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ABSTRACT. The aim of the present article is to investigate a family of univalent analytic functions on the
unit disc D defined for M > 1 by
/ ’ 2
§ﬁ‘:(zf (Z)) >0, ‘(Zf (Z)) —M‘ <M, z€D.
I(z) f(2)

Some proprieties, radius of convexity and coefficient bounds are obtained for classes in this family.

1. INTRODUCTION

Let A be the set of analytic function on the unit disc D with the normalization f(0) = f/(0) —1 = 0.
f e Aif fis of the form

+oo
(1.1) f(z) :z—l—Zanz”, z € D.
n=2

S denotes the subclass of A of univalent functions. A function f € S is said to be strongly starlike of order

a, 0 < a <1, if it satisfies the condition

zf’(z)| am

|Arg e < —, VzeD.
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This class is denoted by S§*(a) and was first introduced by D. A. Brannan and W. E. Kirwan [1] and

independently by J. Stankiewicz [9].

S85*(1) is the well known class S* of starlike functions. Recall that a function f € S belongs to S* if the

image of D under f is a starlike set with respect to the origin or, equivalently, if

2F(2)
e

A function f € S belongs to SS§*(«) if the image of D under ZJJ:(/S) lies in the angular sector

) >0, zeD.

Qo = {z eC, |Argz| < O;ﬂ}

Let B denotes the set of Schwarz functions, i.e. w € B if and only w is analytic in D, w(0) = 0 and
|w(z)| < 1 for z € D. Given two functions f and g analytic in D, we say that f is subordinate to g and we
write f < g if there exists w € B such that f = gow in D.

If ¢ is univalent on D, f < g is equivalent to f(0) = g(0) and f(D) C g(D).
We obtain from the Schwarz lemma that if f < g then | I (0)| < | g (0)| As a consequence of this statement,

we have

(1.2) frg €A, @*@:ﬂaﬂﬂbﬂa

where as and by are respectively the second coefficients of f and g¢.

W. Janowski [2] investigated the subclass

2f'(2)
f(2)

S*(M):{feS, eDM,Vze]D},

where
DM—{wG(C7|w—M|<M}, M>1

J. Sékol and J. Stankiewicz [8] introduced a subclass of SS*(3), namely, the class S} defined by

St = {f €S, Z}féz) € L1,Vz € D},

where

Elz{weC,ERw>O, |w2—1|<1}.

L1 is the interior of the right half of the Bernoulli’s lemniscate ‘wQ - 1| =1.

In the present paper we are interested to the family of subclass of S

(1.3) Sr(M) = {f €S, Z;(S) €Ly, Vz € D}, M>1,
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where
(1.4) L’M:{wEC,%w>O,|w2—M’<M}.

is the interior of the right half of the Cassini’s oval ’wQ — M} = M. For the particular case M = 1, S5 (1)
stands for the class Sj introduced by J. Sékol and J. Stankiewicz [8]. Since £p; C ©(2), all functions in

S; (M) are strongly starlike of order 3.

Note that all classes above correspond to particular cases of the classes of S*(¢) introduced by W. Ma

and D. Minda [3],

S*(p) = {feA, 2 (2) <<p}.

f(2)

where ¢ is Analytic univalent function with real positive part in the unit disc D, <p(]D) is symmetric with

respect to the real axis and starlike with respect to ¢(0) =1 and ¢'(0) > 0.

Let m=1- ﬁ and ¢,, be the function

1+2
wm(a:”l—mz’ zeD

where the branch of the square root is chosen so that ¢,,(0) = 1. We have

(1.5) SE(M) = S (pm) = {f € A, Z;(S) < @m}.

Observe that S} corresponds to m = 0 so that S} = S*(v/1 + z).

2. SOME PROPERTIES OF THE CLASS Sj (M)

Let P the class of analytic functions p in D with p(0) =1 and ®p(z) > 0in D. For M > 1, let

Pr(M) = {p € P,

p*(2) = M| < M, zE]D)}.
It is easy to see that Py(My) C Pr(Ms) for My < M.

Remark 2.1. A function f € A belongs to S} (M) if and only if there exists p € Pz(M) such that

2f'(2)

=p(z), z€D.
)
Theorem 2.1. A function f belongs to S; (M) if and only if there exists p € Pz (M) such that
? —1
(2.1) flz)==z eXp/ p(g)gdf.
0

Proof. (2.1) is an immediate consequence of the Remark 2.1 ]
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Let f,, € A be the unique function such that

efml@ _
(2.2) (m@)f¢M), €D

with m =1 — ;. f,, belongs to S; (M) and we have

(2.3) fm(z) = z exp /Z Mdf.

0 3

Evaluating the integral in (2.3), we get

_ Adzexp [} &) g (hdt

2.4 fm(z
(2.4) (2) (om(5) 7 1)°

, z€D,

where

2mt + 2 1
Hm(t):m7 m=1--

For M =1, Hy is the constant function H(t) = 2 and we have
B 4z exp (2\/1 +z— 2)
(VItz+1)°

fo is extremal function for problems in the class S} (see [8]).

for z € D.

fo(2)

It is easy to see that

2
erl‘22+ (m+1)(5m+l)z3Jr (m+1)(21m Jr67n+1)z4Jr

(2.5) fml2) =2+ n -

We need the following result by St. Ruscheweyh [5]

Lemma 2.1. [ [5], Theorem 1] Let G be a convex conformal mapping of D, G(0) = 1, and let

F(z) = zexp /OZ G(gé_ldf.

Let f € A. Then we have

if and only if for all |s| <1, ’t} <1

Theorem 2.2. If f belongs to S (M) then

(2.6)

Proof. From (1.5), we obtain by applying Lemma 2.1 to the convex univalent function G = ¢,

tf(z)  tfm(2)
7t2) " Fltr)

Letting t — 0, we obtain the desired conclusion.
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Corollary 2.1. Let f belongs to S§ (M) and |z| = r < 1, then

(2.7) —fm(=r) < |f(2)| < fn(r);

’ ’ ’

(2.8) S (=1) < 1f ()] < frn (7).

Proof. (2.7) follows from (2.6). Now If M > 1 we have 0 < m < 1. Thus for 0 <r < 1

(2.9) in [om (2)] = om (=), max|om(2)] = @m(r)
From (2.6) and (2.9) we get (2.8) by applying Theorem 2 ( [3], p. 162). O

3. RADIUS OF CONVEXITY FOR THE CLASS S} (M)

In the sequel m =1 — ﬁ

For M > 1, let P(M) be the family of analytic functions P in D satisfying

(3.1) P0)=1, |P(z) —M| <M, for z <€ D.
We have
(3.2) feSIM) < IPcP(M)/ ZJ{(S) = VP.

We need the two following lemmas by Janowski [2]:

Lemma 3.1. [ [2| , Theorem 1] For every P(z) € P(M) and |z| =7, 0 < r < 1, we have

1—r
3.3 inf RP(z)= .
(3.3) pelg(M) (2) 1+mr
The infimum is attained by
1—ez
34 P(z) = —— =1.
(3.4) ()= T, I

Lemma 3.2. (Theorem 2, [2]) For every P(z) € P(M) and |z| =7, 0 < r < 1, we have

P 1
(3.5) e g2l ) (amr
repP(M)  P(2) (1—7)(1+mr)
The infimum is attained by
1—ez
3.6 P(z) = — =1.
(3.6) ()= Ty I

Theorem 3.1. The radius of convexity of the class Sj (M) is is the unique root in (0, 1) of the equation

(3.7) 4(1+mr)(1 - 7‘)3 -1+ m)27°2 =0.
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Proof. Let f € §;(M). From (3.2), there exists P € P(M) such that

(3.8) =+/P(z), z€D.

(3.8) can be written

which gives

2f"(2)  z2(2f) (2) 1 2P (2)
YT T e VPP g
This yields for |z| =7, 0<7r <,
2" (2) . T 2P/ (2)
(3:9) %(1 + () ) 2 Pelg(fM)gR Pz) + 2 Pel7131(fM)§)(E P(z) -

Replacing (3.3) and(3.5 in (3.9), we obtain

2f(2) T—r 1 (L+m)r
(3.10) R(1+ ) )2 \/1+7 2 (1—7) (1 +mr)

Let h,, be defined by
[1—r 1 (14+m)r
h,, = - = .
L+mr 2 (1—r)(1+mr)

h,, is decreasing in the interval (0,1) , h,,(0) = 1 and the limit of h,, in 1~ is —co. Let r

v, be the unique

solution of h,,(r) = 01in (0,1), then f is convex on the disc |z| < r,, ,. On the other hand,

zf,l,;(z)_ [ 142z 1 (1+m)z
L+ fl(z) 1—mz+§(1—mz)(l+z)

is the best value.

vanishes in z = —r,, ,. Thus r,, ,

To finish, we observe that the equation h,,(r) = 0 is equivalent in the interval (0, 1) to the equation
3 2 9
4(1+mr)(1—7“) — (1+m) re=0.
O

Remark 3.1. As a consequence of Theorem 3.1 applying for M = 1, we find Theorem 4 [8] which gives 7
the radius of convexity of the class S7. rg = % (11 + 3/\/ 44928 — 181 — f/\/44928 + 181) ~ 0.5679591

Remark 3.2. As observed above, S; (M) increases with M. Therefore r,, , decreases when M increases.

Let

Teo = lim 7
o M —+o00

Substituting in (3.7), we obtain
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Solving this equation in (0,1), we get

1
Foo =3 (1 V24 \/E) ~ 0.46899.

We have

Too STy, S T0.

4. COEFFICIENT BOUNDS FOR S} (M)

Theorem 4.1. Let f(z) = > °  a,2z™ be a function in S; (M) . Then

for 1 < M < 2 we have

oo

(4.1) > (A =mn® =2)|an* <1+m
n=2
and for M > 2 we have
(4.2) S (@=mn® =2)anP <1+m— > ((1-m)k® - 2)|axl*.
n>\/12- 2<k<y/ 12—
with m = MIV?I.

Proof. If f € 8§ (M) there exists w € B such that
12
(4.3) (1 —mw(2))(2f (2))” — f(2)* =w(2)f(2)? z€D.
For 0 < r <1 we have
o 2T
2772 lan[*r? = / )|2do
n=1 0
2
(4.4) > / Hf re’ )|2d0
0
Replacing (4.3) in the right side of (4.5) we obtain

2m i lan[*r? > /27T ‘(1 - mw(rei‘g)) (rewf/(rei‘g))2 - f(rew)2|d9
n=1 0

2m

Y

Y

2 27
(1 —m)/ |(re“9f 7’6 ) |d0 / |f(rew)2|d0
0 0
27 Z(l —m)n?la,|*r® — 27 Z |an |72
n=1

n=1

27T — mw(re®)) (re’ f (re’ re
| 1@ = matren) e e)an— [ 1

’)"|ae
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Thus
22 lan|?r? > Z(l — m)n?|a,|?r?.
n=1 n=1

If we let + — 17—, we obtain from le last inequality

2 Z |an|2 > Z(l - m)n2|an|2
n=1 n=1
which gives,

(4.5) L+m > ((1—mn® - 2)|an|*.
n=2

Since (1 —m)n? —2 >0 for all n > 2 if and only if 1 < M < 2 then (4.5) yields (4.1) and (4.2) according to
thecase 1 < M < 2or M > 2. |

The following corollary is an immediate consequence of (4.2).
Corollary 4.1. Let f(z) = >.°  a,2™ be a function in S (M) .Then
for 1 < M < 2 we have

1
(4.6) lan| < +m

——, forn>2
VA w2

and for M > 2 we have

Ltm =3, e /o (1 = m)k? — 2)|ax|? 5

. > =
(L= m)nz—2 Fforn=

4. nl <
(47) an] < —

: _ M-1
with m = =7

Remark 4.1. For M =1, (4.1) and (4.6) give respectivly Theorem 1 and Corollary 1 [6].
Theorem 4.2. Let f(z) = > 7 a,2z" be a function in S (M) .Then
(i) |az| < 2L for 0 <m < 1;

(ii) |as| < mTH, for0<m< %;

(iii) Jas| < 2H for 0 <m < ‘/37_1.
This estimations are sharp.
Proof. 1f f € S; (M) there exists w(z) = >, Cpz" € B such that
(4.8) (£ (2))° = £(2)* = w(2)(m(=f (2))" + F(2)°), 2 €D.

Let f(2)? =0, Ap2", (zf/ (z))2 =3, By2". (4.8) becomes

(4.9) i (Bn — Ap)2" = (i (mBn + An)z"> (2‘1 an”>

n=2 n=2
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Equating coefficients for n = 2, n = 3 in both sides of (4.9), we obtain

B3 — Ag = (mBQ + AQ)Cl
(Sm) By—As= (mBz + A3)Cy + (mBg + AS)CI
Bs — A5 = (mBy + A2)Cs + (mBs + A3)Cy + (mBy + Ag)Cy

A little calculation yields

AQ = a; = 1, A3 = QCLQ, A4 = 2a3 +a§, A5 = 2(14 -+ 2(12(13

and

By =a1 =1, B3z =4as, By=6as+ 4a§, Bs = 8ay4 + 12a2as.
Replacing in (Sy,), we obtain

(1) 2@2 = (m + 1)01
(2) 4az+3a3 = (m+1)Cs + (4m + 2)azCy
(3) 6a4 + 10aza3 = (m +1)C5 + (2m + 1) (m 4 1)C1Cs + ((6m + 2)az + (4m + 1)a3) Cy

Since |C7] < 1 then (1) implies that |as| < 3£™. This proves the assertion (i). On the other hand we have

from (1) and (2)
(5bm+1)(m+1)

_1+m 9
az = 4 02 + 16 Ol'
Thus
1+m om + 1
\a:s‘ < (|C2| + |C1|).
4 4
It is well known that |Cy| < 1 — |C4|%. Therefore we obtain
1+m om + 1
jas] < —— (-1 + ——IC])
1+m om — 3
(4.10) = ——(+= o).

Since 5m — 3 < 0 if and only if m < 2 then (4.10) yields the assertion (ii).
Replacing the values of a2 and as in the equation (3), we obtain

(m+1) (m+1)(9m+1) (m+1)(21m? + 6m + 1)

_ 3
ay = 6 03+ 24 C102+ 2% Cl
1 9 1 21m? + 6 1
(4.11) _ m; (03+ m4+ 0102+m+16m+0§).

Let p = 22l and v = %66"”'1. Under the assumption 0 < m < @, we have (u,v) € Dy (see [4], p.
127). Therefore by Lemma 2 [4] we obtain

9m +1 21m? +6m + 1
4 0102+1—6

‘C3+ Pl <1
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which yields from (4.11) the assertion (iii).

The sharpness of (i) is given by the function f,,. If we take in (4.8) w(z) = 22 and w(z) = 2% successively,
we obtain two functions in §j (M):
m+1 . m+1
fim(z) =2z + ) 24 and fon(2) =2+ 5 2 4
which give respectively the sharpness of estimations (ii) and (iii). O

Remark 4.2. The estimation (i) can be obtained directly from (2.6).
Remark 4.3. If we take m = 0 in Theorem 4.2, we obtain as particular case Theorem 2 [6].
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