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ABSTRACT. The main focus of this article is the study of classes Mﬁ (¢, H) and Qi (v, 91, H). We present
various inclusion relationships and some applications of our investigations are considered. Also, we include

radius problem.

1. INTRODUCTION

Let A be the class of analytic functions of the form
f(z) :z—l—Zanz"7 (1.1)
n=2

in the open unit disk & = {z : |z] < 1}. If f and g are analytic in U, we say that f is subordinate to g,
written f < g or f(z) < g(z), if there exists a Schwartz function w in U such that f(z) = g(w(z)).

The convolution or Hadamard product of two functions f, g € A is denoted by f * g and is defined as
(f*9)(2) =2+ Y anbnz", z€U. (1.2)
n=2

Analytic functions p in the class P[A, B] can be defined by using subordination as follows [3].
Let p be analytic in & with p(0) = 1. Then p € P[A, B], if and only if,

1+ Az
1+ Bz’

p(z) < —-1<B<A<LI1,zel.
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For k > 0, the conic domains €y, defined as;
Q. = {u+iv:u>k (u—1)2—|—1}2}.

The domains j (k = 0) represents right half plane, 2 (0 < k < 1) represents hyperbola, Q. (k=1)
represents a parabola and Q (k > 1) represents an ellipse. The extremal functions for these conic regions

are given as;

T k=0
2
1+ 2 (log F2E) k=1
pe(z) =93 + 12z [(2 arccos k) arctan hy/z] 0<k<l1 (1.3)
u(z)
1 ™ Vi 1 1
1 + 47— sin <2R(t) fo \/1_%2\/1_(“)2@:) + =,k > 1,

where u(z) = ZZ:\/‘%, t € (0,1), z € U and z is chosen such that k& = cosh (Tg((tt))) , R(t) is Legendre’s
complete elliptic integral of the first kind and R’'(t) is complementary integral of R(t). See [4,5] for more
information. These conic regions are being studied by several authors, see [6,9,12].

In 2017, Dziok and Noor [2] introduced and studied the concepts of some general classes given as below.

Definition 1.1. Let u > 0, ® = (¢1(2),d2(2)) and H = (h1(2), ha(2)) where h; € A with h;(0) = 1,
(1 =1,2). Then
PuH)={pqr + (1 —p)az:q1 € P(h1), ¢2 € P (h2)},

where

P(h)={qe A:q<h with ¢(0) =1}.

Some special cases:
(i) Pu(h) = Pu((h, h)). I p =2 4 3, (m > 2), then Py, (h) = Py (h).
(i) If p =241, (m>2), and h(z) = %, then P, (h) = Pm(p), this class was introduced by

Padmanabhan et al. [13].

(i) If p = 2 + %, (m > 2) and h(z) = iigz (-1 < B < A<1), then P,(h) = P, [A, B], this class was
introduced by Noor [10]. Moreover, for A =1 and B = —1 we have P, (h) = P,,; see [14].
(iv) If p =2 + 1, (m >2) and h(z) = pu(z) (k> 0), then P,(h) = Pp, (px), this class was defined by

Noor et al. [11].

Definition 1.2. Let f € A and 6 > 0. Then f € M} (®,&,H) if and only if J5 (f ((2))) € Pu(H), where

(Ex o) * f p2 * f
ol Coixs

Js (f((2)) = (1 =9)

If&(2) =24+ > 227, ¢1(2) = 2¢/(2) and ¢2(2) = 2¢)(2), then we have the following special cases.
n=2

M° ((I)vf’ h) = Mf (©’€7 (h’ h)) ’ Mi ((va) = Mg ((I)aglvH) )
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S (o H) =M (0, H), 8™ (p,h) = M7 (0, h). (1.5)

Definition 1.3. Let f € A, G = (g1,92), where g; € A with g;(0) = 1 (i =1,2), and 6,9 > 0. Then
fe Qi,ﬂ (®,¢,G,H) if there exists g € S} (p,G) such that

o (Exda)xf ok f
(1-9) (£*¢1)*g+6¢>1*g eP.(H).

If&(2) =24+ > 227, ¢1(2) = 2¢/(2) and ¢2(2) = 2¢)(2), then we have the following special cases.
n=2
Q°(®,&, 91, ) = M | (9,8, (91,92) , (h1, h2))

Qo (2,6, H) =M 4 (®,6,G,H),

Q) (9,91, H) = Q1 ((¢2,01) , (91, 91), H) - (1.6)

From (1.4), we denote the class M;Z (¢, M) of functions f € A satisfies J5 (f(z)) € P, (#H), where

e f) s p))

)

and P, (H) is given by Definition 1.1.
Similarly, from (1.6), we denote the class Qi (¢, h, M) of functions f € A satisfies Js5 (f(2),9(2)) € Pu(H),

where

2erd) | ,Clor )

B (1), 0(a)) = (1= 8) S EE 405 2

for g € S* (¢, h), the class S* (p, h) is given by (1.5).

2. PRELIMINARY RESULTS

Lemma 2.1. [2] Let H = (hy, ha), where h; (i = 1,2) are analytic, univalent convez functions with h;(0) =1
(1=1,2) and let « : U — C (set of complex numbers) with R (3¢) > 0. If p(z) is analytic, with p(0) =1 in
U, satisfies

p(2) + szp'(2) € Pu(H),

then p(z) € Pu(H).
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Lemma 2.2. [8] Let h be analytic, univalent convex function in U with h(0) =1 and Re (yh(z) + o) > 0,

0,7 € C and v # 0. If p(z) is analytic in U and p(0) = h(0), then

{par+ ZZE L <),

implies p(z) < q(z) < h(z), where q(z) is best dominant and is given as,

N TR

Lemma 2.3. [15] If f € C,g € S*, then for each h analytic in U with h(0) = 1,

(f * hg) (U)
(f+g)U)

where Coh(U) denotes the convex hull of h(U).

c Coh(U),

3. MAIN RESULTS
3.1. Inclusion Results.
Theorem 3.1. Let § >0, p € A and h be any convexr univalent function in U. Then
M (¢, h) € MY (0, h) .

Proof. Let f € M{ (o,h). Then, by definition,
o)) Glox)))

(=9 (o f) (p*f) <Pk,
Cpzlend) Gesp)
(1-9) (o ) +6 (tp*f)/ =< h(z)
Consider
z(pxf)
) P

On logarithmic differentiation of (3.2), we have

(lexf)) _zlexs) | /()
(¢ *f) (pxf) ~ pz)

From (3.2) and (3.3), we get
!/
Cloes)) _ ., /)
(*f)
On making use of (3.2) and (3.4) in (3.1), we obtain

(1= 6)p(z)+ 6 [p<z> n Zp'(z’] <h(z).

this implies
P )
p(2) '

By using Lemma 2.2, we conclude p(z) < h(z). Hence f € MY (p, h).

p(z) + 6
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Remark 3.1. Following different choices of ¢ and h give certain inclusion results for the above theorem.

(i) p € A, h(z) = ng, where —1 < B<A<1.

(ii) ¢ € A, h(z) = pr(2), where pg(z) is given by (1.3).
Corollary 3.1. Let § > 1. Then

M} (p,h) C M (p,h).

Proof. Let f € M (¢,h). Then , by definition,

slpxf) | sexD)
el T ey T e <A

(1-9)

from previous theorem, we can write

)
(e ) G
Now,
NI 5 PRI CLY ) N CICLY ) O I BRPREI LY )
(= f) (¢ f) (= f) (*f)
= s1(2) + (6 = 1) s2(2).
Implies that
(Z((;f:f)),) - (1 _ (15) 50(2) + %51(2). (3.5)
Since s1, s2 < h(z), (3.5) gives us
()
wary M
Hence f € MY (¢, h). O

Remark 3.2. The different choices of ¢ and h given in Remark 3.1 hold the inclusion result proved in above

theorem.
Theorem 3.2. Let §, u >0, ¢ € A, H = (hy, ha) where h;, h € A with h;(0) = h(0) =1 (i =1,2). Then
Q) (o, b, H) C QY (0, h, H) .

Proof. Let f € QZ (¢, h,H). Then, by definition,

ozl ) ()
(1=9) (p*9) o (pxg)

for g € S* (¢, h).

Consider

(p*9)



Int. J. Anal. Appl. 19 (5) (2021) 789

where p(z) is analytic with p(0) =1 in U.

On logarithmic differentiation of (3.7), we get

(zlexf))  z(pxg)  20(2)

(px ) (pxg) = plz)’
e f)) _zexf) |2(e29) | /()
(pxg) (prg) | (pxg) el )

this implies

(e f)) _zlexf) =)

_ . 3.8)
! z(¢xg)’ (
(px9g) (pxg) &g
From (3.7) and (3.8), we have
(z(e* ) p'(2) 2(pxg)
—2 =p(z)+ ; with po(z) = 3.9
(p=g) SN o) =Tog) (39)
Now, from (3.6), (3.7) and (3.9), we obtain
zp'(2)
1—5pz—|—5<pz+ )673 H),
(1—46)p(z) (2) o(2) (M)
or equivalently,
o
z)+ ——2p'(2) € P,(H).
If g € S* (¢, h), then Z((gf,f_f))/ < h(z); h € P. This implies R (po(z)) > 0 in Y. Thus, by Lemma 2.1, we
conclude p(z) € P,(H). Consequently, Z((Z:g'))/ € Pu(H). Hence, f € Q) (p,h, H). O

Remark 3.3. It is easy to see that the inclusion in Theorem 3.2 is true for different choices of @, h and

H = (h1, ha) given as following.

i)peA h(z)= }igi = ho(z), where -1 < B< A< 1.

(i
(i) ¢ € A, h1(2) = pi(2) = ha(z), where py(z) is given by (1.3).
(iii) ¢ € A, hi(z) = }iéi, ha(z) = pr(2).
(

iv) p € A, hi(z) = pr(z), hao(z) = %Ié?

Corollary 3.2. Let § > 1. Then
Q) (o, h, 1) C Q) (¢, 1, H).

Proof. Let f € Qi (¢, h,H). Then, by definition,

Czler ) (e
(1-9) (pxg) o (pxg)

=p1(2) € Pu(H),

where g € S* (¢, h).

From previous theorem, we can write
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Now,

Gle=n) . ze=n | (lexn)
v [(1 Vere) T (ong)
= pi(2) + (6 — 1) pa(2).

This implies

(z(pxf)) 1 1
Sovar = (5) e
Since p1, p2 € Pu(H) and P, (H) is convex set, then
Cex D) )
(¢ *g)
Hence f € Q}L (¢, h,H). O

Theorem 3.3. Let 0 < §; < 6. Then
5 5
Q) (¢, h,H) C Q) (¢, h,H).

Proof. If §; = 0, then it is obvious from Theorem 3.2.
For 61 > 0. Let f € Qi (¢, h, H). Then, from Theorem 3.2

2(px f)

(0% 9) =pa2(2) € Pu(H). (3.10)

As we can write

ox 0, 5 (or D)

(1-467) (0*9) 1 (o g)

_ohf(s ey _gtes ) G D)
0 [<51 1) (pxg) =0 erg) " (pxg) (311
Since f € Qz (¢, h, H), from definition of QZ (¢, h, H), we have
(1-6) Z((;f:;)) +5(Z((j:;)),) = p1(2) € Pu(H). (3.12)
From (3.10-3.12) and the convexity of P, (#) implies
sy 2lex D)o (z(px 1))
(1 1) (Q@*g) + 1 (90*9), € PM(H)
Hence f € Qf} (o, h,H). O

Remark 3.4. It is easy to see that the inclusion in Theorem 3.3 is true for all choices given in Remark 3.3.

Theorem 3.4. The class Qi (¢, h,H) is closed under the convex convolution.
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Proof. Let f € Q,‘i (¢, h,H). Then, by definition,

2o+ f) Gl )

(1-9) o) T Pu(H). (3.13)
First, we need to prove ¢ * f € Qﬂ (p,h,H) for ¢ € C.
We take 6 = 0, then (3.13) implies
2(px f)
(o7 9) € Pu(H). (3.14)
Let
dlpr(cx ) (2) _ * e ((p*0) ()
(p*(s*g)) (=) s (p*g)(2)
s * ho(2) ((¢ x g)) (2)

Sk (p*g)(2)

where hg(z) = z((iig))/ € P,(H). Since g € S*(p, h) implies ¢ x g € S*(h) C S*; h € P. Thus, by Lemma

2.3, we conclude

€ P.(H). (3.15)

Similarly, for § = 1, we can easily prove

€ P.(H). (3.16)
Our required result follows from (3.15) and (3.16). O

Corollary 3.3. The class Qi (¢, h,H) is closed under the following operators.

i) fi(z) = [Z {War.
ii) fa(z) = 2[5 f(t)dt, (Libera’s operator [7]).

Tz

iii) f3(2) = [ L9=L00q1, o) <1, 0 £ 1.

t—xt

iv) fa(z) = <& [Tt°71f(t), Re(c) >0, (Generalized Bernardi operator [1]).

Proof. We may write, f;(z) =
d1(z)=—log(1—2)= > %z",
¢2(Z) — —2[z—l(;g(1—z)] — Z %2n7
bs(2) = 1 log (4722) =
ba(z) = > 2" Re(e) > 0.

n-—r+c
n=1Jr

The proof follows easily by using Theorem 3.4. ]
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3.2. Radius Problem.

Theorem 3.5. Let f € MY (<p, ﬁgi) Then, f € M) (<p, iz) for |z| < rs, where

2A?

v {6(A~B)+24} + /9 (A- B’ + 445 (A— B)

Proof. Let f € MY ((p7 %igz) Then, by definition,
z(pxf) 1+ Az
On logrithmic differentiation of (3.17), we get
(= f)) _zlp=f) | w'(2)
ey e h ) (345)
By (3.17) and (3.18), we obtain
(o) _ e
or /) =p(z)+ ) (3.19)
Now,
g zlexs) D)) ()
R B AT
A*r? —{6(A—B)+2A}r+1
R (s (7(2) > g Do
For R (Js5 (f(2))) > 0 in U, we get
2A?
rs = .
{6 (A— B)+ 24} + \/52 (A— B)>+4A6 (A - B)
O

Corollary 3.4. Let f € MY ( z 1+Z> = S*. Then

1-271—-=2

fes ( ”) — M(5),

1—2"1—2

for|z| <rs = m. Moreover, for § = 1, we have well known result

S*CC, for |z <r =

1
2+V3
Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication

of this paper.



Int.

J. Anal. Appl. 19 (5) (2021) 793

[1]
(2]

(10]

(11]

(12]

(13]

14]
(15]

REFERENCES

S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.

J. Dziok, K.I. Noor, Classes of analytic functions related to a combination of two convex functions, J. Math. Inequal. 11
(2017), 413-427.

W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28 (1973), 297-326.
S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.

S. Kanas and A. Wisniowska, Conic domain and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), 647-657.
H.A. Al-Kharsani and A. Sofo, Subordination results on harmonic k-uniformly convex mappings and related classes,
Comput. Math. Appl. 59 (2010), 3718-3726.

R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.

S.S. Miller, P.T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(2) (1978),
289-305.

K.I. Noor, M. Arif, W. Ul-Haq, On k-uniformly close-to-convex functions of complex order, Appl. Math. Comput. 215
(2009), 629-635.

K.I. Noor, Some properties of analytic functions with bounded radius rotations, Compl. Var. Ellipt. Eqn. 54 (2009),
865-877.

K.I. Noor, M.A. Noor, Higher order close-to-convex functions related with conic domains, Appl. Math. Inf. Sci. 8 (2014),
2455-2463.

H. Orhan, E. Deniz D. Raducanu, The Fekete-Szego problem for subclasses of analytic functions de ned by a di erential
operator related to conic domains, Comput. Math. Appl. 59 (2010), 283-295.

K.S. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math.
31 (1975), 311-323.

B. Pinchuk, Functions with bounded boundary rotation, Israel J. Math. 10 (1971), 7-16.

S. Ruscheweyh, T. Sheil-Small, Hadamard product of Schlicht functions and the Polya-Schoenberg conjecture, Comment.
Math. Helv. 48 (1973), 119-135.



	1. Introduction
	2. Preliminary Results
	3. Main Results
	3.1. Inclusion Results
	3.2. Radius Problem

	References

