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Abstract. This paper deals with Hadamard inequalities for strongly m-convex functions via Riemann-
Liouville fractional integrals. These inequalities provide refinements of well known fractional integral
inequalities for convex functions. Further, by applying an identity error estimations are obtained and

compared with already known error estimations.

1. Introduction
First, we will give some definitions and well known results which are needful and connected with
the findings of this paper.
Definition 1.1. [8] A function f : | — R will be called convex if
ftx + (1 —t)y) < tf(x) + (1 = ) (y), (1.1)
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Vx,y€l=|x,y] andt€|0,1]. The function f will be strictly convex if
f(xt+(1—1t)y) <tf(x)+(1—-1t)f(y), (1.2)
holds¥ x #y €l and t € (0, 1).

Definition 1.2. [7] Let (X, ||.||) be a normed space. A function f : E C X — R will be called strongly

convex function with modulus C if
f(xt+(1—1t)y) < tF(x) + (1= ) (y) = Ct(1 = t)lly — x| (1.3)
holdsV x,y € E C X, t € [0,1].
Definition 1.3. [12] A function f : [0, b] — R, b > 0 will be called m-convex function if
f(tx+m(1—t)y) < tf(x)+m(1—1t)f(y), (1.4)
holds ¥ x,y € [0, b] and t, m € [0, 1].
Definition 1.4. [6] A function f : [0, b] — R will be called strongly m-convex function if
fFtx +m(1 — t)y) < tF(x)+m(1l—t)f(y) — Cmt(1 —t)|y — x|, (1.5)
holds ¥ x,y € [0, b], b >0 and t,m € [0, 1].

The Hadamard inequality is another way of representing convex function stated in the upcoming

theorem.

Theorem 1.1. [2] Let f : | — R be a convex function on interval | C R and x,y € | where x < y.
Then the following inequality holds:

f(X;y>§in/ny(u)du§f(X)—|2_f(y). (1.6)

If order in inequality (1.6) is reversed, then it holds for concave function.
The Riemann-Liouville fractional integrals are defined as follows:

Definition 1.5. [10] Let f € L1[x,y]. The Riemann-Liouville fractional integral operators of order
B > 0 are defined as follows:

Pof(u) = I'(lﬁ) /U(u _PPE(8)dt u > x, (1.7)

B f(u) = I’(lﬁ) /y(t — )P (t)dt,u < y. (1.8)

The following version of the Hadamard inequality for convex functions via Riemann-Liouville frac-

tional integrals was proved by Sarikaya et al. in [9]:
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Theorem 1.2. [9] Let f : [x,y] — R be a positive function with 0 < x <y and f € L1[x,y]. Iff is

convex function on [x, y], then the following inequality for fractional integrals holds:

P55 = 5 2 [0+ (o ) < L) (19)

with 8 > 0.

In [9], they also studied the error estimations of this fractional Hadamard inequality by establishing

an identity. Another version of the Hadamard inequality was proved by Sarikaya and Yildirim in [11].

Theorem 1.3. [11] Let f : [x,y] — R be a positive function with 0 < x < y. If f € L1[x,y], then

the following fractional integrals equality holds:

X4y 28-1M(B + 1)
f( 2 >§ O — x)P

Our aim in this paper is to study all of the above inequalities and their error estimations by applying

_ FO) )

J(ﬁx+y f(y) + "/ X+}/) f(X) 2

(1.10)

definition of strongly m-convex functions.

In the upcoming section we will prove the version of Hadamard inequality for strongly m-convex func-
tions, which simultaneously will represent refinement as well as generalization of Theorem 1.2. Another
version of the Hadamard inequality will be proved which will provide refinement and generalization of
Theorem 1.3 at the same time. Also error estimations of the fractional Hadamard inequality are given

in refined form.

2. Main Results

Theorem 2.1. Let f € L1[x,y] be a positive function with 0 < x < my. If f is strongly m-convex

function on [x, my], m # 0 with modulus C, then the following fractional integral inequality holds:

X + my CmB [ (x —y)? 2(my — X)? 2(x—y)(my — = >
(7)) (5T heroR st G -
re+1)
< Slmy —)p [ )+ P ()
< (100 -7 (7)) sy + 3 (0 £ ()
CCmB((y = %) + mly — 25)°)
26+ 1)(B+2)
with B, C > 0.
Proof. Since the function f is strongly m-convex function, for u, v € [x, y] we have
¢ (u+2mv> < f(u) +2mf(v) B %W R (2.2)
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By setting u = xt +m(1 —t)y and v = yt + (1 — t),., we have

f<x+2my> g%f(xt+m(1—t)y)+gf<yf+(1—f)%> (2.3)

—%‘t(x—y)—i—(l—t) (my—%)‘Q.

By multiplying inequality (2.3) with t°~1 on both sides and then integrating over the interval [0, 1],

we get
x+my\ [t 5 1 [t L
f( 5 )/ th- dtgz/ f(xt4+ m(1—t)y)tP1dt (2.4)
0 0

m X Cm 1! X\ |2
m O Y e o e _ _ _ XN\ [P 81
+ 2/Of(yt+(1 t) )t dt— = /O ’t(x y)+(1—1) (my )’ 714,

By change of variables we will get

éf (X +2my> (2.5)

r(ﬁ) 1 my _ m6+1 y x\a—1
< Sy =P [F(ﬁ)/x (my — u)P 1f(u)du+W . (V—E) f(v)dv]

Cm ((x=y)? | 2(my—2X)  2(x—y)(my—X)
T4 <ﬁ+2 BB+ DB+ T BB 12 )

Therefore, the above inequality takes the following form:

] (x + my) < rB+1) L F(my) + P f (%)} (2.6)

2 ~ 2(my — x)P
= <(X —y)? 2my =) 20— y)(my - ;J)
g+2  BB+1)(B+2) B+HB+2) )

4
From the definition of strongly m-convex function with modulus C, for t € [0, 1] we have the following

inequality:
F(tx + m(1 — t)y)+mf(yt+(1— t)%) (2.7)
<t (0 =ntr (35)) + m(F0) + mr (5))
~cmt1-0) (=024 m (- 25)°).

By multiplying inequality (2.7) with t°~1 on both sides and then integrating over the interval [0, 1],
we get

1 51 1 X\ g1
/Of(tx—l—m(l—t)y)t dt+m/0 f(yt—l—(l—t)E)t dt (2.8)

< (0 - mr (%)) [ arm (s + e () [ e
—Cm ((y —x)?4+m (y - n)7<2>2> /01 t2(1 — t)dt.
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By change of variables we will get

+1

1 my _ y x\B-1
[r(ﬁ)/x (my — u)P~YF(u)du + B /- (V—E) f(v)dv] (2.9)

< (100 =7 (35)) Gy + 5 (100407 (7))

Cm((y =)+ mly — 25)°)

rs)
(my —x)P

B+1)(B+2)
Therefore, the above inequality takes the following form:
re+1) 6 +1 ﬁ

< (0 = (35)) 2&1) 3 ([0 (5))

_CmB((y =x)* + mly — 2)°)
26+1)(B+2)

From inequalities (2.6) and (2.10), one can get inequality (2.1). O

Remark 2.1. (i) For C = 0 in inequality (2.1), we get [4, Theorem 2.1], for C # 0 (2.1) is the
refinement.

(if) For m =1 and C = 0 in inequality (2.1), we get Theorem 1.2.

(iii) For m =1 in inequality (2.1) we get the Hadamard inequality for strongly convex function.

(iv) ForB=1and m=1 in (2.1) we will get the refinement of the Hadamard inequality.

The next result is the refinement of another version of the Hadamard inequality for Riemann-Liouville

fractional integrals stated in Theorem 1.3.

Theorem 2.2. Let f € L1[x,y] be a positive function with 0 < x < my. If f is a strongly m-convex

function on [x, my], m # 0 with modulus C, then the following fractional integral inequality holds:

‘ <x+ my) N Cmg {(X—YV i (my = 5)(B2+56+8)  (x=y)(my = 7)(B+3) (2.11)

2 7 |46+2) T BB+ DB+2 | 28+DB+2)
26-1r(B + 1) 1 X
= (my — x)B [(Jf}”’y)* ) (ym) + (J?%)’ f) (E)}
B (F(x) — nmPf () CmB((y — x)? + mly — 2)2)(8 +3)
=T G 86+ 1)(B+2)

+ 3 (f1) +mf(=5)) -
with 3, C > 0.

Proof. For t € [0, 1] and strongly m-convexity of function, let u = x%—i—m(%)y and v = (%)%—i—y%
in inequality (2.2), we have
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f (X +2my> < %f (x; +m (2;t> y) + gf <(22_t> :;ert) (2.12)

Pt (o=3)

By multiplying (2.12) with t8~1 on both sides and making integration over [0, 1] we get

1 1 t 2—t
f(x+my>/ Pldr < = / f<x+m<> y> tPF=1gt
0 2 Jo 2

5 (2.13)
m 2—1)\ x t\ .51
()5 )
Cm 2—t x\ |?
_ - “(x — - _ - £-1
7 ), 2(x y)+ > (my m) P dt.
By using change of variables and computing the last integral, from (2.13) we get
1 X+ my
ﬁf< 5 ) (2.14)
2671r(5) 1 my 51 mPBt1 bpx x\B-1
< Gy =P r(5)/X+2my(my—u) Fu)du + F(ﬁ)/; (V—E> F(v)dv
~_Cm {(X —y)? L (my = X£)2(6% + 58 +8) L = )(my - ﬁ,)(ﬁ+3)]
4 [4(6+2) 46(6 +1)(B+2) 206+ 1)(B+2)
Further it takes the following form
X + my PrEB+1) [( 5 1 X
f( . )g = %P [(J(Hw )(ym)+mﬁ ( oy f) ()] (2.15)

y — %)2(6° + 50 + 8) N (x = y)(my — 2)(B + 3)}
4 |4(B+2) 46(8+1)(B +2) 26+ 1)(B+2)

The first inequality of (2.11) can be seen in (2.15). Now we prove the second inequality of (2.11)
Since f is strongly m-convex function and t € [0, 1], we have the following inequality

_Cmg [(X—y)2 (m

f(x;+m<2t>y>+mf<(22_t>:;+y;> é(f(x) (r: ))
+m () +mf (=5)) - Cmi(2 = t)

220 [y pem(y- Y]

(2.16)
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By multiplying inequality (2.16) with t3~1 on both sides and making integration over [0, 1] we get

/Olf<x;+m(2 ) )tﬁ 1dt+m/ <(2_t>+ 2) 1t (2.17)
<3 (0= () [ s m(or s or () [ 7

C 1
- Flo-wrem(v-25)] [ -

By using change of variables and computing the last integral, from (2.17) we get

2°1(B) my mB+l x \B-1
(g — P I'(B)/ (my — WP~ (u)du+ B (V—E) F(v)dv (2.18)
(F(x) = (% )) m(fy) + mf(3)) Cm((y — X)2 +m(y = 725)*)(B+3)
= 2(B+1) B 4B+1)(B+2)
Further it takes the following form
26-1r(B + 1) X
(my —7X)B |:<J(6x+my ) (ym) + rnBJrl <J(6x+ym) f) <>:| (2]_9)
B (f(x)—m*f(Z%)) m X
ST B 5 (F0+mf (25))
_ CmB((y =X+ mly = 2)2)(B+3)
8(6+1)(B+2)
From inequalities (2.15) and (2.19), we have inequality (2.11). O

Remark 2.2. (i) For C =0 in (2.1), we will get [3, Theorem 2.1], and for C # O its refinement is
obtained.

(i) ForB =1 and m=1 in (2.1) we will get refinement of the Hadamard inequality.

(iii)) Form=1 and C =0 in (2.1), we will get Theorem 1.3.

(iv) For m =1 in inequality (2.11) we will get the Hadamard inequality for strongly convex function.
(v) Form=1,C=0and B =1 in inequality (2.11), we get the inequality (1.6).

3. Error Estimations

Lemma 3.1. [9] Let f : [x,y] — R be a differentiable mapping on (x,y) with x < y. If f' € [x,y],
then the following fractional integrals equality holds:

fFx)+fly)  TB+1)

2 2y —x)P

:y;X/l [(1=t)P =P ' (tx + (1 — t)y) dt.
0

5 (N0 + (LN (31)

Theorem 3.1. Let f : [x,y] — R be a differentiable mapping on (x,y) with x < my. If |f'| is a
strongly m-convex function on [x, my], m # 0, with modulus C, then the following fractional integrals
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inequality holds:

I B D [0+ (SN (32)
o Do (]2 052
with B, C > 0.
Proof. Since || is strongly m-convex function on [x, my] and t € [0, 1], we have
|7 (tx + (1= t)y)| dt = (tx+m(1—t) )‘dt (3.3)
< 1G4 m(1 - | (L) - cmea -0y (£ - x)2_
By using Lemma 3.1 and (3.3) we have
) o [0+ (SN (3.4)
<22 [la-vp =l |r (oot m- 0 2) @ < 25 [a-or -
(7001 + mea = 0] (%)] - cmeta ) (% ~x)) ae < L3
/ 1/2 (1= 0 = ) (eral+ ma - 0] (%)) - cme - ) (% -x)°) o
/ - @= o) (el + ma - o (£)] - cme - 0 (% -x)°) et
<3| (Groges - )+l Gl (s~ o)
~EiaEs (1) el (g - )
ol (rErs ) - B () |
After simplify the last inequality of (3.4), we get the inequality (3.2). 0

Remark 3.1. (i) If m =1, C = 0 in inequality (3.2), we get [9, Theorem 3], for C > 0 we get its
refinement.
(i) Ifm=1, C =0 and B = 1 in inequality (3.2), we get [1, Theorem 2.2], for C > 0 we get its

refinement.

Corollary 3.1. Forg=1

f(x)+f(y) 1 Y
5 — (y—x)/x f(u)du|l <

Cm(% —x)3
32

== [P e01+ mif ()] -

with C > 0.
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Theorem 3.2. Let f : [x,y] — R be a differentiable mapping on (x,y) with x < my. If|f'|9 is

strongly m-convex on [x, y] for ¢ > 1, then the following inequality for fractional integrals holds:

mes

) (5| ()

— )2 7
[(v'(x)mm 1)+ mlf(y))7(8 + 3) — STy =06 ”(B*‘”)

ooy D)+ 8B 1) ()] (35)

2(B+3)
a Cm(=5 —y)? .
" (If’()/)lq(5+1)+m(f5+3) ()| - e Q%(f;)”(ﬁ“)) |

with B > 0.

Proof. By applying [3, Lemma 2.3] and strong m-convexity of |f’|, let ¢ = 1 we have

o D (F D) 4 P oy 1) (5] (36)

St
B e

<my—x[ F001 = mIF ()] + [F/(5)] = mlf'(Z )

t’3+1dt+ m

% ))/ t5+1(2—t)dt]

m (|f' (V) + [ (Z)])
6+1

2

(ro+ |7 (Z5)]) [ #oe= S (=02 m

_my—XKlf’(X)l m|f' W+ 1 (W) — mlf' (52 )
-4 2(8 +2)

‘4(51%3?3) <(y_x)2+m(nj2 -7) >]

Now, for strongly m-convexity of |f’|9, g > 1, using power mean inequality we get

_l’_

P-Ir(B+1)
(my — x)B {(

(] < (] o) (]
(el () 5+2)

By OYmy) + PN (S ) ()] _1[f<x+my> o0

m 2 2
1
a N\
dt)

[t 2t
f <2x+m<2 )y)
: _ - 1
th> ]< my X1 (If’(x)" 2m|f’()/)|q/ B+ gt
0

46+ 1)

IN
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1 _ 2 1 é f! q _ f’% q
+m\f’(y)\q/ tﬁdt—icm(y4 x) / tﬁ“(z—t)dt) +(| WI? = mif'(5)l
0 0

2
1
1 q 1 C X 2 1 q _
/tﬁ+1dt+m f’(%)‘ / tgdt_fW/ tﬁ+1(2—t)dt> < X
0 m 0 0 4B+ 1)»

[ ( PO IFD)IYB+3)  Cmly = x)%(8 +4>)5 . ( )l
26+2)  26+1(B+2) 4HB+2)(B+3) 2(6+2)

|f’<,:2>|q<ﬁ+3>_Cm<,;y>2<ﬁ+4))3]  my—x ( 1 >z
26+1)(6+2) 4(B+2)(B+3) 2(6+2)

m RRTGESY

[ ("“(X)q(ﬁ 1)+ i)+ 3) - ST P DO D) E
+ (If’(y)lq(ﬁ +1)+ m|f’(%)|q(5 L3y Eme ;()5(554)(6 + 1)) s } |
So, we have inequality 3.5. .

Remark 3.2. (i) If C =0 in in inequality (3.5), we have [3, Theorem 2.4].
(i) If m=1 and C = 0 in inequality (3.5), we have [11, Theorem 5].
(i) If m=1, C =0 and B = 1 in inequality 3.5 we get the inequality which is proved by Kirmaci [5].

Corollary 3.2. If m=1,g=1and B =1 in 3.5, we get

[t ()] <55 [iroor + ) - SU 2.

Theorem 3.3. Let f : [x, y] — R be a differentiable mapping on (x, y) with x < y. If|f'|9 is strongly

m-convex function on [x, y] for ¢ > 1, then the following fractional integrals inequality holds:

Soeall

1 X+ my X+ my my — x 4 5
S ) e )| = ()

[<|f’<x>|q +amif )l - 2PN (i i+ )l

WY] < my_x( 4 >}7 [If’(X)|+|f'(Y)|

By ) 48 Ly ) ()] 34

3 16 Bp+1

+3m (|f’ (%) |+ If’(y)|> - 2CTm ((y - x)’+ (% _Y)2) ]

1,1 _
Where5+5—1,ﬁ>0.
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Proof. By applying [3, Lemma 2.3], using Holder inequality and strong m-convexity of |f'|9, we get

‘25—1r(ﬁ +1) [(
(my — x)P

() e (522 ([
(L1 Ceon (20 ([ 63 (592)

By D) my) 4 1 (B 1) ()] (3.9)

Tl

th>q+(/ol th);]
<= (ﬁplﬂ); [(If’(x)l"/ol;dmmlf’(y)l"/ol 2;tdt— Cm(y4_x)2 /01 H2 - t)dt)é
(o [ Sacemlr (Z) [ (35 o SMm=E t@_f)dtﬂ.

-2 (o );[(|f’(x)|q+3m|ff<y>|q—W)é

16 Bp+1 3
;X\ g , q_ZCm(ﬁ—y)z . my — x 4 »
+(3m|f () 17O 3 =716 \Bprl
, , , L (X 2Cm X
17601+ 170+ 3m (170 418 () 1) = 257 (=207 + (g =97 |
We have used A9+ B9 < (A+ B)9, for A>0,B > 0. O

Remark 3.3. (i) If C =0 in in 3.8, we have [3, Theorem 2.7] .
(i) If m=1 and C =0 in 3.8, we have [11, Theorem 6].

Corollary 3.3. Forq=1andB =1 and m=1, we have

\(ylx)/ fwdu—r (*57) | <2 (2 1)‘1’ 177601+ 1) - Sk

Corollary 3.4. For3 =1 and m=1, we have

‘(yix) /ny(“)dU~f<X42ry> ‘ < y1—6x <pil>i

)2\ @ X2\ @
[<|f'(a)|+3|f’(y)|—2C(y3 )" (arear+ i) - 2220 ]
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