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Abstract. In this paper, we study the weak existence of solution for a non-linear hyperbolic coupled
system of Klein-Gordon equations with memory and source terms using the Faedo-Galerkin method
techniques and compactness results, we have demonstrated the uniqueness of the solution by using
the classical technique. In addition, we show that the solution remains stable over time. The reaction

of the proper Lyapunov function is the primary tool of the proof.

1. Introduction

In this paper, we consider a non-linear hyperbolic system of Klein-Gordon equations, defined as the

following

Ut — Au — aup + k x Au— div(|v[?Vu) +ulVv]? =0 in Qx(0,T),

(1.1)
Vit — Av — Bve + 1% Av — div(|u?Vv) +v|Vul?=0 in Qx(0,T),
with boundary conditions
ulx,t)y=v(x,t)=0 on 'x(0,7T), (1.2)
us(x, t) = ve(x, t) =0 on [x(0,7), (1.3)
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and Initial conditions
u(x,0) = up(x), v(x,0)=vp(x) on €, (1.4)
ur(x,0) = u1(x), ve(x,0) = wvi(x) on Q. (1.5)

Where €2 is a bounded domain of R” (n > 1) with smooth boundary I" and let T > 0, o and B are
non-positive constants, and
(n+ w)(£) :/t n(t — s)w(s)ds. (1.6)

Several authors have studied the Klein-Gordon n?)n—linear system among them
Medeiros & M. Miranda [8] considered the non-linear system

%—Au+u—|v[”|u\pu:ﬂ, (17)

&y Av+v—|uflvlPy = 5,
they prove the existence and uniqueness of weak global solutions in Q x [0, T], where p is a real number
meeting a specific condition and €2 is any domain of R".
D. Andrade & A. Mognon [2], considered the non-linear system with memory term

ug — Au—+ f(u,v) + kxAu =0,
tt (u,v) (1.8)

veit — Av+ g(u, v) + 1« Av =0,

for x € Q and t > 0 where

f(u,v)= |u|p*2u|v|p, and g(u,v) = |v|p*2v|u|p,

with

p>0 if n=1,2 and 1<p§%—§ if n>3,

they use the argument from Komornik and Zuazua [6] to prove the existence of weak and strong
solutions in Q x (0, T) given initial and boundary conditions.
A. T. Louredo & M. M. Miranda [7], considered the non-linear system

U — Au+ aviu =0,

v — Av + au’v =0,

with the nonlinear boundary conditions,
ou

5+h1(.,u’):0 on T x(0,00),
ov
5+h2(.,v’):o on T x(0,00),

and boundary conditions u = v =0on (['/T'1) x (0, 00), where Q is a bounded open set of R” (n < 3),
a > 0 a real number, I'1 is a subset of the border I of 2 and h; a real function defined on 1 x (0, c0).

They use the Galerkin approach to demonstrate the existence of global solutions.
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K. Zennir & A. Guesmia [10], considered the non-linear kth-order with non-linear sources and memory

terms
4

Ul 4+ (—=1)RARuy + m2up + o (t) fot g1(t — s)ARuy(x, s)ds + |uf | ~2|uf]

= [P 2w |wnP,
(1.10)

Uy + (—1)*A%up + m3us + an(t) [T ga(t — s)ARun(x, s)ds + uh]"~2|ub)|

= |w|P2 uo|un|P,

using the potential well method, they verify the existence of global solutions in the a bounded domain
Q of R", where m; = 1, 2 are non-negative constants, r,p > 2,k > 1.
C. L. Frota & A. Vicente [5], studied the non-linear system of Klien-Gordon with acoustic boundary

conditions

U — Au+|v]PT?|uPlu=fi in Qx(0,T),
(1.11)
VI — Av + ulPT?|vPlv=1f; in Qx(0,T),

they demonstrate the existence of both global and weak solutions, as well as their uniqueness.
Our objective is to prove that the problem (1.1)-(1.5) has a weak and unique solution such that the

kernel terms k, | have some hypothesis as well as using some ideas from articles ( [2]) and ( [9]).

2. Preliminaries

Let 2 be a domain in R” with smooth boundary I let T > 0.

The inner product and norm in L2(2) are denoted by

(u, v) :/Qu(x)v(x)dx, lulo = </Q u(x)|2dx);. (2.1)

The norm in H3(2) is denoted by

1
2
gy = ([ 17uPax) " (22)

We assume that k, I: RT — R™ are non-increasing differentiable functions satisfying :
t t
h = (1 —/ /(s)d5> >0 and ki = <1 —/ k(s)ds) >0, (2.3)
0 0

K(t) < —k(t), 1'(t) <—I(t). (2.4)

and

If w = w(t, x) is a function in L?(0.T; H§(£2)) and k is continuous we put:

(kow)(t) = /Ot k(t —s)|Vw(t) — Vw(s)|3ds.
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Lemma 2.1. [2] w € CY((0,T); H3(2)), k € C*(0, c0)

t , 1d 1d ([t
/Ok(t—s)<VW(s)VW(t)>d5——2dt(kow)(t)+2dt (/O k(s)d5> Vw(t)2  (2.5)

(K o w)(t) — k(t)|Vw(t)]3.

Lemma 2.2. [9] (Young’s Inequality)
Leta, b>0 and % —i—% =1 forl < p,q < +oo, then one has the inequality ab < §a9+ c(d)bP, where

0 > 0 is an arbitrary constant, and c(0) is a positive constant depending on 0.

Lemma 2.3. [1] (Sobolev-Poincaré inequality)
Let s be a number with2 <s<+oco ifn<2and2<s< % if n> 2. Then there is a constant C

depending on 2 and s such that

lulls < CIVull2,  ue Hy.

Theorem 2.1. Let ug, vo € L?(Q) and uy, vi € LY(Q). Then, under assumptions on two functions k
and |, the problem (1.1)-(1.5) has a local solution (u(x, t), v(x, t)) such that

u,v e L®0, T; HY(Q) N L>®(0, T; L3()), (2.6)
us, ve € L=(0, T; L3(Q)). (2.7)

Theorem 2.2. Let u,v :— L?(Q) be functions in the class (2.6) and (2.7) satisfying from (1.1) to
(1.5), with u, v € H?>(Q). Then the solution (u, v) obtained in Theorem (2.1) is unique.

3. Global Existence

Step 1: Approximate solution. Using the Faedo-Galerkin process, we will determine the existence of
a local solution to the problem (1.1)-(1.5) in this section. Let {w;} be a basis for both H?(Q)NHE(Q)

and L2(2) for each positive integer m we put

we look for an approximate solution in the form

m m
um(t) = Z Uimw; and vp(t) = Z VimWi,
i=1 i=1
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satisfying the approximate problem
t
/ (Ul — Au™ — au™} widx — / K(t — $) (Vu™(s), V) ds (3.1)
Q 0

—|—/ |vm|2VumVW,-dx+/ u| Vv widx = 0,
Q Q

t
/ {vi = Av" — Bv"} widx — / I(t —s){(Vv"(s),Vw;) ds (3.2)
Q 0
+/ vm|Vum|W,-dx—|—/ lu™>VvVw; = 0,
Q Q
with initial conditions satisfying

u™(0) = u, S aimwi = Ul — wp, v™(0) = v ST bimwi = v = v in L2(R),
u(0) =um, S al wi=ul = u, v(0) = v, 3T b wi=vi" = v in LY(Q).
(3.3)
Since the vectors {w;} are linearly independent, this means det(w;, wj) # 0, the latter ensuring that

the problem admits a local solution (u™(t), v™(t)) in the interval [0, Tp,].
Step 2: A priori estimate. Our system’s energy functional E(t) is given by
2E(t) = | oy + I Ray + (ko u™)(8) + (o v™)(2) (3.4)
+ (1 - /Ot k(s)ds> Vu™|3 + <1 - /Ot/(s)ds> VvV 3+ vV U3+ VT3
After that, we multiply (3.1) by us, (3.2) by v¢, and use identity (2.5) to get
%E(f) = (K ou™)(t) + ("o v™)(t) — k(t)IVu™[3 = I(OIVVTI3 + alu|5 +BlvT3 < 0. (3.5)

We found that %E(t) is a non-positive function, this last indicates that E(t) is a non-increasing

function, meaning there exists a positive constant C1, independent of t and m such that
|u£"|§ + IV{"I% + IVU’”Ig + |Vv’"|§ + IUvam@ + IV”’VU’”@ < (1. (3.6)
From this estimation, deduce that T, = T. In addition, we get
,v™ is bounded in  L7(0, T; HA(Q)),
,v™ is bounded in L™ (0, T; L3()), (3.7)
u, vi" is bounded in  L7(0, T; L%(Q)).
By the Holder inequality, the embedding H3(Q) < L°(2) and (3.7), we obtain
[T VTR < oo VYT Teqy < Cr (3.8)

VPR < 7 sy VU™ 2y < C2 - VW™ v™) in HA(S). (3.9)
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Therefore
(u™Vv™?) is bounded in  L%°(0, T; L2(R)), (3.10)
(Jv™?Vu™) is bounded in  L>°(0, T; L2(Q)). (3.11)
Analogously
(v"|Vu™?) is bounded in  L%°(0, T; L%(Q)), (3.12)
(Ju™>Vv™) is bounded in  L>°(0, T; L2()). (3.13)

Step 3: passage to the limit. From (3.7), (3.10), (3.11), (3.12) and (3.13) there exists a sub-

sequence of (u™) and a subsequence of (v™), denoted by same symbols, such that

u™—u and v" — v weakstarin L0, T; H}(Q)),

U™ —wu and V™ — v weakstarin L%°(0,T;L%(Q)),

um = uy and v — v¢  weak starin  L°°(0,T; L%(Q)),

umVvm? — x1 weak starin  L>(0, T; L%(R)), (3.14)
VIV U2 = 2 weak star in  L>®(0, T; L?(Q)),

VTPV U™ — x3 weak star in L>=(0, T; L2(Q)),

luMPVv™ — x4 weak star in L°(0, T; L2(Q)).
From (3.14) and Aubin-Lions compactness Lemma in ( [3]), we obtain
u™ —u, v"—=v stronglyin L*(0,T; LQ(Q)), (3.15)

since Vu™ and Vv are bounded, then we have

(

umVvm2 = u|Vy|? strongly in  L2(0, T; L2(Q)),

vV um? — v|Vul? strongly in  L2(0, T; L3(Q)), (3.16)
lumPVv™ — |u]?Vv  strongly in  L2(0, T; L%(Q)), .

VT2V u™ — [v]°Vu  strongly in L2(0, T; L2(R)).

Then, there exists a subsequences of u™ and v, which we will denote by u™, v'™ respectively, such
that

,

um| VT2 = u|Vv|? almoust everywhere in (0, T) x Q,
v IVu™?? = v|Vul? almoust everywhere in = (0, T) x €, (3.17)
[u™PVv™ — |ul?Vv almoust everywhere in (0, T) x Q,
VT2V u™ = |v|?Vu almoust everywhere in (0, T) x Q.
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From Lemma (3.15) in ( [11]) and (3.17) we deduce
umVvm? — u|Vv|? weakly in  L>°(0, T; L2(Q)),
v IVu™?? = v|Vul? weakly in  L>=(0, T; L2(Q)), (3.18)
[umPVv™ — |ul?Vv  weakly in  L>®(0, T; L?(Q)),
\|vm\2Vum — [v[?Vu  weakly in L0, T; L2(Q)).
By the last formula (3.18) and (3.14) we get
x1 = ulVv[?,
X2 = v|Vul?, (3.19)
X3 = [v|*Vu,
Xa = |u[*Vv.
Taking w; = 1 in (3.1) become
(ul 1) —a(u 1) + (u™Vv™? 1) =0 (3.20)
|(uft, DI = Je(uf, 1) = (ulVv™2, 1)
Using the Cauchy Schwartz inequality, we have
luftllisge) < lalluflzm? () + [u™ Vv |m? (),
such that, m(Q2) is a measure of €.
Since, the measure of €2 is finite, and (3.14), we obtain
lufillire) < Cr (3.21)
Analogously
Vil i) < Ca. (3.22)
Then
um is bounded in  L°°(0, T; LY(Q)), (3.23)
v is bounded in  L°°(0, T; L1()).
Similarly we have
ull — uge  weakly starin - L(0, T; LY(Q)), (3.29)
vl — ver  weakly starin - L>°(0, T; L}(Q)).
From (3.14), (3.24) and lemma (3.1.7) in ( [12]) with B = L?(Q2) and B = L}(Q) we get
ul — u(0), v" — v(0) weakly starin  L2(RQ), (3.25)

u” = u1(0), v{" = v1(0) weakly star in

LY(Q).
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From (3.25) and (3.3) we get

u(0) = ug, v(0) = v, (3.26)
Lll(O) = Uy, Vl(O) = V. (327)

Setting up m — oo and passing to the limit in (3.1), (3.2), we obtained
t
/ {utr — Au— aur } wijdx — / k(t —s)(Vu(s), Vw;)ds (3.28)
Q 0
+/ |V|2VUVW,-dX+/ ulVvlwjdx =0,
Q Q
t
/ {vie — Dv — Bve} widx — / I(t = 5) (Vv(s), Vw;) ds (3.29)
Q 0
—i—/ V|Vu|W,-dx—|—/ lul?VvVw; = 0.
Q Q

i=1...,m. since (wi), is a base of H}(2), we deduce that (u, v) satisfies (1.1).

The proof is complete.

Lemma 3.1. Let up, vop € H3(Q) and uy, vi € L2(Q2) be given. Assume that (2.3) and (2.4) are true.
Then the problem’s local solution (1.1)-(1.5) is global in time.

proof. Since the map t — E(t) is a non-increasing function, i.e there exists a positive constant
C1, independent of t, such that

Delete m from these equations

C1>2E(t) = |ut|f2(Q) + |vt|f2(Q) + (kou)(t)+ (1ov)(t) (3.30)

t t
- <1 —/ k(s)ds) \Vul3 + <1 —/ /(s)ds> IVv|3 + |vVul3 + |uVv|3 > 0,
0 0

which give

t t
Cr1 > 2E(t) > [l + Ivelf2(q) + <1 —/ k(s)ds) IVul3 + <1 —/ /(s)d5> IVv|3  (3.31)
0 0

+ |vVul3 +|uVv|3 > 0,

consequently, Yt € [0, T], we have |ut|%2(Q) + |vt|%2(Q) +|Vul3+ |VV]3+ [vVul3 + |uVv|3 < Cy.
This deduces that the solution.
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4. Uniqueness

Let (u,v) and (u1, va) two solutions of (1.1), we assume that U = u — u; and V = v — v; satisfy

Ut — AU — aU; 4+ k x AU — div(|v]?Vu — |vi|*Vuy) + (ulVv]? = i |[Vvi]?) =0 in Q x (0,
Vit — AV — BVs + kx AV — div(Jul*Vv — |u1*Vwv) + (v[Vu]? = vV [?) =0 in Qx (0,
with
U(0) =V(0) =0 Ut(0) = V;(0) =0.
Let as put

2E,(t) = |U:B + Vi3 + (ko U)(2) + (10 V(1)

+ (1 — /Ot k(s)ds) VU3 + (1 — /Ot/(s)ds> VV5.

Multiplying (4.1) by U:(t) and (4.2) by (V:(t)) and summing up the product result we have

d
T Ea(t) < / div(IVIEV U — [PV i) Us — U]V V2 — un|Vva ) Usdx
Q

+/ div(JuPVv — [t PYv)Ve — (VIVu]? = v |V [*)Vedx,
Q

d
o Ea(t) < /Q VPV = [PV |[VU + |ulVv]? = 1] Vv ||l dx

—1—/ ’|u|2Vv - |u1|2Vv1’|V\/t| + }V|Vu|2 - v1|Vu1|2’|\/t|dx,
Q

/Q(|v|2Vu — V1PV ) VU + (Ju|VV|? — u1 |V [2)Updx
= /Q IV|>’VUVU; + Vi [|v|2 — |v1|2] VUi 4 Ue|VVPU 4 1y [|Vv|2 — |Vv1|2] dx.
From the mean value theorem, it follows that
/Q ‘|v|2Vu - |v1|2Vu1‘|VUt| + ‘LI|VV|2 — u1|Vv1|2||Ut|dx
< /Q VEIVUIIVUe| + 2/ i [[v] + il [V Ul IV ]+ [V Ue U]

Working in the same way as in argument of Lemma (2.2) in ( [2]) there exists C > 0 such that

/Q ‘|v|2Vu - |v1|2Vu1HVUt| + ||u|Vv|2 - u1|Vv1|2}|Ut|dx <C {|VU|§ + |VV|3 + |Ut|%} .

Analogously we have

/Q ‘|u|2Vv — |u1\2Vv1‘|V\/t| + ‘|V|Vu\2 — v1|Vu1|2||\/t|dx < C{|VV[3+|VU3+|Vl3},

T),
(4.1)

),
(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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and from (4.6) we have

d
7 E2(0) < C{IVUIE + [V + U3 + Vi[5 } (4.8)
d
EEz(t) < CEx(t). (4.9)

Then, by using Gronwall’s lemma (1.3) in ( [4]) we get
VU = [VV[5 = Uef5 = |Vel5 = 0. (4.10)

This proves the uniqueness of the solution.

5. Stability

Theorem 5.1. Let up,vo € HI(Q) and ui,vi € L%(Q) be given. Assume that (2.3) and (2.4)
hold. Then there exists two positive constants w1 and o independent of t such that 0 < E(t) <
wie H2t vt > 0.

Proof. We define the function of Laypunov, for € > 0 as follows
L(t) = E(t)+e/ Url + vevdx. (5.1)
Q

We prove that L(t) and E(t) are equivalent, meaning that there exist two positive constants N and
M depending on € such that for t > 0

NE(t) < L(t) < ME(t). (5.2)
From the Lemma (2.2), we have
L(t) < E(t) +e [1|ut|% +5|u|§] e [1|vt|§ +6|v!%} .
26 26

By using the Poincaré inequality, we get

L(t) < E(t) + € {215|ut|§ +5C1|VU|§] te Béw% +6C2|VV|§] |
From (3.31) we have

L(E) < E(t) + ¢ [;E(t) +25i115(t)] be [;E(t) +26$12E(t)}

L(t) < E(t)+ QG%E(t) + 266i11E(t) + 2€6C/;2E(t)

1 C C
L(t) < ME(t) suchthat M =1+2e5+ 2eék—1 + 265/—2_
1 1
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On the other hand, we have
L(E) > E() — ¢ | S ue2+ 81| — ¢ | 2wz + ]2
- _26 2 2 26 2 2

1 1
> E(t) — e | 55 luel +6cl|Vu|%} e [25|vt|% +6cz|vV§]

> E(t)—¢ _;E(t) +26i11E(t)] —€ EE(t)ﬂtzé%E(t)] :

1
L(t) > NE(t) suchthat N=1- 265 - 266— — 2¢ 5/—
ki 1

Now we have

d
—L(t) = (t)—l—e/ [uf+uttu+vtz+vttv] dx (5.3)
dt dt o

/ usrdx = e/ [u.8u+ auuy — vk« Au+ udiv(|v]*Vu) — u|Vv[?.u] dx

<e [ |Vu|2+a26|ut|2—|—a6|u|2 lvVul3 — |uVv|3 + /Vu/ k(t—s)Vu(s)dsdx} (5.4)

[ \Vu\2+a |ut|2+aC16\Vu\2 lvWul3 - \quer/Vu/ (t—s)Vu(s )dsdx].
Analogous

e/ Vepvdx = e/ [v.Av + Bvve — vk * Av + v.div(|u]?Vv) — v|Vul?.v] dx (5.5)
Q Q

[ Vv|3 —I—ﬁ |vt|2+ﬁC15|Vv|2 |uVv|3 — |vVul3 + /Vv/ /(t—s)Vv(s)dsdx].

d
L(t)_ th(t)+e|ut|2+e|vt|2
—e|Vu|2+ea |ut|2+eaC16|Vu|2—e|vVu|2—e|qu|2+e/ Vu/ (t —s)Vu(s)dsdx

—e|Vv|2—|—eB |vt|2+eﬁC16|Vv|2—e|qu|2—e|vVu|2+e/ Vv/ I(t —s)Vv(s)ds.dx.

(5.6)
The last term of relation (5.6) can be estimated as follow.
t
Vu | k(t—s)Vu(s)dsdx
Q 0
t t
g/ (/ k(ts)\Vu(s)~Vu(t)|ds> dx+/ K(s)ds|Vul2 (5.7)
a2 \Jo 0

<(1+n)1 - k)|Vul3 + 417’(/( oVu)(t) for m>0.
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Analogously

/QVV/Ot I(t —s)Vv(s)dsdx

1
<(1+n1—-h)|Vv3+ %(/ oVV)(t) for m>0.
So
da < (K ' _ 2 2 2 2 2 2
dtL(t) < (Kou)(t) + (I"ov)(t) — k(t)|Vuls = I(t)IVVI[5 + aluels + Blvel5 + €| ue]5 + €] vt
_ 2 1,5 2 2 2 _ 2
elVul5 + ea26 |ut|5 + €eaC10|Vul5 — €|vVul5 — €|uVv|5 + €(1 +1)(1 — k1)|Vul5

1 1
+ e%(k oVu)(t) —€e|Vv|3 + 662—6|vt|§ + €BC18|VV[3 — €|uVv|3 — €luVu|3

e(l4m)(1— /1)|vV|§+e41n(/ovV)(t), (5.8)

SO

d 1 1
EL(t) < (a—l—e—i—ea) lug)3 + (ﬁ—ke—s—eﬁ%) |3

20
+ (—k(t) — e+ eaCid+e(1+n)(1— k1)) |Vul3
4+ (=I(t) — e+ €BC16 + (1 +n)(1 — h))|VV|3 + (=2¢ — 1)|vVul3 + (—2¢ — 1)|vVul3
~ (ko u)(t) — (1o v)(£) + |uVVE + [vWul2 —1—641?7(/( o Vu)(t) + 64177(/0 Y1),  (5.9)
e
%L(t) <yE(t)+ A, (5.10)
We choosing € small enough, such that
y=Min(a+ ¢+ ea%;ﬁ +e+ 65%; —k(t) —e+eaCi0+€e(1+n)(1— ki) (5.11)
—I(t)—e+eBCi6+e(1+n)(1—h),(—2c—1);—1) <0,
and
A= |uVv|3+ |vVul3 + 6417](/( oVu)(t) + 64]:'7(/ o Vv)(t). (5.12)
From (5.2), we have
%L(t) < LU+, (5.13)
by integrating the previous differential inequality (5.13) between 0 and t, we obtain the following

estimate for the function L

AM
L(t) < ce%f_T, vt >0, (5.14)
by using (5.2), we conclude
E(t)<c et m MM s g (5.15)
>~ (1 ny, = U. .
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