satisfy the

compatibility condition
/(pdx:/g-nda, (7.10)
G r

where do is the surface measure on . Then there exists a unique solution (u, ) € W2P()(G) x
WPO)(G) of (7.9) and there exists a constant C = C(p, d, G) > 0 such that

lulwzs06) + [T lwsso)

< CIfll ooy + Imollrwreo 6y + l@llwrso gy + 1llrwrro6y))-
Before the proof, it is necessary to prepare some arguments.

Proposition 7.5. Let G be a bounded domain of RY with a C*1-boundary T and p € P'fg(G). If we
assume that g € Tr(WPO)(G)), then there exists u € W2PC)(Q) such that 1 (u) = g and yo(u) = 0.

Proof. We use the argument of Boyer and Fabrie [7, Proof of Theorem [11.2.23].
Let §(x) be the signed distance from x to ', that is,

5(x) = d(x,I)  ifxeGqG,
T\ Zdxr) ifxéa.

Then § is Lipschitz-continuous in RY with the Lipschitz constant Lip(§) < 1. Let n be a standard
mollifier, that is, n € Cgo(Rd), suppm C B (the unit sphere of RY), n > 0, Jramdx = [gmdx =1
and n(x) only depends on |x|.

For x € R and 7 € R, define a function

G(x,T)= /86 (X + %z) n(z)dx.

Then we can clearly see that G € C*®*(RY x (R \ {0}) and
1
|G(x, 1) — G(x,T2)| < §|71 — Tal.

Therefore, by Banach fixed-point theorem, for any x € RY, there exists uniquely po(x) € R such that
p(x) = G(x, p(x)). We call p a regularized distance function of G. The regularized distance function
o has the following properties.

(i) p(x) = 0 <= 6(x) = 0 <= x € I, and there exists constants C;,C, > 0 such that C; <
5(x)/p(x) < Co for x e RI\T.

(i) p€ CLL(RI) N C®(RI\T).

(i) Vp(x) = Vé(x) = —n(x) for all x € ', and there exists an open neighborhood U of " such
that infy [Vp| > 0.
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For g € Tr(WP()(G)), there exists v € WP()(G) such that yo(v) = g and there exists a constant
C > 0 such that [[vlly1eer gy < Clgllranreo Gy We define

Rag(x) = —p(x) /B v(x + ap(x)2)n(2)dz. (7.11)

where o > 0 so that a < C; and alip(p) < 1, C; is the constant of (i). For x € G and z € B, we
have x + ap(x)z € G, so R,g is well defined and R,g € C®(G). We show that R,g € W2P()(G).
By the calculations, for i,j =1, ..., d, we have

65;/9( ) = _S)Z(X)/BV(Hap(X)Z)n(Z)dZ
—p(x) /B Vv(x + ap(x)z) - (e,- " ag)/:i(x)z) n(z)dz. 712
2

ax,( )/ ai(x"“aP(X)Z)W(Z)dz
(X) (X)/VV(X—I—ap(X)Z) ¥(2)zdz

(d— 1>f< ) / U (x + ap(x)2)n(2)dz

W1 / e xt ap(X)Z)f(Z)dz

[0
( )/ —(x+ap(x)2)Vn(z) - zdz,

where ¥(z) = n(z) — divz(n(z)z). Since all the derivatives of p up to second-order are bounded, it

suffices to show that the terms of the form
F(x) = / f(x + ap(x)2)P(z)dz for x € G,
B

where f € LP()(G) and 9 € C5°(B), belong to LPO)(G).

We note that we can not use the Jensen inequality in the case of variable exponent. However,
applying a variant of the Jensen inequality (cf. [11, Theorem 4.2.4 and Corollary 4.2.5]), there exists
a constant C > 0 such that

+_
00006 (F) < CIFIZ02 0p(1.6(0) + CIF 170

Therefore, we see that F € LP()(G), so u := R,g € W2PO)(G). From (7.11) and property (i), we
see that yo(u) = 0. From (7.12) and property (iii), we can see that v1(v) = v0(VRpg) -n =y(v) =
g. U
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Lemma 7.6. Let G be a bounded domain of R? with a Ct*-boundary T and let p € P'°9(G). For
(90, 91) € Tr(W2PO)(G)) x Tr(WLPL(G)), there exists u € W2PU)(G) such that vo(u) = go and

v1(u) = g1, moreover there exists a constant C > 0 such that
lullwzr0 6y < CUIGollrrwzr06y) + 191lranteo6y))- (7.13)
Proof. From Theorem 2.5, we see that
W5 P(G) = {v € WPO(G);10(v) = ma(v) = 0},
We consider the mapping
v W2PO(G) /WG PO(G) 3 [u] = (o(u), m () € TrW2PO(G)) x Tr(WhP0)(G)).

Since n is a Lipschitz function on I, we can extend n to a Lipschitz function on G, so vi(u) =

m

Yo(Vu - n). Thus < is a linear continuous injection. We show that <y is surjective. Let (go, 91)
Tr(W2PO(G)) x Tr(WLPL)(G)). Choose vy € W2PU)(G) such that vo(vo) = go and define v =
Vo + Ru(g1 — v1(w)) € W2PO)(G). Then by Proposition 7.5, vo(v) = vo(vo) = go and 71 (v) = g1.

1

Thereby -y is surjective. By the Banach open mapping theorem, v~ is also linear and continuous.

Moreover there exists a constant C > 0 such that

IVIllyzne 6y mzet ) = CUGollrrawzeor o)) + 19t lrewrro6))-

We show that ||[v]]] inf{[[v + wllyeee) gy w € Woz’p(')(G)} is achieved. Indeed,

W2r0)(G)/WsP(G)
choose w; € Woz’p(')(G) such that

Jll)rgo ” v+ MG|’W2~P(')(G) = || [V] ”WZP(')(G)/WOZP(')(G)'

Then {w;} is bounded in a reflexive Banach space W02'p(')(G). Passing to a subsequence, we may

assume that w; — w weakly in W2P()(G). Hence
v+ W||W2,p(')((;) < “Jnllogf Ju+ WJHWZD(')(G) = H[V]||W2-p(')(G)/W02'p(‘)(G)'

If we put u = v+ w € W2PO)(G), then we have vo(u) = go, ¥1(t) = g1 and the estimate (7.13)
holds. O

The following Lemma is the celebrated Héron formula (cf. Amrouche and Girault [2, Lemma 3.5]).

Lemma 7.7. Let G be a bounded domain of R? with a C11-boundary T and let p € P*(G). Then
for u € W2PC)(G), the following Héron formula holds.

Yo(divu) = divr(vo(u)t) +v1(u) - n — 2Kyo(u) - n,

where K denotes the mean curvature of ', div - is the surface divergence and vi = v — (v -n)n is the

tangent component of v.
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Proposition 7.8. Let G be a bounded domain of RY with a CY'-boundary T and let p € Pfg(G).
Then for every g € Tr(W?2P(O)(G)) and ¢ € Tr(WLPU)(G)), there exists u € W2PU)(G) such that
Yo(divu) = @ and yo(u) = g, and there exists a constant C > 0 depending only on p and G such
that

HUHWZP(')(G) = C(HgHTr(WQvP(')(G)) + ||<P||Tr(W1-p(-)(G)))- (7.14)

Proof. Put go = g € Tr(W2P()(G)), g1 = 2Kg — ndiv(g:) + @n. By Lemma 7.6, there exists
u € W2PO)(G) such that yo(u) = g,71(u) = 2Kg — ndiv-(g;) + ©n, and (7.14) holds. Then by
Lemma 7.7, we have yo(divu) = ¢. O

Proposition 7.9. Let G be a bounded domain of RY with a C1'1-boundary I and let p € PEQ(G). For
any g € Tr(W2P()(G)) and any ¢ € WLPU)(G) satisfying the compatibility condition (7.10), there
exists ug € W2PO)(G) such that divug = @ in G and «yo(up) = g, moreover, there exists a constant

C > 0 depending only on p,d and G such that
\|U0||W2,p(«)((;) < C(H‘PHWLP(-)(G) + ||g||Tr(W2,p(-)(G)))- (7.15)

Proof. By Proposition 7.8, there exists u € W2P()(G) such that o (divu) = v0(9), Yo(u) = g and
(7.14) holds. Then divu—¢p € WLPO)(G). Since yo(div u—p) = 0, we see that divu—¢ € Wol’p(')(G).

Since it follows from the compatibility condition (7.10) and the Green theorem that

/(divu—tp)dx:/g-nda—/<de:O.
G r G

By [3,4, Theorem 3.1] (e) (cf. Aramaki [6] for the case p(-) = p = const.), there exists w €
W2 (G), unique up to an additive function of Kerdiv := {v € W2"")(G);divv = 0in G}, such
that divw =divu — ¢ in G, and there exists a constant C > 0 such that

[W]llwze0(6)/keraiv < Clldivu = @llwreo gy < CLlllgllrmzeo6)) + 1@lwisog))-
Since we can easily see that
Iwlllw200 (6 /keraiv = INFllw + V||W02,p(->(G) with divv =01in G}
is achieved, there exists u; € WOQ’p(')(G) such that
[w + u1llwzro 6y = HWllwzror 6y kerdiv < CrlllgllTrwze06)) + [1@0llwreo6))-
It suffices to put ug = w + uy. O

Proof of Theorem 7.4
By Proposition 7.9, there exists uy € W2P()(G) such that

divug =@ in G and yo(up) = g
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and the estimate (7.15) holds. Moreover, there exists T € W'P()(G) such that (7)) = 7o and

1T lwreo gy < Climollrureo 6y)- (7.16)

If we put v = u—ug and ™ = m—7 in problem (7.9), then the system (7.9) is reduced to the following

problem

—Av+ V7T =f+Au+V7T inG,

divv=0 in G,

(7.17)
v=0 onl,
T=0 on .

From Theorem 7.1, the estimates (7.15) and (7.16), the conclusion is clear.
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