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Abstract. In this paper, explicit and implicit Crandall’s formulas are applied for finding the solution

of the one-dimensional heat equation with nonlinear nonlocal boundary conditions. The integrals in the

boundary equations are approximated by the composite Simpson quadrature rule. Here nonlinear terms are

approximated by Richtmyer’s linearization method. Finally, some numerical examples are given to show the

effectiveness of the proposed method.

1. Introduction

This paper is concerned with the numerical solution of the heat equation

(1.1)
∂u

∂t
− ∂2u

∂x2
= f (x, t) , 0 < x < 1, 0 < t ≤ T,

with the initial condition

(1.2) u (x, 0) = ϕ (x) , 0 < x < 1,

and the nonlinear nonlocal boundary conditions

(1.3) u (0, t) =

∫ 1

0

p (x, t)uγ (x, t) dx+ E (t) , 0 < t ≤ T,
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(1.4) u (1, t) =

∫ 1

0

q (x, t)uγ (x, t) dx+G (t) , 0 < t ≤ T,

where f, ϕ, p, q, G and E are known functions, u (x, t) is unknown function to be determined.

This kind of nonlocal boundary-value problem ( with γ = 1) occur in many fields of science and engineering,

especially in thermoelasticity [7, 8, 10] thermodynamics [9], heat conduction [5, 6, 17,28].

A lot of effort has been devoted in the past few years to the study of parabolic initial-boundary value

problems which involve nonlocal boundary conditions of the type :

u (0, t) =

∫ 1

0

p (x, t)u (x, t) dx+ E (t) , 0 < t ≤ T,

u (1, t) =

∫ 1

0

q (x, t)u (x, t) dx+G (t) , 0 < t ≤ T,

the numerical solution has been considered in several papers [1,2,4,11–13,15,16,18,19,21–24,26–28] . Much

less effort is given to the problem with nonlocal nonlinear type boundary conditions (3) and (4). Recently, [3]

proposed the implicit difference scheme for the solution of the heat equation with nonlinear nonlocal boundary

condition. Therefore this work is aimed at producing a very efficient techniques for solving the heat equation

with nonlinear nonlocal boundary condition.

The paper is organized as follows. The explicit and implicit Crandall’s methods are employed for solving

the one-dimensional heat equation with nonlinear nonlocal boundary value problem (1.1)-(1.4) in Section 2

and Section 3, respectively. To support our findings, we present results of numerical experiments in Section

4. The conclusion is given in Section 5.

In [29], the authors consider to solve one-dimensional diffusion equation with nonlinear nonlocal boundary

conditions (1.1)-(1.4), by using the Forward time centered space (FTCS-NNC), Dufort–Frankel scheme (DFS-

NNC), Backward time centered space (BTCS-NNC), Crank-Nicholson method (CNM-NNC).

Crandall’s formulas

In order to describe our method, we introduce the following notation. First, we take a positive integers

N and M. We divide the intervals [0, 1] and [0, T ] into M and N subintervals of equal lengths h = 1/M and

k = T/N, respectively. By uni , we denote the approximation to u at the ith grid-point and nth time step.

The Grid point (xi, tn) are given by xi = ih, i = 0, 1, 2, . . . , M, tn = nk, n = 0, 1, 2, . . . , N.

The notations uni , fni , pni , qni , En and Gn are used for the finite difference approximations of u(xi, tn),

f(xi, tn), p(xi, tn), q(xi, tn), E(tn) and G(tn), respectively.

If we consider the modified equivalent equation of the Crandall’s formula, the scheme shown in [20]. This

scheme for the equation (1.1) can be written as:
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(1.5)

un+1
i − uni

k
−
[(

1

2
+

1

12r

)
uni+1 − 2uni + uni−1

h2

+

(
1

2
− 1

12r

)
un+1
i+1 − 2un+1

i + un+1
i−1

h2

]
= c00f

n+1
i−1 + c01f

n+1
i + c00f

n+1
i+1 + c10f

n
i−1 + c11f

n
i + c10f

n
i+1,

for i = 1, 2, ...,M − 1, n = 0, 1, ..., N, and r = k/h2, where c00, c01, c10, c11 are coefficient to be determined .

By using Taylor series in (1.5), we obtain the local truncation error :

− (2c00 + c01 + 2c10 + c11 − 1) f +
1

12

[
−6

(
2c00 + 2c10 −

1

12

)
fxx

− 6 (4c00 + 2c01 − 1) rft]h
2 +O(h4).

In order to achieve the fourth order, it is necessary that coefficients c00, c01, c10, c11 would satisfy conditions

2c00 + c01 + 2c10 + c11 − 1 = 0,

2c00 + 2c10 −
1

6
= 0,

4c00 + 2c01 − 1 = 0.

We have chosen c00 = 1
12 , c10 = 0, c01 = 1

3 and c11 = 1
2 in our computation.

After some rearrangement, the equation (1.5) becomes :

(1.6)

(1− 6r)un+1
i−1 + (10 + 12r)un+1

i + (1− 6r)un+1
i+1

= (1 + 6r)uni−1 + (10− 12r)uni + (1 + 6r)uni+1

+12k
(

1
12f

n+1
i−1 + 1

3f
n+1
i + 1

12f
n+1
i+1 + 1

2f
n
i

)
,

for i = 1, 2, ...,M − 1, n = 0, 1, ..., N.

2. The Explicit Crandall’s Scheme (ECS)

If r =
1

6
, the Crandall’s scheme (1.6) becomes explicite :

(2.1)
12un+1

i = 2uni−1 + 8uni + 2uni+1

+12k

(
1

12
fn+1
i−1 +

1

3
fn+1
i +

1

12
fn+1
i+1 +

1

2
fni

)
,

This scheme can be written as:

(2.2)
un+1
i =

1

6
uni−1 +

2

3
uni +

1

6
uni+1

+k

(
1

12
fn+1
i−1 +

1

3
fn+1
i +

1

12
fn+1
i+1 +

1

2
fni

)
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for i = 1, 2, ...,M − 1, n = 0, 1, ..., N.

We still have to determinates two unknowns u0 and uM+1, for this we approximate integrals in (1.3) and

(1.4) numerically by the composite Simpson quadrature formula (We have chosen this approximation since

it is of the same, fourth-order of accuracy in space as the methods used for the interior part of the problem)

which requires M to be even. Letting M = 2m, yields

(2.3)

un+1
0 = u

(
0, tn+1

)
=
∫ 1

0
p
(
x, tn+1

)
u
(
x, tn+1

)
dx

=
h

3

(
pn+1
0

(
un+1
0

)γ
+ 4

∑M/2
i=1 pn+1

2i−1
(
un+1
2i−1

)γ
+2
∑M/2−1
i=1 pn+1

2i

(
un+1
2i

)γ
+ pn+1

M

(
un+1
M

)γ)
+ En+1 + o(h4),

(2.4)

un+1
M = u

(
1, tn+1

)
=
∫ 1

0
q
(
x, tn+1

)
u
(
x, tn+1

)
dx

=
h

3

(
qn+1
0

(
un+1
0

)γ
+ 4

∑M/2
i=1 qn+1

2i−1
(
un+1
2i−1

)γ
+2
∑M/2−1
i=1 qn+1

2i

(
un+1
2i

)γ
+ qn+1

M

(
un+1
M

)γ)
+Gn+1 + o(h4).

Thus, we can write

(2.5)
3un+1

0 − hpn+1
0 (un+1

0 )γ − hpn+1
M (un+1

M )γ

= 4
∑M/2
i=1 pn+1

2i−1(un+1
2i−1t)

γ + 2
∑M/2−1
i=1 pn+1

2i (un+1
2i )γ + 3En+1,

(2.6)
−hqn+1

0 (un+1
0 )γ + 3un+1

M − hqn+1
M (un+1

M )γ

= 4
∑M/2
i=1 pn+1

2i−1(un+1
2i−1t)

γ + 2
∑M/2−1
i=1 pn+1

2i (un+1
2i )γ + 3Gn+1.

By applying the Taylor’s expansion

(
un+1
i

)γ
= (uni )

γ
+ k ((uni )t)

γ
+ ....

= (uni )
γ

+ kγ (uni )
γ−1

(
un+1
i − uni

k

)
+ ...

= (uni )
γ

+ γ (uni )
γ−1 (

un+1
i − uni

)
+ ...

Hence to terms of order k,

(2.7)
(
un+1
i

)γ ≈ γ (uni )
γ−1 (

un+1
i

)
+ (1− γ) (uni )

γ
,

a result which replace the non-linear unknown
(
un+1
i

)γ
by approximation linear in un+1

i (the Richtmyer’s

linearization method [25]).

Substituting (2.7) for i = 0 and i = M in (2.4) and (2.5), we have

(2.8)

(
3− hγpn+1

0 (un0 )γ−1
)
un+1
0 − hpn+1

M γ(unM )γ−1un+1
M

= 4
∑M/2
i=1 pn+1

2i−1(un+1
2i−1t)

γ + 2
∑M/2−1
i=1 pn+1

2i (un+1
2i )γ

+h(1− γ)pn+1
0 (un0 )γ + h(1− γ)pn+1

M (unM )γ + 3En+1,
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(2.9)

−hqn+1
0 γ(un0 )γ−1un+1

0 + (3− hγqn+1
M (unM )γ−1)un+1

M

= 4
∑M/2
i=1 pn+1

2i−1(un+1
2i−1t)

γ + 2
∑M/2−1
i=1 pn+1

2i (un+1
2i )γ

+h(1− γ)qn+1
0 (un0 )γ + h(1− γ)qn+1

M (unM )γ + 3Gn+1,

Hence we have:

(2.10) un+1
0 =

z1(3− hγqn+1
M (unM )γ−1) + z2hp

n+1
M γ(unM )γ−1)

Y
,

(2.11) un+1
M =

z2(3− hγpn+1
0 (un0 )γ−1) + z1hq

n+1
0 γ(un0 )γ−1)

Y
,

where

(2.12)
z1 = 4

∑M/2
i=1 pn+1

2i−1(un+1
2i−1t)

γ + 2
∑M/2−1
i=1 pn+1

2i (un+1
2i )γ

+h(1− γ)pn+1
0 (un0 )γ + h(1− γ)pn+1

M (unM )γ + 3En+1,

(2.13)
z2 = 4

∑M/2
i=1 pn+1

2i−1(un+1
2i−1t)

γ + 2
∑M/2−1
i=1 pn+1

2i (un+1
2i )γ

+h(1− γ)qn+1
0 (un0 )γ + h(1− γ)qn+1

M (unM )γ + 3Gn+1,

and

(2.14)
Y = (3− hγqn+1

M (unM )γ−1)(3− hγpn+1
0 (un0 )γ−1)

−h2γ2qn+1
0 (un0 )γ−1pn+1

M (unM )γ−1 6= 0

Y 6= 0 for sufficiently small h.

3. The Implicit Crandall’s Scheme (ICS)

If r 6= 1

6
, the Crandall’s scheme (1.6) is implicite :

(3.1)

(1− 6r)un+1
i−1 + (10 + 12r)un+1

i + (1− 6r)un+1
i+1

= (1 + 6r)uni−1 + (10− 12r)uni + (1 + 6r)uni+1

+12k

(
1

12
fn+1
i−1 +

1

3
fn+1
i +

1

12
fn+1
i+1 +

1

2
fni

)
,

for i = 1, 2, ...,M − 1, n = 0, 1, ..., N.

Equation (3.1) presents M − 1 linear equations in M + 1 unknowns u0, u1, · · · , uM . In order to solve the

linear system, we need two more equations, that we can obtain approximating the integrals in (1.3) and
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(1.4) numerically by the fourth-order Simpson’s composite formula (which requires M to be even). Letting

M = 2m, yields

(3.2)

un+1
0 = u

(
0, tn+1

)
=
∫ 1

0
p
(
x, tn+1

)
u
(
x, tn+1

)
dx

=
h

3

(
pn+1
0

(
un+1
0

)γ
+ 4

∑M/2
i=1 pn+1

2i−1
(
un+1
2i−1

)γ
+2
∑M/2−1
i=1 pn+1

2i

(
un+1
2i

)γ
+ pn+1

M

(
un+1
M

)γ)
+ En+1 + o(h4),

(3.3)

un+1
M = u

(
1, tn+1

)
=
∫ 1

0
q
(
x, tn+1

)
u
(
x, tn+1

)
dx

= h
3

(
qn+1
0

(
un+1
0

)γ
+ 4

∑M/2
i=1 qn+1

2i−1
(
un+1
2i−1

)γ
+2
∑M/2−1
i=1 qn+1

2i

(
un+1
2i

)γ
+ qn+1

M

(
un+1
M

)γ)
+Gn+1 + o(h4).

By applying the Richtmyer’s linearization method (2.7) in (3.2) and (3.3), we get

(3.4)

un+1
0 = h

3

(
pn+1
0

(
γ (un0 )

γ−1 (
un+1
0

)
+ (1− γ) (un0 )

γ
)

+4
∑M/2
i=1 pn+1

2i−1

(
γ
(
un2i−1

)γ−1 (
un+1
2i−1

)
+ (1− γ)

(
un2i−1

)γ)
+2
∑M/2−1
i=1 pn+1

2i

(
γ (un2i)

γ−1 (
un+1
2i

)
+ (1− γ) (un2i)

γ
))

+h
3 p
n+1
M

(
γ (unM )

γ−1 (
un+1
M

)
+ (1− γ) (unM )

γ
)

+ En+1,

(3.5)

un+1
M = h

3

(
qn+1
0

(
γ (un0 )

γ−1 (
un+1
0

)
+ (1− γ) (un0 )

γ
)

+4
∑M/2
i=1 qn+1

2i−1

(
γ
(
un2i−1

)γ−1 (
un+1
2i−1

)
+ (1− γ)

(
un2i−1

)γ)
+2
∑M/2−1
i=1 qn+1

2i

(
γ (un2i)

γ−1 (
un+1
2i

)
+ (1− γ) (un2i)

γ
))

+h
3 q
n+1
M

(
γ (unM )

γ−1 (
un+1
M

)
+ (1− γ) (unM )

γ
)

+Gn+1.

Thus, we can write (3.4) and (3.5) as follows

(3.6)

(
γhpn+1

0 (un0 )
γ−1 − 3

)
un+1
0 + 4γh

∑M/2
i=1 pn+1

2i−1
(
un2i−1

)γ−1 (
un+1
2i−1

)
+2γh

∑M/2−1
i=1 pn+1

2i (un2i)
γ−1 (

un+1
2i

)
+ γhpn+1

M (unM )
γ−1 (

un+1
M

)
= (γ − 1)hpn+1

0 (un0 )
γ

+ 4 (γ − 1)h
∑M/2
i=1 pn+1

2i−1
(
un2i−1

)γ
+2 (γ − 1)h

∑M/2−1
i=1 pn+1

2i (un2i)
γ

+ (γ − 1)hpn+1
M (unM )

γ − 3En+1,

(3.7)

γhqn+1
0 (un0 )

γ−1
un+1
0 + 4γh

∑M/2
i=1 qn+1

2i−1
(
un2i−1

)γ−1 (
un+1
2i−1

)
+2γh

∑M/2−1
i=1 qn+1

2i (un2i)
γ−1 (

un+1
2i

)
+
(
γhqn+1

M (unM )
γ−1 − 3

) (
un+1
M

)
= (γ − 1)hqn+1

0 (un0 )
γ

+ 4 (γ − 1)h
∑M/2
i=1 qn+1

2i−1
(
un2i−1

)γ
+2 (γ − 1)h

∑M/2−1
i=1 qn+1

2i (un2i)
γ

+ (γ − 1)hqn+1
M (unM )

γ − 3Gn+1,

then, we have

(3.8) an0u
n+1
0 + an1u

n+1
1 + an2u

n+1
2 + ...+ anM−1u

n+1
M−1 + anMu

n+1
M = LnM ,
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where

(3.9)



an0 = γhpn+1
0 (un0 )

γ−1 − 3

anM = γhpn+1
M (unM )

γ−1

an2i+1 = 4γhpn+1
2i+1

(
un2i+1

)γ−1
i = 0, 1, 2, · · · , M2 − 1,

an2i = 2γhpn+1
2i (un2i)

γ−1
i = 1, 2, · · · , M2 − 1,

and

(3.10)
LnM = (γ − 1)hpn+1

0 (un0 )
γ

+ 4 (γ − 1)h
∑M/2
i=1 pn+1

2i−1
(
un2i−1

)γ
+2 (γ − 1)h

∑M/2−1
i=1 pn+1

2i (un2i)
γ

+ (γ − 1)hpn+1
M (unM )

γ
,

and also

(3.11) bn0u
n+1
0 + bn1u

n+1
1 + bn2u

n+1
2 + ...+ bnM−1u

n+1
M−1 + bnMu

n+1
M = Kn

M ,

where

(3.12)



bn0 = γhqn+1
0 (un0 )

γ−1

bnM = γhqn+1
M (unM )

γ−1 − 3

bn2i+1 = 4γhqn+1
2i+1

(
un2i+1

)γ−1
i = 0, 1, 2, · · · , M2 − 1,

bn2i = 2γhqn+1
2i (un2i)

γ−1
i = 1, 2, · · · , M2 − 1,

and

(3.13)
Kn
M = (γ − 1)hqn+1

0 (un0 )
γ

+ 4 (γ − 1)h
∑M/2
i=1 qn+1

2i−1
(
un2i−1

)γ
+2 (γ − 1)h

∑M/2−1
i=1 qn+1

2i (un2i)
γ

+ (γ − 1)hqn+1
M (unM )

γ
,

Combining (3.8), (3.11), with (3.1) yields an (M + 1) × (M + 1) linear system of equations. We write the

system in the matrix form

(3.14) An+1Un+1 = Bn+1,

which

An+1 =



an0 an1 an2 an3 anM−2 anM−1 anM

1− 6r 10 + 12r 1− 6r 0 · · · 0

0 1− 6r 10 + 12r 1− 6r
. . .

...

...
. . .

. . .
. . . 0

0
. . .

. . . 1− 6r 10 + 12r 1− 6r

bn0 bn1 bn2 bnM−2 bnM−1 bnM


,
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Un+1 =



un+1
0

un+1
1

un+1
2

...

un+1
M−1

un+1
M


,

Bn+1 =



(γ − 1)h
(
pn+1
0 (un0 )

γ + 4
∑M/2
i=1 pn+1

2i−1 (u
n
2i−1)

γ + 2
∑M/2−1
i=1 pn+1

2i (un2i)
γ + pn+1

M (unM )γ
)
− 3En+1

(1 + 6r)un0 + (10− 12r)un1 + (1 + 6r)un2 + 12k( 1
12
fn+1
0 + 1

3
fn+1
1 + 1

12
fn+1
2 + 1

2
fn1 )

...

(1 + 6r)unM−2 + (10− 12r)unM−1 + (1 + 6r)unM + 12k( 1
12
fn+1
M−2 +

1
3
fn+1
M−1 +

1
12
fn+1
M + 1

2
fnM−1)

(γ − 1)h
(
qn+1
0 (un0 )

γ + 4
∑M/2
i=1 qn+1

2i−1 (u
n
2i−1)

γ + 2
∑M/2−1
i=1 qn+1

2i (un2i)
γ + qn+1

M (unM )γ
)
− 3Gn+1


where an0 , a

n
1 , a

n
2 , ..., a

n
M−1, a

n
M and bn0 , b

n
1 , b

n
2 , ..., b

n
M−1, b

n
M are the coefficients in (3.9) and (3.12), respectively.

This procedure is unconditionally von Neumann stable [14] for all r > 0.

Theorem 3.1. the ICM scheme has a unique solution for sufficiently small h .

Proof. It is easy to see that |10 + 12r| > |2 + 12r|. the matrix (3.14) is diagonally dominant, if

|an0 | >
M∑
i=1

|ani | and |bnM | >
M−1∑
i=0

|bni |

i.e

(3.15) h

M∑
i=0

γωi|pn+1
i (uni )

γ−1 | < 1, and h

M∑
i=0

γωi|qn+1
i (uni )

γ−1 | < 1

where ω0 = ωM = 1
3 , ω2i = 2

3 , i = 1, ...,M−1 and ω2i+1 = 4
3 , i = 0, ...,M−1. As (3.15) is true for sufficiently

small h, the existence and uniqueness of the solution of ICS scheme are proved. �

4. Numerical experiments

To test the above algorithms described in Section 2-3 , we use two examples with known analytical

solutions as follows:

Example 4.1. We consider the following problem (Test given in paper [3])

(4.1)
∂u

∂t
− ∂2u

∂x2
=
−2
(
x2 + t+ 1

)
(t+ 1)

3 , 0 < x < 1, 0 < t ≤ T,

subject to the initial condition

(4.2) u (x, 0) = x2, 0 ≤ x < 1,
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and the nonlinear nonlocal boundary conditions

(4.3) u (0, t) =

∫ 1

0

xu2 (x, t) dx− 1

6 (t+ 1)
4 , 0 < t ≤ T,

(4.4) u (1, t) =

∫ 1

0

xu2 (x, t) dx+
6x2 + 12t+ 5

6 (t+ 1)
4 , 0 < t ≤ T,

The functions f, ϕ, p, q, E and G are chosen so that the function

(4.5) u (x, t) =

(
x

t+ 1

)2

.

is the exact solution solution of the problem(1.1)-(1.4).

In Table 1 and Table 2 we present results with h = 0.05, 0.005 using the Crandall’s scheme discussed

in section 2-3 together with the results from [3] for x = 0.1 and t = 0.01, 0.02, 0.03, ..., 0.1. Table 3 gives

the maximum errors of the numerical solutions experimental order of convergence. The maximum error is

defined as follows

Er(h, k) = ‖u− uhk‖∞ = max
0≤k≤N

{ max
0≤i≤M

|u(xi, tk)− uki |},

and the experiment order convergence is calculated using the formula :

Order =
ln (Er (hi−1, ki−1) /Er (hi, ki))

ln (hi−1/hi)
.

ti exact ECS ICS from [3]

0.01 0.0098029 0.00980407 0.0098037 0.0093

0.02 0.0096116 0.00961317 0.0096126 0.0091

0.03 0.0094259 0.00942762 0.0094270 0.0090

... ... ... ... ...

0.1 0.0082644 0.00826636 0.0082657 0.0079

Table 1. Some numerical results at x = 0.1 with h = 0.05 for Example 1

Figs 1-2 illustrates the exact solution and an approximate solution of Example 1 by ECS and ICS, respec-

tively. We plot the errors eni = u(xi, tn)−uni , i = 0, 1, 2, ...,M, n = 0, 1, ..., N, for the schemes ECS and ICS

in Figure 3.
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ti exact ECS ICS from [3]

0.01 0.0098029 0.0098029 0.0098029 0.0098

0.02 0.0096116 0.0096116 0.0096116 0.0096

0.03 0.0094259 0.0094259 0.0094259 0.0094

... ... ... ... ...

0.1 0.0082644 0.0082644 0.0082644 0.0083

Table 2. Some numerical results at x = 0.1 with h = 0.005 for Example 1

M ECS order ICS order

12 1.700987 · 10−6 1.356601 · 10−6

24 1.064666 · 10−7 3.9978 8.483043 · 10−8 3.9992

48 6.658956 · 10−9 3.9989 5.302550 · 10−9 3.9998

96 4.163736 · 10−10 3.9993 3.314515 · 10−10 3.9998

Table 3. The maximum errors and experiment order of convergence for Example 1 .

(a) (b)

Figure 1. (a) Exact and (b) Approximate Solution by ICS for Example 1.

Example 4.2. The second test example to be solved is

(4.6)
∂u

∂t
− ∂2u

∂x2
=
(
1 + π2

)
exp (t) cos (πx) , 0 < x < 1, 0 < t ≤ T,

with the initial condition

(4.7) u (x, 0) = cos (πx) , 0 < x < 1,
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(a) (b)

Figure 2. (a) Exact and (b) Approximate Solution by ECS for Example 1.

and the nonlinear nonlocal boundary conditions

(4.8) u (0, t) =

∫ 1

0

sin (πx)u3 (x, t) dx+ exp (t) , 0 < t ≤ T,

(4.9) u (1, t) =

∫ 1

0

sin (πx)u3 (x, t) dx− exp (t) , 0 < t ≤ T.

The analytic solution is

(4.10) u (x, t) = cos (πx) exp (t) .

In Table 4 and Table 5 we present results with h = 0.05, 0.005 and r = 0.4 using the finite difference formulate

discussed in section 2-3 for x = 0.1 and t = 0.01, 0.02, 0.03, ..., 0.1. Figures 3-4 illustrates the exact solution

and an approximate solution of Example 2 by ECS and ICS, respectively.

ti exact ECS ICS

0.01 0.96061479 0.96061492 0.96061503

0.02 0.97026913 0.97026933 0.97026948

0.03 0.98002050 0.98002074 0.98002092

... ... ... ...

0.1 1.05108000 1.05108034 1.05108060

Table 4. Some numerical results at x = 0.1 for h = 0.05 for Example 2
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ti exact ECS ICS

0.01 0.96061479 0.96061479 0.96061479

0.02 0.97026913 0.97026913 0.97026913

0.03 0.98002050 0.98002050 0.98002050

... ... ... ...

0.1 1.05108000 1.05108000 1.05108000

Table 5. Some numerical results at x = 0.1 for h = 0.005 for Example 2

(a) (b)

Figure 3. (a) Exact and (b) Approximate Solution by ICS for Example 2.

(a) (b)

Figure 4. (a) Exact and (b) Approximate Solution by ECS for Example 2.
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5. Conclusion

In this paper new techniques were applied to the one-dimensional heat equation with nonlinear nonlocal

boundary conditions. The numerical results obtained by using the methods described in this article give

acceptable results and suggests convergence to the exact solution when h goes to zero. The ECS method

is explicit and require less computational time than the implicit Crandall’s scheme, but the disadvantage of

this discretization is the restriction in choosing the value of r

(
r =

1

6

)
.
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