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Abstract. In this paper, we applied the successive linearization method (SLM) in solving highly system

of nonlinear boundary value problem. The method is presented in detail by solving the problem of free

convective heat and mass transfer of an incompressible fluid past a moving vertical plate in the presence

of radiation effect. The governing partial differential equations are converted into system of non linear

ordinary differential equations by a similarity transformation, which are converted into system of linear

ordinary differential equations using SLM. The linear system is solved using the Chebyshev spectral method

to find solutions that are accurate and converge rapidly to the full numerical solution. Comparison with

previously published works are performed to test the validity of the obtained results with focus on the

accuracy and convergence of the solution. The effects of selected fluid parameters on the velocity as well as

the temperature and concentration distribution are determined and discussed.

1. Introduction

Most problems that arise in engineering are nonlinear with no analytic solutions and developing new

methods that give rapid convergence, are robust and easy to use is a core function of numerical analysis.

In the last few decades, a great deal of interest has been generated in the area of heat and mass transfer

on a continuously stretching surface with a given temperature or heat flux distribution and they have

Received June 20th, 2021; accepted July 26th, 2021; published August 12th, 2021.

2010 Mathematics Subject Classification. 80A20.

Key words and phrases. successive linearisation method; boundary layer flow; heat and mass transfer.

©2021 Authors retain the copyrights

of their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

725

https://doi.org/10.28924/2291-8639
https://doi.org/10.28924/2291-8639-19-2021-725


Int. J. Anal. Appl. 19 (5) (2021) 726

included several different physical models. Transport of heat is being extensively studied, as understanding

the associated transport processes becomes increasingly important. This interest stems from the variety of

cases which can be modeled or approximated as transport through porous media, such as packed sphere

beds, high performance insulation for buildings, chemical catalytic reactors, grain storage, and many others.

Literature concerning convective flow in porous media is abundant, and many published studies such as

[3, 6, 7, 11,14,16,17].

Finding exact solutions to steady hydromagnetic flow and heat transfer could be of great benefit to polymer

technology. In particular, there are many applications involve the cooling of continuous strips or filaments by

drawing them though a quiescent fluid. By drawing such strips in an electrically conducting fluid subjected

to a magnetic field, the rate of cooling can be controlled and final products of desired characteristics are

obtainable [4].

Numerical study for the effect of thermal-diffusion and diffusion-thermo on combined heat and mass

transfer of flows induced a rotating disk has been investigated by Emmanuel et al. [13]. The effect of MHD

coupled heat and mass transfer of free convection from a moving permeable vertical was studied by surface

was investigated by Yih [18]. A similar problem, including natural convection about a vertical impermeable

flat plate, was investigated by Sparrow and Cess [15]. The magneto-hydrodynamics (MHD) convection in

porous medium have been studied by Makinde [9, 10]. Alan and Rahman [2] examined Dufour and Soret

effects on mixed hydrogenair convective flow past a vertical porous flat plate embedded in a porous medium.

Numerical study of natural convection of water in a partially heated enclosure with Soret and Dufour effects

were discussed by Nithyadevi and Yang [12]. Recently, Ibrahim and Makinde [5] studied the combined effects

of wall suction and magnetic fields on boundary layer flow with heat and mass transfer over an accelerating

vertical plate.

In this paper, we aims to extend the work of Olanrewaju et. all [1] to include the radiation effect of MHD

boundary layer flow of heat and mass transfer. The successive linearisation method (SLM) has been used

to convert the governing non linear equations into a system of linear differential equations. The Chebyshev

pseudospectral method willbe used to solve the higher order deformation on linear differential equations.

The auxiliary linear operator is defined in terms of the Chebyshev spectral collocation differentiation matrix

described in [21]. The SLM has been used in a number of recent studies (see [21–25]. They showed that

successive linearisation method is accurate and converges rapidly to the numerical results when compared

to other recent semi-analytical methods such as the Adomian decomposition method. The SLM method

can further be used in place of traditional numerical methods such as finite differences and Runge-Kutta

methods to solve highly nonlinear systems of boundary value problems.
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2. Problem formulation

We consider the steady free convective heat and mass transfer flow of a viscous, incompressible, electrically

conducting fluid past a moving vertical plate in the presence of thermal diffusion (Soret) and diffusion-thermo

(Dufour) effects. The non uniform transverse magnetic field B0 is imposed along the y-axis. The induced

magnetic field is neglected as the magnetic Reynolds number of the flow is assumed very small. It is

further assumed that the external electric field is zero and that the electric field due to charge polarization

is negligible. The temperature and the concentration of the ambient fluid are T∞ and C∞ respectively,

while those at the surface are, respectively, Tw(x) and Cw(x). The pressure gradient, viscous and electrical

dissipation are also neglected. The fluid properties are assumed constant, apart from the density in the

buoyancy terms of the linear momentum equation, which is estimated using Boussinesq’s approximation.

Under the above assumptions, the boundary layer form of the governing equation can be written as [8]:

∂u

∂x
+
∂v

∂y
= 0 (2.1)

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂2y
+ gβT (T − T∞) + gβC(C − C∞)− σB2

0

ρ
u (2.2)

u
∂T

∂x
+ v

∂T

∂y
=

1

cp

(
k +

16σ∗T 3
∞

3k∗

)
∂2T

∂y2
+ α

∂2T

∂y2
+
DmKT

cscp

∂2C

∂y2
(2.3)

u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+
DmKT

Tm

∂2T

∂y2
(2.4)

The boundary conditions for equations (2.1)–(2.4) are expressed as

v = V, u = Bx, T = Tw = T∞ + ax,C = Cw = C∞ + bx at y = 0

u→ 0, T → T∞, C → C∞ as y →∞

where B is a constant, a and b denote the stratification rate of the gradient of ambient temperature and

concentration profiles and (u, v) are the fluid velocity components in the x and y directions, respectively

regarding the plate, T is the temperature,βT is the volumetric coefficient of thermal expansion, α is the

thermal diffusivity and g is the acceleration due to gravity. Fluid parameters are ν, the kinematic viscosity,

Dm the coefficient of diffusion in the mixture, C the species concentration, σ the electrical conductivity, kT

is the themal diffusion ratio, cs is the concentration susceptibility, cp is the specific heat at constant pressure

and Tm the mean fluid temperature, k∗ is the mean absorption coefficient and σ∗ is the Stefan–Boltzmann

constant. B0 is the externally imposed magnetic field in the y direction. We introduce the following non-

dimensional variables:

η =

√
B

v
y F (η) =

ψ

x
√
Bv

, θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

(2.5)

where F (η) is a dimensionless stream function, θ(η) is a dimensionless temperature of the fluid in the

boundary layer region, φ(η) is a dimensionless species concentration of the fluid in the boundary layer region
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and η is the similarity variable. The velocity components u and v are respectively obtained as follows

u =
∂ψ

∂y
= xBF ′, v = −∂ψ

∂x
= −
√
BvF , (2.6)

where Fw =
V√
Bv

is the dimensionless suction velocity. Following equation (2.6), the partial differential

equations (2.2)–(2.4) are transformed into local similarity equations as follows:

F ′′′(η) + F (η)F ′′(η)− (F ′(η) +M)F ′(η) +Grθ(η) +Gcφ(η) = 0 (2.7)(
1 +

4

3
Rd

)
θ′′(η) + PrFθ

′(η)− PrF ′(η)θ(η) + PrDuφ
′′(η) = 0 (2.8)

φ′′(η) + ScFφ
′(η)− ScF ′(η)φ(η) + ScSrθ

′′(η) = 0 (2.9)

The boundary conditions are also transformed into the form

F ′ = 1 F = −Fw, θ = 1, φ = 1 at η = 0 (2.10)

F ′ = 0 θ = 0 φ = 0 as η →∞ (2.11)

where M =
σB2

0

ρB is the magnetic parameter, Pr = v
α is the Prandtl number, Sc = v

Dm
is the Schmidt

number, Gr =
gβT (Tw − T∞)

xB2
is the local temperature Grashof number, Gc =

gβc(Cw − C∞)

xB2
is the local

concentration Grashof number, Du = DmkT (Cw−C∞)
cscp(Tw−T∞) is the Dufour number, Sr = DmkT (Tw−T∞)

Tm(Cw−C∞)v is the Soret

number and Rd = 4σ∗T 3
∞/k

∗k is the radiation number.

3. Successive Linearisation Method (SLM)

The SLM procedure linearises the governing non linear equation. In order to fully describe of the SLM

algorithm, let us consider the following boundary value problem of order n in the form:

L[u(x), u′(x), u′′(x), ..., un +N [u(x), u′(x), u′′(x), ..., un] = g(x), (3.1)

where L and N are linear and non linear operators ,u(x) is an unknown function to be determined, g(x)

is a known function. We assume that equation (3.1) is to be solve for x ∈ [a, b] subject to the boundary

conditions

u(a) = a0, u(b) = b0 (3.2)

We represent the vertical difference between the function u(x) and the initial guess u0(x) by a function U1(x)

as (see Figure 1)

U1(x) = u(x)− u0(x), (3.3)

where U1(x) is an unknown functions and u0(x) is the initial guess which is chosen to satisfy boundary

conditions (3.2). It is reasonable to assume, for example, that the initial approximation u0(x) is a linear
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Figure 1. Geometric representation of the function ui(x)

function in case of second order problems defined on a finite domain and an exponential function for problems

defined on an infinite or a semi-infinite domain. Substituting (3.3) into (3.1), yields

L[U1(x), U ′1(x), U ′′1 (x), ...., U
(n)
1 ] + L[u0(x), u′0(x), u′′0(x), ...., u

(n)
0 ]

+N [U1(x) + u0(x), U ′1(x) + u′0(x), U ′′1 (x) + u′′0(x), ..., U
(n)
1 (x) + u

(n)
0 (x)] = g(x), (3.4)

This equation is non-linear in U1(x), so it may not be possible to find an exact solution. We therefore look

for a solution which is obtained by solving the linear part of the equation and neglecting the non-linear terms

containing U1(x) and its derivatives. We further assume that U1(x) and its derivatives are very small and

denote the solution of the linearised equation (3.4) by U1(x), that is U1(x) ≈ u1(x). Equation (3.4) can be

written as

L[u1(x), u′1(x), u′′1(x), ...., u
(n)
1 ] + f0,0u1(x) + f1,0u

′
1(x) + f2,0u

′′
1(x) + ....+ fn,0u

(n)
1 (x) = R1(x) (3.5)

where

f0,0 =
∂N

∂u1(x)
(u0(x), u′0(x), u′′0(x), ...., u

(n)
0 ),

f1,0 =
∂N

∂u′1(x)
(u0(x), u′0(x), u′′0(x), ...., u

(n)
0 ),

f2,0 =
∂N

∂u′′1(x)
(u0(x), u′0(x), u′′0(x), ...., u

(n)
0 ),

fn,0 =
∂N

∂u
(n)
1 (x)

(u0(x), u′0(x), u′′0(x), ...., u
(n)
0 ),

R1(x) = g(x)− L[u0(x), u′0(x), u′′0(x), ...., u
(n)
0 ]−N [u0(x), u′0(x), u′′0(x), ...., u

(n)
0 ].
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Since the left hand side of equation (3.5) is linear and the right hand side is known, the equation can be

solved for u1(x) subject to the boundary conditions

u(a) = 0, u(b) = 0 (3.6)

Assuming that the solution of the linear equation (3.5) is close to the solution of the non linear equation

(3.4), then the first approximation of the solution (order 1) is

u(x) ≈ u0(x) + u1(x) (3.7)

To improve this solution we define the vertical difference between the function U1(x) and u1(x) by the

function U2(x) as

U2(x) = U1(x)− u1(x) (3.8)

Substitute (3.8) into equation (3.1) to give

L[U2(x), U ′2(x), U ′′2 (x), ...., U
(n)
2 ] + L[u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), ...., u

(n)
0 + u

(n)
1 (x)]

+N [U2(x) + u0(x) + u1(x), U ′2(x) + u′0(x) + u′1(x)′U ′′2 (x) + u′′0(x) + u′′1(x), ..., U
(n)
2 (x)

+ u
(n)
0 (x) + u

(n)
1 (x)] = g(x)

(3.9)

Since u0(x) and u1(x) are known and this equation is non-linear in U2(x), we solve the linearized equation

after neglecting the non-linear terms containing U2(x) and its derivatives. We further assume that U2(x)

and its derivatives are very small that is U2(x) ≈ u2(x). Equation(3.9)can be written as

L[u2(x), u′2(x), u′′2(x), ...., u
(n)
2 (x)] + f0,0u2(x) + f1,0u

′
2(x) + f2,0u

′′
2(x) + .....+ fn,0u

(n)
2 (x) = R2(x), (3.10)

where

f0,0 =
∂N

∂u2(x)
(u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), ...., u

(n)
0 (x) + un1 (x)),

f1,0 =
∂N

∂u′2(x)
(u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), ...., u

(n)
0 (x) + un1 (x)),

f2,0 =
∂N

∂u′′1(x)
(u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), ...., u

(n)
0 (x) + un1 (x)),

fn,0 =
∂N

∂u
(n)
1 (x)

(u0(x) + u1(x), u′0(x) + u′1(x), u′′0(x) + u′′1(x), ...., u
(n)
0 (x) + un1 (x)),

R2(x) = g(x)− L[u0(x) + u1(x), u′0(x) + u′1(x), ...., u
(n)
0 (x) + u

(n)
1 (x)]

−N [u0(x) + u1(x), u′0(x) + u′1(x), ...., u
(n)
0 (x)].

After solving the equation (3.10), the second order approximation of u(x) is given by

u(x) ≈ u0(x) + u1(x) + u2(x). (3.11)
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This process is repeated for m = 2, 3, ..., i. Thus, u(x) is given by

u(x) = U1(x) + u0(x),

= U2(x) + u0(x) + u1(x),

= U3(x) + u0(x) + u1(x) + u2(x),

...

= Ui+1(x) + u0(x) + u1(x) + u2(x) + ...+ ui(x),

= Ui+1(x) +

i∑
m=0

um(x).

Thus, for large i, we can approximate the ith order solution u(x) by

u(x) =

i∑
m=0

um(x). (3.12)

The solution ui(x) can be determined from the linearized original equation (3.1) starting from the initial

guess u0(x) and solving the linear equations for ui(x). In general, the form of the linearized equation for

ui(x) is given by

L[ui(x), u′i(x), u′′i (x), ...., u
(n)
i ] + f0,i−1ui(x) + f1,i−1u

′
i(x) + f2,i−1u

′′
i (x)

+ .....+ fn,i−1u
(n)
i (x) = Ri−1(x), i = 1, 2, ...,M, (3.13)

subject to the boundary conditions

ui(a) = 0, ui(b) = 0, (3.14)

where M is termed the order of the SLM.

f0,i−1 =
∂N

∂ui(x)
(

i−1∑
m=0

um(x),

i−1∑
m=0

u′m(x),

i−1∑
m=0

u′′m(x), ....,

i−1∑
m=0

u(n)m (x)),

f1,i−1 =
∂N

∂u′i(x)
(

i−1∑
m=0

um(x),

i−1∑
m=0

u′m(x),

i−1∑
m=0

u′′m(x), ....,

i−1∑
m=0

u(n)m (x)),

f2,i−1 =
∂N

∂u′′i (x)
(

i−1∑
m=0

um(x),

i−1∑
m=0

u′m(x),

i−1∑
m=0

u′′m(x), ....,

i−1∑
m=0

u(n)m (x)),
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...

fn,i−1 =
∂N

∂u
(n)
i (x)

(

i−1∑
m=0

um(x),

i−1∑
m=0

u′m(x),

i−1∑
m=0

u′′m(x), ....,

i−1∑
m=0

u(n)m (x)),

Ri−1(x) = g(x)− L(

i−1∑
m=0

um(x),

i−1∑
m=0

u′m(x),

i−1∑
m=0

u′′m(x), ....,

i−1∑
m=0

u(n)m (x))

−N(

i−1∑
m=0

um(x),

i−1∑
m=0

u′m(x),

i−1∑
m=0

u′′m(x), ....,

i−1∑
m=0

u(n)m (x)).

Then ordinary differential equation is linear and can easily be solved using any analytical or numerical

method.

4. Method of solution

The system of non linear equation to be solved usin SLM are

F ′′′ + FF ′′ − (F ′ +M)F ′ +Grθ +Gcφ = 0 (4.1)

λθ′′ + Fθ′ − F ′θ +Duφ
′′ = 0 (4.2)

φ′′ + ScFφ
′ − ScF ′φ+ ScSrθ

′′ = 0 (4.3)

subject to the boundary conditions

F ′ = 1 F = −Fw, θ = 1, φ = 1 at η = 0 (4.4)

F ′ = 0 θ = 0 φ = 0 as η →∞ (4.5)

where λ = 1
Pr

(
1 + 4

3Rd
)
. The SLM algorithm starts with the assumption that the independent variables

F (η), θ(η) and φ(η) can be expressed as

F (η) = Fi(η) +

i−1∑
m=0

Fm(η), θ(η) = θi(η) +

i−1∑
m=0

θm(η), φ(η) = φ(η) +

i−1∑
m=0

φm(η) (4.6)

where Fi, θi, φi (i = 1, 2, 3, ...) are unknown functions and Fm, θm and φm(m < i) are known functions which

are obtained by recursively solving the linear part of the equation system that results from substituting in

the governing equations. The main assumption of the SLM is that fi, θi, φi become increasingly smaller

when i becomes large that is

lim
i→∞

Fi = lim
i→∞

θi = lim
i→∞

φ = 0. (4.7)

Thus, starting from the initial guesses F0(η) = 1 − Fw − e−η, θ0(η) = e−η, φ0(η) = e−η, which are chosen

to satisfy boundary conditions (4.4) and (4.5), the subsequent solutions for Fi, φi, θi, i ≥ 1 are obtained by

successively solving the linearised form of the equations which are obtained by substituting equation (1)in

the governing equations and considering only the linear terms. The linearised equations to be solved are
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given by substituting the assumptions (4.6) in the system (4.1) - (4.3) and neglecting the non linear terms,

gives

F ′′′i +

i−1∑
m=0

FmF
′′
i +

i−1∑
m=0

F ′′mFi − 2

i−1∑
m=0

F ′mF
′
i −MF ′i + Crθi +Gcrφi = r1 (4.8)

λθ′′i +

i−1∑
m=0

θ′m(η)Fi +

i−1∑
m=0

Fm(η)θ′i −
i−1∑
m=0

θmF
′
i −

i−1∑
m=0

F ′mθi +Duφ
′′
i = r2 (4.9)

φ′′i + Sc

i−1∑
m=0

φ′mFi + Sc

i−1∑
m=0

Fmφ
′
i − Sc

i−1∑
m=0

φmF
′
i + Sc

i−1∑
m=0

F ′mφi + Scθ
′′
i = r3 (4.10)

Subject to the boundary conditions

Fi(0) = F ′i (0) = F ′i (∞) = θi(0) = θi(∞) = φ(0) = φi(∞) = 0 (4.11)

where

r1 = −

(
i−1∑
m=0

F ′′′m +

i−1∑
m=0

Fm

i−1∑
m=0

F ′′m −
i−1∑
m=0

F ′m

i−1∑
m=0

F ′m −M
i−1∑
m=0

F ′m +Gr

i−1∑
m=0

θm +Gc

i−1∑
m=0

φm

)

r2 = −

(
λ

i−1∑
m=0

θ′′m +

i−1∑
m=0

Fm(η)

i−1∑
m=0

θ′m −
i−1∑
m=0

F ′m

t−1∑
m=0

θm +Du

i−1∑
m=0

φ′′m

)

r3 = −

(
i−1∑
m=0

φ′′m + Sc

i−1∑
m=0

Fm

i−1∑
m=0

φ′m − Sc
i−1∑
m=0

F ′m

i−1∑
m=0

φm + ScSr

i−1∑
m=0

θ′′m

)

once each solution for fi, θi, φi(i ≥ 1) has been found from iteratively solving equations (3- 6 ), the approxi-

mate solutions for f(η), θ(η) and φ(η) are obtained as

f(η) ≈
M∑
m=0

fm(η), θ(η) ≈
M∑
m=0

θm(η), φ(η) ≈
M∑
m=0

φm(η), (4.12)

Where M is the order of SLM approximation. Since the coefficient parameters and the right hand side of

equations (4.8) - (4.10), for i = 1, 2, 3, ... are known (from previous iterations). The equation system can

easily be solved analytically (wherever possible) or using any numerical method such as finite differences,

finite elements, Runge-Kutta based shooting methods or collocation methods’ in this work, we used the

Chebyshev spectral collocation method. This method is based on approximating the unknown functions by

the Chebyshev interpolating polynomials in such a way that they are collocated at the Gauss-Lobatto points

defined as (see [19,20])

ξj = cos
πj

N
, j = 0, 1, . . . , N

where N + 1 is the number of collocation points used. In order to implement the method, the physical

region [ 0,∞) is transformed into the region [−1, 1] using the any domain truncation technique in which the

problem is solved on the interval instead of [0,∞). The unknown functions fi, θi and φi are approximated
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at the collocation points by

fi(ξ) ≈
N∑
k=0

fi (ξzk)Tk (ξj) , θi(ξ) ≈
N∑
k=0

θi (ξk)Tk (ξj) , φ(ξ) ≈
N∑
k=0

φ (ξk)Tk (ξj) , j = 0, 1, . . . N (4.13)

Where Tkis the kth Chebyshev polynomial defined as

Tk(ξ) = cos[k cos−1 (ξ)] (4.14)

The derivatives of the variables at the collocation points are represented as

drFi
dηr

=

N∑
k=0

Dr
kj · Fi (ξk) ,

drθi
dηr

=

N∑
k=0

Dr
kjθi (ξk) ,

drφi
dηr

=

N∑
k=0

Dr
kjφi (ξk) , j = 0, 1, . . . , N (4.15)

Where r is the order of differentiation and D being the Chebyshev spectral differentiation matrix hose entries

are defined as [19,20]

D00 = 2 N2+1
6

Djk =
cj(−1)j+k

ckξj−ξk j = /k; j, k = 0, 1, . . . , N

Dkk = − ξk
2(1−ξ2k)

, k = 1, 2, . . . , N − 1,

DNN = − 2 N2+1
6


(4.16)

Substituting equations (4.15) into the system (4.8) - (4.10) gives the following system of algebraic equations

A11Fi +A12θi +A13φi = r1,i−1

A21Fi +A22θi +A23φi = r2,i−1

A31Fi +A32θi +A33φi = r2,i−1

which leads to the matrix equation given as

Ai−1Xi = Ri−1, (4.17)

in which Ai−1 is a (3N +3)× (3N +3) square matrix and Xi and Ri−1 are (3N +1)1 column vectors defined

by

Ai−1 =


A11 A12 A31

A21 A22 A32

A31 A32 A33

 , Xi =


Fi

θi

φi

 , Ri−1 =


r1,i−1

r2,i−1

r3,i−1

 (4.18)

where

Fi =
[
Fi (η0) , Fi (η1) , . . . , Fi (ηN−1) , Fi (ηN )]T

θi =
[
θi (η0) , θi (η1) , . . . , θi (ηN−1) , θi (ηN )]T

φi =
[
φi (η0) , φi (η1) , . . . , φi (ηN−1) , φi (ηN )]T

r1,i−1 = [r1,i−1 (η0) , r1,i−1 (η1) , . . . , r1,i−1 (ηN−1) , r1,i−1(ηN )]
T
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r2,i−1 = [r2,i−1 (η0) , r2,i−1 (η1) , . . . , r2,i−1 (ηN−1) , r2,i−1(ηN )]
T

r3,i−1 = [r3,i−1 (η0) , r3,i−1 (η1) , . . . , r3,i−1 (ηN−1) , r3,i−1(ηN )]
T

A11 = D3 +

i−1∑
m=0

FmD
2 −

(
2

i−1∑
m=0

F ′m +M

)
D +

[
i−1∑
m=0

F ′′m

]
, A12 = [Cr], A13 = [Gr],

A21 = −
i−1∑
m=0

θmD +

[
i−1∑
m=0

θ′m(η)

]
, A22 = λD2 +

i−1∑
m=0

FmD −

[
i−1∑
m=0

F ′m

]
, A23 = DuD

2,

A31 = −Sc
i−1∑
m=0

φmD + Sc

[
i−1∑
m=0

φ′m(η)

]
, A32 = SrScD

2, A33 = D2

and [..] stands to a diagonal matrix of size (3N +3)× (3N +3). The boundary conditions (4.15) are imposed

to the system (4.17) as displayed in figure 2. After modifying the matrix system (4.17) to incorporate

boundary conditions, the solution is obtained as

Xi = A−1i−1Ri−1 (4.19)

Figure 2. Imposing the boundary conditions (4.15) into the system (4.19).
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5. Results and discussion

The system of non-linear ordinary differential equations (2.7) - (2.9) together with the boundary conditions

(2.10) and (2.11) are solved numerically using successive linearization method. In this chapter we give the

obtained results for the main parameters affecting the flow. We use MATLAB software in all obtained results

in this research. To check the accuracy of the proposed successive linearisation method (SLM), comparison

was made with those obtained in literature. The graphs and tables presented in this work, unless otherwise

specified, were generated using N = 30 and η∞ ' L = 15 gave sufficient accuracy for the SLM results.

6. Convergence of the solution

In this section, comparisons with previously published works are performed to test the validity and

the convergence of the obtained results. Also, the effects of some physical parameters on the Velocity,

temperature and concentration Profiles are obtained and discussed.

Table 1 showed the SLM results of F ′′(0), −θ′(0) and −φ′(0) at various values of Rd for different iterations.

It is cleared form the Table that the results obtained by SLM are in excellent agreement with a few order of

SLM series starting from the third iteration and giving accuracy up to eight decimal places..

In Table 2, the SLM results were compared for −F ′′(0), −θ′(0) and −φ′(0) for different values of Fw with

those obtained by Olanrewaju et. all [1] in the absence of radiation effect. They used the shooting iteration

technique together with a sixth order Runge–Kutta integration scheme. It can be seen from the table that

they are in good agreement between the results..

7. Velocity Profiles

Figure 3 illustrates the effect of magnetic parameterM parameter on Velocity as a function of the similarity

variable η. It is observed from the Figure that an increase in the magnetic parameter M leads to decreases

in the velocity profile. The same result was obtained by Olanrewaju et. all [1].

Figure 4 represents the the effect of the radiation parameter Rd on dimensionless velocity distributions.

It shows that the velocity enhanced as the radiation parameter increased.

8. Temperature Profiles

The effect of magnetic filed parameter M on temperature distribution profile θ(η) as a function of variable

η in displayed on Figure 5. From the Figure, we see that an increase in the magnetic parameter M leads to

increases in the temperature distribution.

Figure 6 shows the effect of increasing the radiation parameter Rd on dimensionless temperature distribu-

tions. We observe that increasing the radiation parameter leads to enhanced the temperature distributions

θ(η)
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Table 1. The SLM results for F ′′(0), −θ′(0) and −φ′(0) to different values of the radiation

number Rd when Fw = 1,M = 0.1, Gr = 0.1, Gc = 0.1, P r = 0.72, Sc = 0.62, Sr =

0.1, Du = 0.03

Rd First iteration Second iteration Third iteration Fourth iteration

F ′′(0)

0.1 0.56946888 0.56947404 0.56947405 0.56947405

0.2 0.56880563 0.56881060 0.56881061 0.56881061

0.5 0.56717266 0.56717699 0.56717699 0.56717699

1.0 0.56523532 0.56523914 0.56523914 0.56523914

−θ′(0)

0.1 0.52976296 0.52974957 0.52974955 0.52974955

0.2 0.50638146 0.50636189 0.50636185 0.50636185

0.5 0.45023485 0.45019930 0.45019924 0.45019924

1.0 0.38601330 0.38596450 0.38596442 0.38596442

−φ′(0)

0.1 0.51484762 0.51483002 0.51482998 0.51482998

0.2 0.51622774 0.51621125 0.51621122 0.51621122

0.5 0.51958417 0.51957245 0.51957243 0.51957243

1.0 0.52347723 0.52347206 0.52347205 0.52347205

9. Concentration Profiles

Figure 7 showed the effect of magnetic parameter M parameter on concentration Profile as a function of

the similarity variable η. It is observed from the Figure that an increase in the magnetic parameter M leads

to increases in the Concentration Profile φ(η).

The effect of radiation parameter Rd is decreased concentration distribution via increasing Rd .
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Table 2. Comparison between the SLM, and Ref. [1] for −F ′′(0), −θ′(0) and −φ′(0) for

different values of Fw when M = 0.1, Gr = 0.1, Gc = 0.1, P r = 0.72, Rd = 0, Sc = 0.62, Sr =

0.1, Du = 0.03

Ref. [1] SLM

Fw −F ′′(0) −θ′(0) −φ′(0) −F ′′(0) −θ′(0) −φ′(0)

0.5 0.724431 0.673004 0.605696 0.724428 0.673003 0.605696

0.3 0.801102 0.728095 0.648537 0.801097 0.728093 0.648536

0.0 0.934398 0.820892 0.720212 0.934389 0.820888 0.720212

−0.3 1.090854 0.926778 0.801866 1.090838 0.926772 0.801864

−0.5 1.208097 1.004942 0.862315 1.208074 1.004934 0.862312
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Figure 3. Effect of M on the Velocity profile when Fw = 0.1, Gr = 0.1, Gc = 0.1, P r =

0.72, Rd = 0.1, Sc = 0.62, Sr = 0.1, Du = 0.03 .

10. Conclusion

In this paper, we applied the successive linearization method in solving highly system of nonlinear bound-

ary value problem. The method is applied on the MHD free convective heat and mass transfer with radiation

effect. The set of governing equations and the boundary conditions are reduced to ordinary differential equa-

tions with appropriate boundary conditions. The results were compared with other methods in the literature
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Figure 4. Effect of M on the concentration profile when Fw = 0.1, Gr = 0.1, Gc =

0.1, P r = 0.72,M = 0.1, Sc = 0.62, Sr = 0.1, Du = 0.03 .
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Figure 5. Effect of M on the temperature profile when Fw = 0.1, Gr = 0.1, Gc = 0.1, P r =

0.72, Rd = 0.1, Sc = 0.62, Sr = 0.1, Du = 0.03 .

such as the shooting iteration technique together with a sixth order Runge–Kutta integration scheme with

focus on the accuracy and convergence of the results. Graphs were presented showing the effects of various

physical parameters on the fluid properties. The main conclusions emerging from this paper are as follows:

• The SLM suggested a standard method for choosing the linear operators and initial approximations

by using any form of initial guess as long as it satisfies the boundary conditions, while the initial
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Figure 6. Effect of M on the concentration profile when Fw = 0.1, Gr = 0.1, Gc =

0.1, P r = 0.72,M = 0.1, Sc = 0.62, Sr = 0.1, Du = 0.03 .
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Figure 7. Effect of M on the concentration profile when Fw = 0.1, Gr = 0.1, Gc =

0.1, P r = 0.72, Rd = 0.1, Sc = 0.62, Sr = 0.1, Du = 0.03 .

guess in the other method such as HPM and HAM can be selected that will make the integration of

the higher order deformation equations possible.

• The SLM is highly accurate, efficient and converges rapidly with a few iterations required to achieve

the accuracy of the numerical results, in this study it was found that for a few iterations of SLM

was sufficient to give good agreement with the exact solution.
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Figure 8. Effect of M on the concentration profile when Fw = 0.1, Gr = 0.1, Gc =

0.1, P r = 0.72,M = 0.1, Sc = 0.62, Sr = 0.1, Du = 0.03 .

• When the magnetic field increases, the velocity profile is decreased while the temperature and con-

centration components are enhanced.

• When the radiation parameter increases, the velocity profile temperature distribution are increased

while the concentration component is reduced.

Finally, the successive linearisation method has high accuracy and simple for solving nonlinear boundary

value problems compared with the Runge Kutta, finite difference, finite element and Keller-Box methods.

Because of its efficiency and easy of use. The extension to systems of nonlinear BVPs allows the method to

be used as alternative to the traditional of those methods.
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