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Abstract. In this paper, we prove that ∆X = 2H where ∆ is the Laplacian operator, r = (x, y, z) the

position vector field and H is the mean curvature vector field of a surface S in H2×R and we study surfaces

as graphs in H2 × R which has finite type immersion.

1. Introduction

The H2 × R geometry is one of eight homogeneous Thurston 3-geometries

E3, S3, H3, S2 × R, H2 × R, ˜SL(2,R), Nil, Sol.

The Riemannian manifold (M, g) is called homogeneous if for any x, y ∈ M there exists an isometry

φ : M → M such that y = φ(x). The two and three-dimensional homogeneous geometries are discussed in

detail in [6] .

A Euclidean submanifold is said to be of finite Chen-type if its coordinate functions are a finite sum of

eigenfunctions of its Laplacian [3]. B. Y. Chen posed the problem of classifying the finite type surfaces in the
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3-dimensional Euclidean space E3. Further, the notion of finite type can be extended to any smooth function

on a submanifold of a Euclidean space or a pseudo-Euclidean space.

Let S be a 2-dimensional surface of the Euclidean 3-space E3. If we denote by r, H and ∆ the position

vector field, the mean curvature vector field and the Laplace operator of S respectively, then it is well-known

that [3]

(1.1) ∆r = −2H.

A well-known result due to Takahashi states that minimal surfaces and spheres are the only surfaces in E3

satisfying the condition ∆r = λr for a real constant λ. From (1.1), we know that minimal surfaces and

spheres also verify the condition

(1.2) ∆H = λH, λ ∈ R.

Equation (1.1) shows that S is a minimal surface of E3 if and only if its coordinate functions are harmonic.

In [9], D. W. Yoon studied surfaces invariant under the 1-parameter subgroup in Sol3.

In 2012, M. Bekkar and B. Senoussi [1] studied the translation surfaces in the 3-dimensional Euclidean

and Lorentz-Minkowski space under the condition

∆IIIri = µiri, µi ∈ R,

where ∆III denotes the Laplacian of the surface with respect to the third fundamental form III.

A surface S in the Euclidean 3-space E3 is called minimal when locally each point on the surface has a

neighborhood which is the surface of least area with respect to its boundary [5]. In 1775, J. B. Meusnier

showed that the condition of minimality of a surface in E3 is equivalent with the vanishing of its mean

curvature function, H = 0.

Let z = f(x, y) define a graph S in the Euclidean 3-space E3. If S is minimal, the function f satisfies

(1 + (fy)2)fxx − 2fxyfxfy + (1 + (fx)2)fyy = 0,

which was obtained by J. L. Lagrange in 1760.

In 1835, H. F. Scherk studied translation surfaces in E3 and proved that, besides the planes, the only

minimal translation surfaces are given by

z(x, y) =
1

λ
log |cos(λx)| − 1

λ
log |cos(λy)| ,

where λ is a non-zero constant. In 1991, F. Dillen, L. Verstraelen and G. Zafindratafa. [4] generalized this

result to higher-dimensional Euclidean space.
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In 2015, D. W. Yoon [8] studied translation surfaces in the product space H2×R and classified translation

surfaces with zero Gaussian curvature in H2 × R.

In 2019, B. Senoussi, M. Bekkar [7] studied translation surfaces of finite type in H3 and Sol3 and the

authors gived some theorems.

A surface S(γ1, γ2) in H2 × R is a surface parametrized by

S : Ω ⊆ R2 → H2 × R, X(s, t) = γ1(s) ∗ γ2(t) or X(s, t) = γ2(t) ∗ γ1(s),

where γ1 and γ2 are any generating curves in R3. Since the multiplication ∗ is not commutative.

In this work we study the surfaces as graphs of functions ϕ = f(s, t)) in H2 × R satisfy the condition

(1.3) ∆xi = λixi, λi ∈ R.

2. Preliminaries

Let H2 be represented by the upper half-plane model {(x, y) ∈ R | y > 0} equipped with the metric

gH =
(dx2 + dy2)

y2
. The space H2, with the group structure derived by the composition of proper affine

maps, is a Lie group and the metric gH is left invariant.

Therefore, the product space H2 × R is a Lie group with the left invariant product metric

g =
(dx2 + dy2)

y2
+ dz2,

we can define the multiplication law on H2 × R as follows

(x, y, z) ∗ (x̄, ȳ, z̄) = (yx̄+ x, yȳ, z + z̄).

The left identity is (0, 1, 0) and the inverse of (x, y, z) is (−x
y
,

1

y
,−z), on H2 × R a left-invariant metric

ds2 = (ω1)2 + (ω2)2 + (ω3)2,

where

ω1 =
dx

y
, ω2 =

dy

y
, ω3 = dz,

is the orthonormal coframe associated with the orthonormal frame

e1 = y
∂

∂x
, e2 = y

∂

∂y
, e3 =

∂

∂z
,

The corresponding Lie brackets are

[e1, e2] = −e1, [ei, ei] = [e3, e1] = [e2, e3] = 0,∀i = 1, 2, 3.
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The Levi-Civita connection ∇ of H2 × R is given by
∇e1e1

∇e1e2

∇e1e3

 =


0 1 0

−1 0 0

0 0 0




e1

e2

e3

 , ∇e2ei = ∇e3ei = 0, ∀i = 1, 2, 3.

Let S be an immersed surface in H2×R given as the graph of the function z = f(x, y). Hence, the position

vector is described by r(x, y) = (x, y, f(x, y)) and the tangent vectors rx =
∂r

∂x
and ry =

∂r

∂y
in terms of the

orthonormal frame (e1, e2, e3) are described by

rx =
∂

∂x
+ fr

∂

∂z
=

1

y
e1 + fxe3,(2.1)

ry =
∂

∂y
+ fy

∂

∂z
=

1

y
e2 + fye3.(2.2)

Definition 2.1. [3] The immersion (S, r) is said to be of finite Chen-type k if the position vector X admits

the following spectral decomposition

r = r0 +

k∑
i=1

ri,

where ri are E3-valued eigenfunctions of the Laplacian of (S, r) : ∆ri = λiri, λi ∈ R, i = 1, 2, .., k. If λi are

different, then S is said to be of k-type.

For the matrix G = (gij) consisting of the components of the induced metric on S, we denote by G−1 =

(gij) (resp. D = det(gij)) the inverse matrix (resp. the determinant) of the matrix (gij). The Laplacian ∆

on S is, in turn, given by

(2.3) ∆ =
−1√
|D|

∑
ij

∂

∂ri
(√
|D|gij ∂

∂rj
)
.

If r = r(x, y) = (r1 = r1(x, y), r2 = r2(x, y), r3 = r3(x, y)) is a function of class C2 then we set

∆r = (∆r1,∆r2,∆r3).

3. Surfaces as graphs of finite type in H2 × R

Let S be a graph of a smooth function

f : Ω ⊂ R2 → R.

We consider the following parametrization of S

r(x, y) = (x, y, f(x, y)), (x, y) ∈ Ω.
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Theorem 3.1. A Beltrami formula in H2 × R is given by the following:

∆r = 2H,

where ∆ is the Laplacian of the surface and H is the mean curvature vector field of S.

Proof. A basis of the tangent space TpS associated to this parametrization is given by

rx =
∂

∂x
+ fx

∂

∂z
=

1

y
e1 + fxe3,

ry =
∂

∂y
+ fy

∂

∂z
=

1

y
e2 + fye3,

The coefficients of the first fundamental form of S are given by

E = g(rx, rx) =
1

y2
+ f2x , F = g(rx, ry) = fxfy, G = g(ry, ry) =

1

y2
+ f2y .

The unit normal vector field N on S is given by

N =
1

W

(
−1

y
fxe1 −

1

y
fye2 +

1

y2
e3

)
,

where W =

√
1

y4
+

1

y2
f2x +

1

y2
f2y .

To compute the second fundamental form of S, we have to calculate the following

rxx = ∇rxrx =
1

y2
e2 + fxxe3,

rxy = ∇rxry = ∇ryrx = − 1

y2
e1 + fxye3,(3.1)

ryy = ∇ryry = − 1

y2
e2 + fyye3.

So, the coefficients of the second fundamental form of S are given by

L = g(∇rxrx, N) =
1

Wy2

(
fxx −

1

y
fy

)
,

M = g(∇rxry, N) =
1

Wy2

(
fxy +

1

y
fx

)
,

N = g(∇ryry, N) =
1

Wy2

(
fyy +

1

y
fy

)
,

where W =

√
1

y4
+

1

y2
f2x +

1

y2
f2y .

Thus, the mean curvature H of S is given by

H =
EN − 2FM +GL

2W 2
.

H =
1

2W 3y2

[
1

y2
(fxx + fyy) + (f2xfyy + f2y fxx)− 1

y
(f2xfy + f3y )− 2fxfyfxy

]
.
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By (2.3), the Laplacian operator ∆ of r can be expressed as

(3.2) ∆ = − 1

W 4

[
W 2

(
G
∂2

∂x2
− 2F

∂2

∂x∂y
+ E

∂2

∂y2

)
+ ∆1

∂

∂x
+ ∆2

∂

∂y

]
,

where

∆1 =
2

y2
fyf

2
xfxy −

1

y4
fxfxx −

1

y2
fxf

2
y fxx −

1

y4
fxfyy −

1

y2
f3xfyy

− 2

y5
fxfy −

1

y3
f3xfy −

1

y3
fxf

3
y ,

and

∆2 =
2

y2
fxf

2
y fxy −

1

y4
fyfyy −

1

y2
f2xfyfyy −

1

y4
fyfxx −

1

y2
f3y fxx

− 1

y5
f2y +

1

y5
f2x +

1

y3
f4x +

1

y3
f2xf

2
y .

By a straightforward computation, the Laplacian operator ∆ of r with the help of (3.1) and (3.2) turns out

to be

∆r = − 1

W 4



(
2

y3
f2xfyfxy −

1

y5
fxfxx −

1

y3
fxf

2
y fxx −

1

y5
fxfyy −

1

y3
f3xfyy +

1

y4
f3xfy +

1

y4
fxf

3
y

)
e1

+

(
2

y3
fxf

2
y fxy −

1

y5
fyfyy −

1

y3
f2xfyfyy −

1

y5
fyfxx −

1

y3
f3y fxx +

1

y4
f2xf

2
y +

1

y4
f4y

)
e2

+

(
− 2

y4
fxfyfxy −

1

y5
f2xfy −

1

y5
f3y +

1

y6
fxx +

1

y4
f2y fxx +

1

y6
fyy +

1

y4
f2xfyy

)
e3

 ,

∆r =



(
−fx
Wy

)
1

W 3y2

(
1

y2
(fxx + fyy) + (f2xfyy + f2y fxx)− 1

y
(f2xfy + f3y )− 2fxfyfxy

)
e1

+

(
−fy
Wy

)
1

W 3y2

(
1

y2
(fxx + fyy) + (f2xfyy + f2y fxx)− 1

y
(f2xfy + f3y )− 2fxfyfxy

)
e2

+

(
1

Wy2

)
1

W 3y2

(
1

y2
(fxx + fyy) + (f2xfyy + f2y fxx)− 1

y
(f2xfy + f3y )− 2fxfyfxy

)
e3

 ,

∆r =
1

W 3y2

(
1

y2
(fxx + fyy) + (f2xfyy + f2y fxx)− 1

y
(f2xfy + f3y )− 2fxfyfxy

)


(
−fx
Wy

)
e1

+

(
−fy
Wy

)
e2

+

(
1

Wy2

)
e3

 ,

thus we get

∆r = 2HN,(3.3)

= 2H,
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where H is the mean curvature vector field of S.

S is a minimal surfaces in H2 × R if and only if its coordinate functions are harmonic . �

4. Surfaces as graphs in H2 × R satisfying 4xi = λixi

Let S be an immersed surface in H2 × R given as the graph of function z = f(x, y). Hence, the vector

position is described by r(x, y) = (x, y, f(x, y)).

We have

rx =
1

y
e1 + fxe3, ry =

1

y
e2 + fye3,

where rx =
∂r

∂x
, ry =

∂r

∂x
, and fx =

∂f

∂x
, fy =

∂f

∂y
.

From an earlier results the mean curvature H of S and the unit normal vector field N on S are given by

H =
1

2W 3y2

[
1

y2
(fxx + fyy) + (f2xfyy + f2y fxx)− 1

y
(f2xfy + f3y )− 2fxfyfxy

]
,

and

(4.1) N =
1

W

(
−1

y
fxe1 −

1

y
fye2 +

1

y2
e3

)
,

where W =

√
1

y4
+

1

y2
f2x +

1

y2
f2y .

If the vector position on the tangent space TpS is described by r = (x, y, f(x, y))

r(x, y) = x
∂

∂x
+ y

∂

∂y
+ f(x, y)

∂

∂z
,

then

(4.2) r(x, y) =
x

y
e1 + e2 + f(x, y)e3.

The equation (1.3) by means of (3.3), (4.1) and (4.2) gives rise to the following system of ordinary

differential equations (
2H

W

)
fx = −λ1x,(4.3) (

2H

W

)
fy = −λ2y,(4.4)

2H

W
= λ3y

2f.(4.5)
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Therefore, the problem of classifying the surfaces S of (1.3) is reduced to the integration of this system of

ordinary differential equations.

Next we study it according to the constants λ1, λ2 and λ3.

Case 1. Let λ3 = 0. In this case the system (4.3), (4.4) and (4.5) is reduced equivalently to(
2H

W

)
fx = −λ1x,(4.6) (

2H

W

)
fy = −λ2y,(4.7)

2H

W
= 0.(4.8)

The equation (4.8) implies that the mean curvature H is identically zero. Thus, the surface S is minimal;

and we get also λ1 = λ2 = 0.

Case 2. Let λ3 6= 0. in this case we study the general system (4.3), (4.4) and (4.5).

2-i): If λ1 = λ2 = 0, then H = 0. From (4.5) we obtain λ3 = 0, so we get a contradiction.

2-ii): If λ1 = 0 and λ2 6= 0., from (4.3) we obtain Hfx = 0.

2-ii-a: If H = 0 (4.4), (4.5) implies that λ2 = λ3 = 0. So we get a contradiction.

2-ii-b: if fx = 0, then f(x, y) = ϕ(y), where ϕ is smooth function of y.

The mean curvature H turns to

(4.9) H =
1

2Wy3

(
1

y
ϕ′′ − ϕ′3

)
,

where ϕ′ =
dϕ

dy
.

Using (4.4) and (4.5) we obtain

ϕ′ =
−λ2
λ3yϕ

,

which leads to,

λ3ϕ
′ϕ =

−λ2
y
.

After integrating with respect to y, we obtain
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λ3
2
ϕ2(y) = −λ2 ln y + φ(x); y > 0,

where φ is smooth function of x,

and hence

f(x, y) = ϕ(y) = ±

√
λ2
λ3

ln
1

y2
+ φ(x).

Using the condition fx = 0 we get φ(x) = a, a ∈ R.

Thus,

f(x, y) = ϕ(y) = ±

√
λ2
λ3

ln
1

y2
+ c; c =

2

λ3
a,

in this subcase, the surfaces S are given by

r(x, y) =

(
x, y,±

√
λ2
λ3

ln
1

y2
+ c

)
; λ2 6= 0, λ3 6= 0, c ∈ R.

2-iii): If λ1 6= 0 and λ2 = 0., from (4.4) we obtain Hfy = 0.

2-iii-a: If H = 0, (4.3) and (4.5) implies that λ2 = λ3 = 0. So we get a contradiction.

2-iii-b: If fy = 0,then f(x, y) = ψ(x), where ψ is smooth function of x.

The mean curvature H turns to

(4.10) H =
1

2Wy4
ψ′′,

where ψ′ =
dψ

dx
.

Using (4.3) and (4.5) we get

ψ′ =
−λ1x
λ3y2ψ

,

so we can write

(4.11) λ3y
2 + λ1

x

ψψ′
= 0,

A differentiation with respect to y gives

λ3y = 0,

this implies that λ3 = 0 and from (4.8) we get the mean curvature H is identically zero. From (4.6)

and (4.7) we obtain λ1 = λ2 = 0, which leads to a contradiction.
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2-iv): If λ1 6= 0 and λ2 6= 0 From (4.3), we have

(4.12)
2H

W
= −λ1x

ψ′
.

Substituting (4.12) into (4.5), we get

−λ1x
ψ′

= λ3y
2ψ,

A differentiation with respect to x gives

−λ1
(
ψ − xψ′′

ψ′2

)
= λ3y

2ψ′,

this equation gives

(4.13) λ1

(
ψ′ − xψ′′

ψ′3

)
+ λ3y

2 = 0.

A differentiation with respect to y gives

λ3y = 0,

this implies that λ3 = 0 and from (4.8) we get the mean curvature H is identically zero. From

(4.6) and (4.7) we obtain λ1 = λ2 = 0, which leads to a contradiction.

Therefore, we have the following theorem,

Theorem 4.1. Let S be a surface as graph of function parametrized by r(x, y) = (x, y, f(x, y)) in H2 × R

Then, S satisfies the equation ∆ri = λiri, λi ∈ R if and only if S is minimal surfaces or parametrized as

S : r(x, y) =

(
x, y,±

√
λ2
λ3

ln
1

y2
+ c

)
; λ2 6= 0, λ3 6= 0, c ∈ R.
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