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ABSTRACT. In this paper, He’s variational iteration method (VIM), established by He in (1999), is adopted
to solve two and three dimensional of Navier-Stokes equation in cartesian coordinates. This method is a
powerful tool to handle linear and nonlinear models. The main property of the method is its softness and
ability to solve nonlinear equations, accurately and easily. Using variational iteration method, it is possible
to find the exact solution or a closed approximate solution of a problem. To illustrate the capacity and

reliability of this method, some examples and numerical results are provided.

1. INTRODUCTION

The main aim of this work, is to solve the model of the Navier Stokes equation for an incompressible fluid

flow is given as follows [5,8,17].

Ui+ (UV)U = poV32U — ,—I)Vp, on Qx(0,7),
V.U =0, on Qx(0,T), (1.1)
U=0, on 00 x (0,T),
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where U = (u,v,w), t, p, denote the fluid vector at the point (z;y;2), time and the pressure, respectively,
Q C R3 and 99 its boundary, p is the density, py denotes the kinematic viscosity of the flow.

In Cartesian coordinates, the (3D) Navier-Stokes equation becomes:

Up 4 Uty + VUy + WUy = po (Ugy + Uyy + Uzs) — %pm,

Vg wog + 0y + Wy = po (Vag + Vyy +022) = SPy, (1.2)
Wy + UWg + VWy + WW, = Po (Wag + Wyy + W,z) — %pz.

Various kinds of analytical methods and numerical methods were used to solve Navier-Stokes equation, as
Adomian decomposition method [2,17], fractional reduced differential transformation method [5], modified
Laplace decomposition method [15], the meshless local Petrov-Galerkin method [22], homotopy perturbation
method [23]. The organization of this paper is as follows:

In Section 2, we review the procedure of He’s variational iteration method. In Section 3, we show in some
examples and numerical results that the present method gives the exact solution or a very good approximation
of the exact solution, even for a small n, to illustrate the method, its accuracy, effectiveness and simplicity.

A conclusion is given in Section 4.

2. HE’S VARIATIONAL ITERATION METHOD

Variational iteration method was first proposed by the Chinese mathematician He ( [9]- [14]). This method
has been employed to solve a large variety of linear and nonlinear problems which has various applications
in science and engineering, with approximations converging rapidly to accurate solutions.

This approach is successfully and effectively applied to various equations such as Burger’s and coupled
Burger’s equations [1,4]. This technique is also employed to solve multispecies Lotka—Volterra equations
in [3], the Cauchy reaction-diffusion problem and several test examples are given in [6], in [7] the applications
of the present method to solve the Fokker—Planck equation is provided. Author of [9] investigated (VIM)
for solving delay differential equations. He’s variational iteration method is used in [10] to give the solution
of blasius equation, autonomous ordinary differential equations [11], in [12] the variational iteration method
is used to construct solitary solutions and compacton-like solutions for nonlinear dispersive equations. Also
this procedure is investigated in [16] for solving Helmholtz equation, for solving integro-differential equations
[19]. Authors of [20] employed the variational iteration method for solving a parabolic inverse problem.
Wazwaz has used this method for handling linear and nonlinear diffusion equations [24], for solving linear
and nonlinear systems of PDEs [25], for rational solutions for KAV, K(2, 2) , Burger, and cubic Boussinesq
equations which has various applications in science and engineering [26]. In [27], for analytic treatment
for linear and nonlinear ODEs, the (VIM) modified using He’s polynomials to solve biological population
model [28]. The convergence of (VIM) is studied in [18,21]. The (VIM) gives rapidly convergent successive

approximations of the exact solution if such a solution exists.



Int. J. Anal. Appl. 18 (5) (2020) 726

To illustrate the procedure of this approach, we write a system as shown below [3,25]
Liu+ Ry (u,v,w) + Ny(u,v,w) = fi,
Liv + Ro(u,v,w) + No(u,v,w) = fa, (2.1)
Liyw 4+ R3(u,v,w) + N3(u,v,w) = f3,

subject to initial conditions,
u(z,0) = g1(x),

’U(SL’, 0) = 92(*7;)7 (2'2)

w(z,0) = g3(z),

where L; is considered a first-order partial differential operator, Ry and Ny, 1 < k < 3 are linear and
nonlinear operators respectively, and f;, f2, f3 source terms. The correction functionals for equations of

(2.1) can be written as

Upy1(z,t) = un(z,t) + /0 A1(T)[Lun (T) + Ry (tip, Un, Wn) + Ni(n, On, Wn) — f1(7)]dT,

Upt1(z,t) = v, (z,t) + /0 A2 (T)[Lvn (7) + Ra(Up, U, Wy) + No (U, Op, Wy) — fo(7)]dT, (2.3)

U}n+1(17,t) = wn(iE7t) + A )\3(7’)[[110”(7') + RS(ﬂnyﬁn7ﬁ)n) + N3(an7'(~)nawn) - f3(7—)]d7'7

where A\, 1 < k < 3, are general Lagrange multipliers, which can be identified optimally via the variational
theory, and u,, , ¥, , and W, are restricted variations which means du,, = 0, §v,, = 0 and dw, = 0. It is
required first to determine the Lagrange multipliers A\ that will be identified optimally via integration by
parts. The successive approximations u,4+1(x,t) , vpy1(x,t) , wpr1(x,t) , n > 0, of the solutions u(x,t) ,
v(z,t), and w(z, t) will follow immediately upon using the Lagrange multipliers obtained and by using selected
functions ug , vg and wg. The initial values are usually used for the selected zeroth approximations. With
the Lagrange multipliers A, determined, then several approximations u, (z,t), v,(z,t), w,(z,t), n > 1, can
be determined.

Finally, the solutions are given

u(z,t) = lim wu,(z,t),
n—oo

v(z,t) = lim v,(z,t), (2.4)

n—oo

w(z,t) = ILm wp(z, t).
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3. TEST EXAMPLES

Example 3.1. Consider two-dimensional (2D) Navier-Stokes equations: [2, 5].

U + Uy + VUy = P (Ugz + Uyy)

(3.1)
Vg + Uz + vVy = po (Vzg + Vyy) ,
with the initial conditions:
u(x,y,0) = —sin(x + y),
(2,,0) (z+y) (3.2)
v(x,y,0) = sin(z + y).
The correction functional for (3.1) reads
t ~ ~ 2 ~ 2 ~
Oun (T, y, T _ ou, . Ouy, 0“u,, O0“uy,
un+1(x7y7t) = un<xay7t> +/ )‘1(7) |:(a7_) + un67 + vnTy — Po ( 8502 6y2 ):| dTv
. Ovn( ) o7 a7 9*t, 0% (3:3)
/U'I'L :177 y7 T ~ U'n: ~ Un /U/I'L IUTI
t) = t A —_— — n—m— — — dr.
vn"l‘l(‘r?y? ) Un(xa% )+A 2(7-) |: 87- +un ax +’U1/ ay IOO < 8332 + ayQ >:| T
This yields the stationary conditions
14X =0, Niy(r=t)=0,
(3.4)
1+X =0, M(r=t)=0.
As a result we find
A=Ay =—1. (3.5)

Substituting these values of the Lagrange multipliers into the functionals (3.3) gives the iteration formulas

t 8 n IRV R) a n a n 82 n 82 n
un+1<x7y7t>:un(x,y7t)_/ |:u(xy7—) +u u+vnu—p0< u + u ):| dT,
0

or " Oz oy 0r2 | Oy?
(3.6)
(2,9,1) = va t)/twm+ gun O (Pun OPua\]
Un+1\T, Y, = Un\T,Y, 0 or Unp, o Un ay Po 22 8y2 T.

We can select ug(z,y,t) = —sin(z+y), vo(z,y,t) = sin(z+y), by using the given initial values. Accordingly,

we obtain the following successive approximations:
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ui (2, y,t) = —sin(z + y) (1 — 2pot),

o1, ,1) = sin(z + 5)(1 — 2pot),

ug(z,y,t) = —sin(z + y)(1 — 2pot + 2p5t%),

us 1) = sin(e + y)(1 — 2pot + 20362),

us(,9,1) = — sine -+ y)(1— 290t + 2038 — 2938,
v3(2,y,t) = sin(z + y) (1 — 2pot + 2p5t> — %pgt?’),
Un (z,y,t) = —sin(z + y) (1 — 2pot + 2p3t% 4 ---),

O (2, y,t) = sin(x + y) (1 — 2pot + 203t + -+ ).

The final form of the solution will be as follows

—2p0t)®  (=2pot)?
( 20!0) + ;!0 +>

u(z,y,t) = —sin(z + y) (1 + (—2pot) +

= —sin(z 4 y)e 2P0t

(—2pot)? n (—2p0t)° 4.
2! 3!

v(x,y,t) = sin(z + y) <1 + (—2pot) +

= sin(z 4 y)e2r0t,

Which is an exact solution and is same as obtained by [5].

Table 1: Numerical results when po = 0.5, = 0.1 and y = 0.5 in Example 3.1.

t u us lu — us] v U3 |v — vs]
0  -0.56464247 -0.56464247 0 0.56464247 0.56464247 0
0.05 -0.53710453 -0.53710453 0 0.53710453 0.53710453 0

0.1 -0.51090964 -0.51090968 0.4628E-7 0.51090964 0.51090968 0.4628E-7
0.15 -0.48599228 -0.48599262  0.9719  0.48599228 0.48599262  0.9719
0.2 -0.46229015 -0.46229162  0.9246  0.46229015 0.46229162  0.9246
0.25 -0.43974400 -0.43974841 0.8795  0.43974400 0.43974841 0.8795
0.30 -0.41829743 -0.41830832 0.1089E-4 0.41829743 0.41830832 0.1089E-4
0.35 -0.39789682 -0.39792017 0.2335E-4 0.39789682 0.39792017 0.2335E-4
0.40 -0.37849117 -0.37853631 0.4514E-4 0.37849117 0.37853631 0.4514E-4
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FiGURE 1. The behavior of u,us and v,v3 in Example 3.1 at ¢ = 1 with the parameters pg = 0, 5.

Example 3.2. Consider two-dimensional (2D) Navier-Stokes equations:

Ut + UUg + VUy = Po (U:c:c + uyy) )

(3.7)
U + Uy + vUy = po (Vpg + Vyy)
with the initial conditions:
u Iayao = _ex+y7
(#9,0) (3.8)
v(x,y,0) = Y.
We follow the same procedure discussed in Example (3.1), we can select wug(x,y,t) = —e*Y, vg(x,y,t) =

e*TY in the iteration formulas(3.6), by using the given initial values. Accordingly, we obtain the following

successive approxrimations:
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ul(xvyvt) = _6I+y(1 + 2p0t)a

Ul(l‘vy’t) = em+y(1 + QpOt)a

u2($7 Y, t) = 761+y(1 + 2P0t + 210(2)t2>7

va (@, y,t) = " V(1 + 2pot + 2p5t?),

L, 4
ug(w,y,t) = —e" (14 2pot + 2p5t> + Zpit?),

3

4
US(Iv Y, t) = em+y(1 + 2p0t + 2p(2)t2 + 7pgt3)a

1 2
ug(w,y,t) = —e" (1 + 2p0t + 205" + 2 pgt” + 3

3

4,4
t
3 3p0 )7

4 2
va(,y,8) = "V (1 + 2p0t + 295t + 2Pt + Zpot"),

Finally, the exact solution may be obtained as follows

o+ (2pot)*
“n($7yat) = —¢€ y(1+(2p0t)+ 2‘ +)7
2pot)?
Un(xvy7t) :€w+y(1+(2p0t)+ ( p20' ) +)
u(x) Y, t) - _€x+y62p0t = _em“’y*‘rzpot’

which are exact solutions [5].

’U(Q?, Y, t) = ea;-l—yerot = ew+y+2pgt7

Consider the following tables 2 and 3 with the observation that v = —u.

Table 2: Numerical results when pg = 1,z = 0.1 and y = 0.5 in Example 3.2.

t u Uy |u — ug| = |v — vy4]

0 -1.8221188 -1.8221188 0
0.05 -2.0137527 -2.0137526 1.5441055E-7
0.1 -2.2255409 -2.2255359 5.0256955E-6
0.15 -2.4596031 -2.4595643 3.8824935E-5
0.2 -2.7182818 -2.7181155 1.6647662E-4
0.25 -3.0041660 -3.0036490 5.1706393E-4
0.30 -3.3201169 -3.3188072 1.3097397E-3
0.35 -3.6692967 -3.6664144 8.8236261E-3
0.40 -4.0552000 -4.0494768 5.7231449E-3
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Table 3: Absolute error= |u — us| when po = 1 in Example 3.2.
t t=0.1 t=0.3 t=0.5
(z,y) | — ua | — ua |u — ua
(0.1,0.1) 3.36882444 E-6 8.7794477954 E-4 1.2151119386 E-2
0.3,0.1) 4.11469146 E-6 1.0723241752 E-3 1.4841410733 E-2
(0.5,0.2) 5.55425251 E-6 1.4474862325 E-3 2.0033808995 E-2
(0.7,0.2) 6.78397933 E-6 1.7679636768 E-3 2.4469349563 E-2
(0.3,0.3) 5.02569550 E-6 1.3097397053 E-3 1.8127340004 E-2
(0.5,0.3) 6.13839835 E-6 1.5997196885 E-3 2.2140783079 E-2
(0.7,0.5) 9.15741425 E-6 2.3865013406 E-3 3.3030167023 E-2
(0.9,0.5) 1.11848910 E-5 2.9148793198 E-3 4.0343137104 E-2
Example 3.3. Consider three-dimensional (3D) Navier-Stokes equations:
Up + Uy + VUy + WUy = po (Ugg + Uyy + Usz)
v+ wvy + VU + W, = po (Vg + Vyy + V22) (3.9)
Wi + UWg + YWy + WW; = po (Wae + Wyy + W22 ),
with the initial condition:
u(z,y,2,0) = —%x +y+z,
v(z,y,2,0) =z — Ly + =, (3.10)

w(x,y,z,O):z+y—§z.

The correction functionals for (3.9) read

8’Un v a@n

o (@1y. 7 8) = 1 +/t/\ ) Ay, a iy, v Oy, i iy, &%, N 2an a un
n s Yy <y = Un Unp Un, Wn, -
5y RSN = B By 8z P\ as2

Un1 (2,9, 2,) = v +/tA(T) i I 45, O, O 82@”+2”” 6“"
n+1\T, Y, 2, — Un o 2 8 na nay naz o 6I2

t
n 77at: n A n n n
W1 (2,9, 2,1) = w +/0 3<T)[aT gy Ty Ty, 022

The stationary conditions are thus given by
14X =0, Ni(r=t)=0,
1+)\2:O’ )\/2(T:t):0,

1+)\3:0, )\/3(7':15):0,

ow, . Ow, . Ow, . Ouwy, ) (8210” 9? wn

ﬂfl

(3.12)

(3.13)
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He’s variational iteration method consists of the following scheme:

(2,y,2,1) = ‘/t On 1y 2 g, Dy Oin  (Fotn | Oun | Oun ]
Un+1\T, Y, 2, = Un 0 or Un ox Un ay Wn 0z po 8(E2 83/2 822 T

Unt1(z,y,2,t) =0 /75 %+u%+v%+w%i 62Un+82%+82vn d
n+1\T,Y, 2, — Un o or mn Oz n ay n 92 Po 81132 8y2 822 T,

t 2 2 2
own, own, own, Oown, 0*w, 0w, O0“w,
t) = wy — - dr.
W1 (T, Y, 2,t) = wy /0 [ o + up o + vy 3y + wy, 5. "\ 2 + 9,2 + 52 T
(3.14)
Starting with initial approximations: ug(z,y, z,t) = f%x+y+z,v0(az,y, z,t) = zf%y+z, and wo(z,y, z,t) =

r+y— %z, from (8.14), other terms of the sequence are computed as follows:

1 9
ui(z,y,2,t) = —§x+y—|—z — th,

( t) = + 9t
V(X z =T — = zZ— —
1 y Yy 2 2y 4y7

1 9
wl(IE,y,Z,t) :$+y* 527 Z’Ztv

1 1 9, 9 27 4
us(z,y,2,t) = ——x4+y+z+(—sx+y+2)-t —thfﬁxt,

2 2 4

1 1 9, 9 27T

t)y=z— = — = 42 Syt — oyt

va(,y, 2,t) =2 = Sy 2+ (@ = gy +2) 3t = Syt — Tt

1 19,
w2($,yaz,t)=$+y—§z+(x+y—§z)zt _ZZt_TﬁZt ,

1 1 9 1 27 1 81
uz(w,y, 2, 1) = (—§x+y+z)+(—§x+y+z)1t2+(—§x+y+z)§t4+(—§x+y+z)6—4t6
— gmt — gztS — %xﬁ - —729 xt’
4 16 64 1792 ’
B 1 1 9., 1 27 , 1 81 4
vs(z,y, 2, t) = (v 2y—|—z)—|—(w 2y+z)4t + (z 2y—|—z) 8t + (z 2y+z)64t
—gt—gt?’—%ﬁ—ﬁﬂ
277 16Y T e Yt T 1Yt
1 1.9 1 .27 1 81
ws(z,y, z,t) = (& +y — 5z) +(x4y— iz)ZtQ +(x4y— iz)gt‘l +(x4y— 5z)@t6
— g,zt — gzt?’ — 24—3,zt5 — —729 2t”
4 16 64 179277
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1 1 9, 1 81,
£) = (—= = 22y (= Sy
ug(z,y,2,t) = ( 2:v+y+z)+( 2+y+z)4 +( 2:l:+y+z)16
1 243 1 51759 1 72171
! “96 (21 o109 2 410
+ ( 2+y+z)32 + ( 2x+y+z)7168 + ( 2x+y+z)17920
1 59049 |, 1 59049 .,
= QP2 2 ¢
Hogrtyt et T (T Yt 2 gineis
9 8L, 3150 . 2Ll . 31347 g
17T 16 320 1792 3584
C9BALS Ly 59049 L, 1TTMT
28672 114688 16056320
B 1 1 9, 1 81,
va(z,y,2,t) = (x 2y+z)+(x 2y+z)4t + (z 2y+z)16t
1 243 1 51759 1 72171
I 7t6 _ = 7t8 _ = 77510
-yt gt (- gyt A et - gy 2T
1 59049 , 1 59049 .,
- 2929, = ¢
St R v L G A oo
9 8L 3150 o 2141 . 31T
477 16% T 3207 T 1792 Y T 3msa Y
98415 . 59049 . 1TTI4T
286727 1146387 160563207
1 1 1 .81
wy(z,y,2,t) = (x+y — 52) +(z+y— iz)gtz +(x+y-— iz)%t‘l
1 243 51759 1 72171
— 7t6 _ = 7t8 = 7t10
Haty - At @ty - gt Tty - 52T
1 59049 , 1 59049 ,,
O i _Z ¢
tety -5t Y 525016
9, 8L, 8150 o 2114l . 31347
%" 7 16 320 1792 3584
C9BALS 59049y, ATTIT
28672 114688 16056320
Therefore,
2 2
1 9\ , (9\%, 9 9 9\? ,
u(amy,z,t)—( 2$—|—y+z> (1—1—(4) +(4> t* + ) 4xt<1+<4) +<4) tt+

_ —%m—i—y—i—z—%xt
o _ 942 ’
1

v(z,y, z,t) = <x ;erz) <1+<

r—iy+z— Iyt
B 1—9¢2

w(z,y,z,t) = (a:er;z) <1+<

eryf%zf%zt
B 1—9¢2

9

4

9

4

) ( )zm..

9

9

4

9

4

e

The same result as [5].

2
> A

_ 2
4y

)
)31+

9

4

9

4

e
e

9

4

9

4

>2t4+...
)2t4+...>
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Table 4: The (VIM) results for v and us4 approximations in Example 3.3

t

t=0.01

t=20.3

t=20.5

(z,y,2)

Ugq

|u — uq]

Ug

|u — ugl

Ugq

|u — ug]

0.1,0.1,0.2
0.3,0.1,0.2
0.5,0.2,0.3

0.6,0.3,0.4

)
)
)
0.7,0.2,0.3)
)
)
0.8,0.4,0.5)

)

(
(
(
(
(0.9,0.3,0.4
(
(
(

0.9,0.4,0.5

0.2478057563
0.1432822385
0.2388037309
0.1342802131
0.2298017055
0.3865869822
0.4821084745
0.4298467157

1.44e-11
4.50e-11
7.51e-11
1.06e-10
1.36e-10
8.97e-11
1.20e-10
1.35e-10

0.2285415892
-0.0640993439
-0.1068322397
-0.3994731729
-0.4422060687
-0.0032446693
-0.0459775653
-0.1922980316

2.99e-4
1.73e-3
2.89e-3
4.92¢-3
6.07e-3
3.03e-3
4.18e-3
5.19e-3

0.2897586783
-0.3486963088
-0.5811605148
-1.2196155019
-1.4520797078
-0.4943972270
-0.7268614329
-1.0460889265

Table 5: The (VIM) results for v and v4 approximations in Example 3.3.

2.45e-2
7.99e-2
1.33e-1
2.36e-1
2.91e-1
1.34e-1
1.87e-1
2.40e-1

t

t =0.01

t=20.3

t=0.5

(z,y,2)

Vg

|v — 4]

V4

|v — 4]

V4

|v — 4]

0.1,0.1,0.2
0.3,0.1,0.2
0.5,0.2,0.3
0.7,0.2,0.3

0.6,0.3,0.4

( )
( )
( )
( )
(0.9,0.3,0.4)
( )
(0.8,0.4,0.5)
( )

0.9,0.4,0.5

0.2478057563
0.4478507665
0.6956565227
0.8957015329
1.1435072892
0.8434397739
1.0912455303
1.1912680354

1.43e-11
1.35e-11
2.77e-11
2.70e-11
4.12e-11
4.24e-11
5.66e-11
5.63e-11

0.2285415892
0.4784496263
0.7069912153
0.9568992524
1.1854408415
0.8105787860
1.0391203750
1.1640743935

2.99e-4
1.17e-3
1.47e-3
2.35e-3
2.65e-3
1.33e-3
1.63e-3
2.07e-3

0.2897586783
0.6957494596
0.9855081381
1.3914989194
1.6812575977
1.0722714258
1.3620301041
1.5650254948

2.45e-2
7.57e-2
1.00e-1
1.51e-1
1.76e-1
9.92e-2
1.24e-1
1.49e-1
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Table 6: The (VIM) results for w and ws approximations in Example 3.3.

t t=0.01 t=0.3 t=0.5

(z,y, 2) Wy |w — wy| Wy |w — wy] wy |w — w4
(0.1,0.1,0.2) 0.0955214924 3.00e-11 -0.0427328960 1.15e-3 -0.2324642059 5.33e-2
(0.3,0.1,0.2) 0.2955665025 2.93e-11  0.2071751411  2.79e-4  0.1735265755  2.09e-3
(0.5,0.2,0.3) 0.5433722588 4.35e-11  0.4357167302 1.95e-5  0.4632852538  2.24e-2
(0.7,0.2,0.3) 0.7434172689 4.28¢-11  0.6856247672  8.96e-4  0.8692760351  7.36e-2
(0.9,0.3,0.4) 0.9912230253 5.70e-11  0.9141663564 1.19e-3  1.1590347135  9.81e-2
(0.6,0.3,0.4) 0.6911555100 5.82e-11  0.5393043008  1.19e-4  0.5500485415  2.19e-2
(0.8,0.4,0.5) 0.9389612664 7.24e-11  0.7678458899  1.79e-4  0.8398072198  4.59¢-2
(0.9,0.4,0.5) 1.0389837714 7.20e-11  0.8927999085  6.17e-4  1.0428026105  7.15e-2

It can be observed through tables [1-6] that this method is efficient and accurate for different values of time

and place.

Conclusion. There are two main objectives for this work. The first presents an alternative approach to
variation iteration method to handle non-linear problems. The second is to use this method to solve the two-
dimensional (2D) and three-dimensional (3D) Navier-Stokes equations in Cartesian coordinates. It is obvious
that the method gives several successive approximations through determining the Lagrange multipliers and
using the iteration. (VIM) reduces the size of calculations and facilitates the computational work when
compared with (ADM) or (HPM) techniques. He’s variational iteration method is suitable as an alternative
approach to current techniques being employed to a wide variety of problems in physics. The Navier-Stokes
equations were examined. The desired solutions were obtained rapidly and in a direct way. The two goals
were achieved.
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