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Abstract. In this study, we develop a surrogate relaxation-based procedure to reduce mixed-integer linear

programming (MILP) problem sizes. This technique starts with one surrogate constraint which is a non-

negative linear combination of multiple constraints of the problem. At this initial step, we calculate optimal

Lagrangian multipliers from LP relaxation of the problem and use them as initial surrogate multipliers.

We incorporate the improved bisection method (IBM) (B. Gavish, F. Glover, and H. Pirkul, Surrogate

Constraints in Integer Programming, J. Inform. Optim. Sci. 12(2) (1991), 219–228.) into our algorithm.

This simple heuristic algorithm is designed to iteratively generate a new surrogate cut that is to guarantee

to satisfy the most violated two constraints of the corresponding iteration. The performance of the heuristic

is tested using both some problems from the OR libraries and randomly generated ones.

1. Introduction

The objective here is to attempt to reduce the number of constraints of MILP type of problems. In the

surrogate relaxation, a subset of constraints is substituted by a linear combination of these constraints,

that is, we multiply these constraints with non-negative multipliers, and then aggregate them together

to generate one combined constraint. With the optimal surrogate multipliers, this combined constraint

serves as a proxy for the others and captures useful information. By doing that, we may obtain infeasible

but near-optimal solutions while reducing processing time and complexity relative to the original model.
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Besides, the use of surrogate constraints is known to provide better bounds relative to Lagrangian bounds.

In the proposed heuristic, as initial surrogate multipliers, we simply use the optimal dual values (Lagrangian

multipliers) of the LP relaxation to get the strongest initial surrogate constraint. We incorporate the

IBM [12], which is an updated version of the bisection algorithm [13], into our heuristic. At each iteration,

the procedure evaluates two infeasible constraints at a time, and uses the IBM to find the optimal

surrogate multipliers while upper (or lower) bound decreases (or increases). Furthermore, we generate not

one but several surrogate constraints and only relax inequality constraints. So, we solve a sequence of

computationally easy relaxed and reduced problems to reach the optimal solution in a small amount of time.

Our proposed heuristic also enables us to examine which ratio of the problem constraints are redundant

and which ones are critical. The heuristic is implemented in the MATLAB environment. In order to test

the algorithm, we use problems available for download from Beasley’s OR Library [4] and the Mixed Integer

Programming Library [23]. We also conduct a set of testings using randomly generated instances. All of the

computational experiments are done on a PC with an Intel Core i5-7400 CPU (3.00 GHz) and 4 GB of RAM.

Consider the following MILP problem:

(1.1)

(P ) min cTx

s.t. Ax ≤ b

x ∈ X

where c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n and X is a discrete set that may be defined by some linear equalities

and bound constraints of the decision variables.

By moving the constraints into the objective function, we generate Lagrange relaxation:

(1.2)
min cTx+ λT (Ax− b)

s.t. x ∈ X

where Lagrange multipliers vector λ ≥ 0.

Analogously, by assembling multiple constraints into a single new surrogate constraint, we generate surrogate

relaxation:

(1.3)

min cTx

s.t. µT (Ax− b) ≤ 0

x ∈ X

where surrogate multipliers vector µ ≥ 0.

Both techniques enlarge the feasible region and provide a lower bound on the optimal objective value of

Problem (P ). But, surrogate lower bound is tighter than the Lagrangian lower bound [14,17].
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Relaxation-based search or dual algorithms, both exact and heuristics, have been extensively used in finding

bounds for integer programming (IP). Let us now survey the related literature which investigates surrogate

relaxation-based heuristics to solve combinatorial optimization problems. In [15], the author proposed a class

of surrogate constraint heuristics that provide a variety of supplementing new alternatives and independent

solution strategies. Lorena and Narciso [31, 39] proposed six heuristics based on both the surrogate and

Lagrangian relaxations and a subgrandient search algorithm for large scale generalized assignment problems.

The authors showed that the use of procedures based on surrogate constraint analysis is effective for satisfia-

bility problem in [30]. Applications of a classical combinatorial optimization problem called the set covering

were given in [1,11]. The former used the Surrogate constraint normalization technique to create appropriate

weights for surrogate constraint relaxations, and the latter compared heuristics based on Lagrangian and

surrogate relaxations for the Maximal Covering Location Problem. Karabati et al. [22] handled a class of dis-

crete problems with min-max-sum objectives by using line search and surrogate procedures to obtain optimal

surrogate multipliers. The combined use of surrogate and Lagrangian relaxation was considered for traveling

salesman problem in [26, 32, 36]. The reduction is a preprocessing technique that is fundamental for devel-

oping efficient integer programming methods and based on dynamic programming and upper bounds. For

a comprehensive literature review of reduction techniques, see [3, 10, 40]. Riberio and Lorena [46] examined

an IP problem called cartographic label placement by using Lagrangian/surrogate heuristics. For a detailed

review on solution techniques based on surrogate relaxations for p−median and facility location problems,

see [43]. For a review of the approaches which combine metaheuristics with exact IP techniques, see [42].

In [27], a critical event tabu search heuristic was presented to solve the multidimensional knapsack problems

(MKPs) with generalized upper bound constraints. Osorio et al. [41] considered a combined cutting and sur-

rogate constraint analysis strategy for MKPs, see also [19]. The authors introduced problem-size reduction

heuristics for MKPs in [21]. For heuristics and metaheuristics for MKPs and their variants, see recent works

of [2, 5, 6, 8, 18, 20, 24, 25, 28, 29, 33, 35, 47–50], and references therein. For graph theory applications, such as

graph coloring, weighted maximum clique, and shortest path problems see [9, 16, 37, 38]. Choi and Choi [7]

proposed a redundancy identification method that is based on surrogate constraints. The relaxation adaptive

memory programming approach based on surrogate constraints was proposed for combinatorial optimization

problems in [44] and for capacitated minimum spanning tree problems in [45]. To review the scatter search

method which was conceived as an extension of surrogate constraint relaxation, see [34].

The rest of this paper is organized as follows. Section 2 gives a brief version of the IBM, followed by

the proposed heuristic is introduced in Section 3. Section 4 dercribes computational experiments. Section 5

concludes the paper.
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2. Computing the optimal surrogate multipliers by IBM

Now, we consider problems with only two constraints. We start by determining which constraint is tighter,

namely, it produces a lower (greater) objective value for maximization (minimization) problem considering

only one constraint and ignoring the other one. Renumarate the tighter constraint as Constraint 1, and the

other as Constraint 2. The surrogate multiplier of Constraint 1 is constant and equals to 1. Other multiplier

is µ which is going to be updated. The algorithm can be summarized as follows:

Step 1. Initial values of µL and µH are as following. The solution of the problem with multipliers (1, µL)

and (1, µH) satisfies and does not satisfy Constraint 1, respectively.

Step 2. Let µ = (µL+ µH)/2. Solve the problem with the multipliers (1, µ). If

(i) both constraints are satisfied stop, (1, µ) is the optimal multipliers, and the optimal solution of the

problem is obtained.

(ii) only Constraint 1 is satisfied let µL = f�g where f is the amount of oversatisfaction of Constraint 1

and g is the amount of undersatisfaction of Constraint 2.

(iii) only Constraint 2 is satisfied let µH = f�g where f is the amount of undersatisfaction of Constraint 1

and g is the amount of oversatisfaction of Constraint 2.

Step 3. If µL < µH go to Step 2, otherwise Stop, (1, µ) is the optimal multipliers. Note that, we can also

Stop if the objective function does not improve, or if the number of iterations reached an upper limit.

3. Constraint reduction heuristic

To determine the surrogate multipliers of the most violated two constraints of the current step, we apply

the following iterative process which finds appropriate surrogate constraints.

Initial solution: We start by calculating optimal Lagrangian multipliers from LP relaxation of the problem

and use them as initial surrogate multipliers. This surrogate constraint is our first surrogate constraint.

Then, we solve our problem with this constraint and integrality restrictions.

Adding a new surrogate constraint (generating a cut): We first determine the most violated two

constraints. Let

gi(x) =

n∑
j=1

aijxj − bi, i ∈ I = {1, 2, . . . ,m} ,

and

max
i∈I

gi(x) = gt(x),

max
i∈I−{t}

gi(x) = gk(x).

Add a new surrogate constraint as µtgt(x) + µkgk(x) ≤ 0 where µt = µk = 1. Solve the problem adding

this new surrogate constraint to prior surrogate constraint(s). If gt(x) and gk(x) are non-positive while

µt = µk = 1, add another surrogate constraint. Otherwise, apply the IBM supposing the positive one as
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Constraint 1. If both constraints are satisfied then add a new surrogate constraint. Repeat these steps until

all constraints are satisfied (within a tolerance value). Pseudo-code is given in Algorithm 3.1.

4. Computational results

This section presents the experimental results obtained with the proposed simple heuristic. Both test

problems from the OR libraries [4,23] and randomly generated ones are used to conduct the computational

experiment. We only consider MILP problem cases which have non-negative Lagrange multipliers and at

least one of them is non-zero. If this is not the case, we can assume that all of the initial surrogate multipliers

are 1.

We denote the number of constraints by m, and the number of variables by n. For randomly generated 0-1

MKPs, we choose m ∈ {3000, 4000, 5000} and n ∈ {150, 200} .

The constraint coefficients aij and objective function coefficients cj are integers and randomly generated

from the discrete uniform distributions U {1, 2, . . . , 500} and U {1, 2, . . . , 100}, respectively. It is assumed

that there are no correlations between the objective function and constraint coefficients. The right hand side

values bi are set to equal to

si

n∑
j=1

aij ,

where si is a slackness ratio and drawn from uniform distribution between 0.65 and 0.95. For each combi-

nation of (m,n), we generate 10 problems. Table 1 gives, for each combination of m× n, minimum, average

(rounded off) and maximum computing times for both the intlinprog solver and the proposed heuristic. The

heuristic performs better when the methods are compared by their average execution times which are less

except for only one case. Table 1 indicates average execution times are reduced for almost every uncorrelated

instance in which expected slackness ratio is 0.80.

In addition to the MKP instances, we test the proposed heuristic on a few instances from OR libraries

[4, 23]. Refer to Table 2 for the results.

Note that, in all our calculations, the tolerance value are fixed to 10−6, the algorithm terminates if the upper

bound does not improve 30 times, and for the IBM, the iteration upper limit is set to 10.

5. Conclusions

In this paper, we try to provide equivalent formulations with a fewer number of constraints for combi-

natorial optimization problems. To do that, we present a surrogate cut generation procedure based on the

IBM. Experiments performed on problems with lots of redundant constraints have shown that the proposed

heuristic gives reduced models which can be solved significantly faster than original models.
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Algorithm 3.1 Constraint Reduction Heuristic

INPUT: Coefficient matrices and vectors of the MILP Problem (P ) (A, b, c, and the set X)

OUTPUT: Optimal integer solution x; number of constraints k after reduction; constraint coefficient matrix Sur

after reduction; Right hand side vector SurRhs after reduction; Optimal surrogate weights matrix µ

1: Solve the LP relaxation of Problem (P ) and calculate Lagrange multipliers, assign the corresponding Lagrange

multipliers into the row vector µ (µ(1, i) = λ(i) for i ∈ I = {1, 2, . . . ,m}),
2: ConstNum ← the number of inequality constraints (m), ToL ← 1e − 6, IterUpLim ← 10, lowBound1 ← 0,

lowBound2← 0, w ← 0 and k ← 1.

3: function SolveSur(A, b, c,X, µ)

4: Solve
min cTx

s.t. µAx ≤ µb
x ∈ X

5: e← Ax− b
6: Return x, e

7: end function

8: function lowBound(k, c, x)

9: if k is odd then

10: lowBound1 = cTx

11: else

12: lowBound2 = cTx

13: end if

14: Return lowBound1, lowBound2

15: end function

16: SolveSur(A, b, c,X, µ)

17: lowBound(k, c, x)

18: while max(e) > ToL and k <= ConstNum and w <= 30 do

19: if lowBound1 == lowBound2 then

20: w + +

21: end if

22: r ← 0

23: for i← 1, ConstNum do

24: f(i, 1) = e(i)

25: f(i, 2) = i

26: end for

27: Sort the rows of f in ascending order based on the elements in the first column and assign it to d

28: ind1 = d(ConstNum, 2)

29: ind2 = d(ConstNum− 1, 2)

30: mlow = 0

31: mhigh = 1

32: k + +

33: if e(ind1) > ToL and e(ind2) > ToL then

34: µ(k, ind1) = 1

35: µ(k, ind2) = 1

36: SolveSur(A, b, c,X, µ)
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37: if e(ind1) > 0 and e(ind2) < 0 then

38: if e(ind1) > ToL then

39: µ(k, ind2) = 0.5

40: SolveSur(A, b, c,X, µ)

41: while (e(ind1) > ToL or e(ind2) > ToL) and r <= IterUpLim do

42: if e(ind1) > 0 and e(ind2) 6= 0 then

43: mhigh = |e(ind1)/e(ind2)|
44: if mlow <= mhigh then

45: µ(k, ind2) = (mlow +mhigh)/2

46: SolveSur(A, b, c,X, µ)

47: r + +

48: if mlow == mhigh then

49: Break

50: end if

51: else

52: Break

53: end if

54: else if e(ind2) > 0 and e(ind2) 6= 0 then

55: mlow = |e(ind1)/e(ind2)|
56: if mlow <= mhigh then

57: µ(k, ind2) = (mlow +mhigh)/2

58: SolveSur(A, b, c,X, µ)

59: r + +

60: if mlow == mhigh then

61: Break

62: end if

63: else

64: Break

65: end if

66: end if

67: lowBound(k, c, x)

68: end while

69: end if

70: else if e(ind2) > 0 and e(ind1) < 0 then

71: if e(ind2) > ToL then

72: µ(k, ind1) = 0.5

73: SolveSur(A, b, c,X, µ)

74: lowBound(k, c, x)

75: while (e(ind1) > ToL or e(ind2) > ToL) and r <= IterUpLim do

76: if e(ind1) > 0 and e(ind1) 6= 0 then

77: mlow = |e(ind2)/e(ind1)|
78: if mlow <= mhigh then

79: µ(k, ind1) = (mlow +mhigh)/2

80: SolveSur(A, b, c,X, µ)

81: r + +

82: if mlow == mhigh then

83: Break

84: end if
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85: else

86: Break

87: end if

88: else if e(ind2) > 0 and e(ind1) 6= 0 then

89: mhigh = |e(ind2)/e(ind1)|
90: if mlow <= mhigh then

91: µ(k, ind1) = (mlow +mhigh)/2

92: SolveSur(A, b, c,X, µ)

93: r + +

94: if mlow == mhigh then

95: Break

96: end if

97: else

98: Break

99: end if

100: end if

101: lowBound(k, c, x)

102: end while

103: end if

104: end if

105: else if e(ind1) > ToL and e(ind2) < ToL then

106: µ(k, ind1) = 1

107: SolveSur(A, b, c,X, µ)

108: lowBound(k, c, x)

109: end if

110: end while

111: Sur = µA

112: SurRhs = µb
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Table 1. Computational results of randomly generated 0-1 MKPs.

CPU time (seconds)

intlinprog Heuristic Number of Const.

m× n min ave max min ave max min ave max

3000× 150 85 232 520 34 145 538 17 33 62

3000× 200 425 1050 3203 168 960 3860 31 40 60

4000× 150 59 257 626 31 207 805 18 36 76

4000× 200 66 528 1391 30 443 2043 20 28 41

5000× 150 149 861 2051 21 942 2761 26 45 83

5000× 200 670 2000 2994 209 1390 4296 27 42 58

Table 2. Computational results for instances from OR libraries [4, 23].

Number of

Problem Inequality Equality Variables Ineq. Const.

Key Constraints Constraints After Reduction

ST1 30 0 60 13

ST2 30 0 60 14

PB6 30 0 40 13

PB7 30 0 37 15

f2gap40400 40 0 400 21

f2gap401600 40 0 1600 27

f2gap801600 80 0 1600 47

app2-1 1038 0 3283 2

app2-2 335 0 1226 1

supportcase14 127 107 304 4

misc07 177 35 206 136

blend2 185 89 353 64

bppc8-02 39 20 232 33

BeasleyC1 1250 500 2500 628
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