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ABSTRACT. The aim of this work is to study of the ¢g2-Fourier multiplier operators on R4 and we give for
them Calderén’s reproducing formulas and best approximation on the g2-analogue Sobolev type space Hq

using the theory of g2-Fourier transform and reproducing kernels.

1. INTRODUCTION

The g?-analogue differential-difference operator 9, also called g-Rubin’s operator defined on R, in [11,12]
by

fla™'2) + f(=q7"2) = f(g2) + f(—q2) — 2f(=2)
2(1—gq)z

if z#£0
aqf(z) =
lim 9,f(2) in R, it z=0.

z—0

This operator has correct eigenvalue relationships for analogue exponential Fourier analysis using the func-
tions and orthogonalities of [9].
The ¢%-analogue Fourier transform we employ to make our constructions and results in this paper is based

on analogue trigonometric functions and orthogonality results from [9] which have important applications to
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g-deformed quantum mechanics. This transform generalizing the usual Fourier transform, is given by
+oo .
Fo( =K / —itw; ¢*)dgt, wER,.
In this paper we study the Fourier multiplier operators 7, defined for f € L(QI by
Tnf(z) == ]'—(;1 (maFy(f)) (z), xRy,

where the function m, is given by
me(z) = m(azx).

These operators are a generalization of the multiplier operators 7, associated with a bounded function m
and given by T,,(¢) = F~1(mF(yp)), where F(p) denotes the ordinary Fourier transform on R"™. These
operators made the interest of several Mathematicians and they were generalized in many settings, (see for
instance [1,2,14,18]).

This paper is organized as follows. In Section 2, we recall some basic harmonic analysis results related
with the g-Rubin’s operator 9, and we introduce preliminary facts that will be used later.

In section 3, we study the ¢?-Fourier L2-multiplier operators T, and we give for them a Plancherel formula
and pointwise reproducing formulas. Afterward, we give Calderén’s reproducing formulas by using the theory
of g2-analogue Fourier transform.

The last section of this paper is devoted to giving best approximation for the operators 7, and good

estimates of the associated extremal function on the g?-analogue Sobolev type space H, studied in [15-17].

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, we assume 0 < ¢ < 1 and we refer the reader to [5,7] for the definitions and
properties of hypergeometric functions. In this section we will fix some notations and recall some preliminary

results. We put R, = {£¢" : n € Z} and Hiq =R, U {0}. For a € C, the ¢-shifted factorials are defined by

n—1 ')
(@qo=1 (aiqn=][0-ad*)n=12.; (a¢)= ][0~ ad".
k=0 k=0
We denote also
1—q° (4 9)n
= , a€C and [n],)=-—"—""—, nelN
A g-analogue of the classical exponential function is given by (see [11,12])
L2 e 2 o e 2
e(z;q%) = cos(—iz; ¢°) +isin(—iz; ¢°), (2.1)
where
( +1) +oo +1)( )n 2n+1
cos(z; ¢°) Z q 2n] ., sin(z;¢%) Z q m, (2.2)

n=0
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satisfying the following inequality for all z € R,

cos(z;¢%)| < ., sin(z;¢?)| < and l|e(iz; ¢?)| < . 2.3
jcostei ) (¢ 9o ( q)|*(q;q)oo el q)|7(QQQ)oo (23)
The g-differential-difference operators is defined as (see [11,12])
—1 —a=1.) Caz) — 2f(—
o 2) + fq2) = flaz) + f=a2) = 20(=2)
21 —q)z

8qf(z) =

lii%aqf(z) in R, if 2z=0

and we denote a repeated application by
Ol =1 0yt f=040;F)

The g-Jackson integrals are defined by (see [6])

a too
/O f@)dgr = (1-q)ay ¢ f(ag",
n=0

b +oo
[ H@dae = (103 " 0500") - af(ag")
and

+o0 +oo
| f@da=0-a 3 i) + )

provided the sums converge absolutely.

In the following we denote by

e C,40 the space of bounded functions on R, continued at 0 and vanishing a oco.

e (7 the space of functions p-times g-differentiable on R, such that for all 0 <n < p. 9% f is continuous
on Ry,

e D, the space of functions infinitely g-differentiable on R, with compact supports.

e S, stands for the g-analogue Schwartz space of smooth functions over R, whose g-derivatives of
all order decay at infinity. S, is endowed with the topology generated by the following family of
semi-norms:

llullar,s,(f) == sup (1+ |x|)M|6§u(x)| forall weS, and M eN.
zeR;E<M

o &', the space of tempered distributionf on R, it is the topological dual of S,.
o = {151l = (P 1@Pa) < o).

o L2 = {1 1 lgoe = suDser, |f(@)] < o0} .
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The ¢?-Fourier transform was defined by R. L. Rubin defined in [11], as follow

+oo
Fo(H)(z) = K[ f(t)e(—itw;qQ)dqt, z € Ry

where
_ (#6)
2(¢% %) o0 (1 — q)?

To get convergence of our analogue functions to their classical counterparts as ¢ T 1 as in [9,12], we impose

the condition that 1 — ¢ = ¢®>™ for some integer m. Therefore, in the remainder of this paper, letting ¢ 1 1

subject to the condition
log(1 —q)
log(q)
It was shown in ( [4,11]) that the ¢>-Fourier transform F, verifies the following properties:

€ 2Z.

(a) If f, uf(u) € L}, then
0g(Fq)(F)(x) = Fy(—iuf(u))(x).
(b) If f, 8f € L}, then

Fq(0q(f)) () = iwFo(f)(x). (2.4)
(c) If f € L}, then Fy(f) € Cq,0 and we have
2K
[Fa(Fllg.o0 < mﬂfﬂq,l- (2.5)

(d) If f e Lé, then, we have the reciprocity formula
+oo
VteR,, f(t)=K F, () (@)e(ita; ¢*)dya. (2.6)

o0

(e) The g*-Fourier transform F, is an isomorphism from S, onto itself and we have, for all f € S,

Fr @) = Fo(5)(—2) = Fy(Da). @7

(f) Fq is an isomorphism from L2 onto itself, and we have

1Fo(Nll2g = 12, VS € L] (2.8)
and
+oo
VteR,, f(t)=K Fu () (@)e(it; ¢*)dyz.

The g-translation operator 74.,,x € R, is defined on Lé by (see [11])
e 2 2
Ta.y(f)(2) = K Fa(N)@)elitz; ¢")e(ity; ¢")dgt, y € Ry,

— 00

74.0(f)(@) = (f)(2).

It was shown in [11] that the g-translation operator can be also defined on Lg. Furthermore, it verifies the

following properties
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(a) For f,g € L, we have
T(Lyf(x) = Tq,acf(y)a V.Z‘, Yy € Rq
and
400 +oo ~
| rheos@ie = [ f@no o v ek,
(b) Forall f € L} and all y € Ry, we have(see [3])
—+oo +oo
/ Tgu(f)(@)dgx = / f(z)dqz. (2.9)
(c) For ally € R, and for all f € LL ;1 <p < oo, we have 7, ,(f) € L? (see [3]) and
I7q.yfllap < M| fllgps (2.10)
where
M= 4(_3—‘1)"° +2C, with C=K2[le(-, ) looqllels a1 (2.11)
(1-9)2q(q, )
(d) 74y f is an isomorphism for f € Lg onto itself and we have
Iraflaz < ——lflazs ¥y e R (2.12)
Tq, 2 < —— 2, Yy ) .
q,yJ 11g,2 (q, q)oo q,2 q
(e) Let f e L2, then
fq(Tq,yfx)‘) = e(iAy;qQ)fq(f)()\), Yy € IFiq- (2~13)

The g-convolution product is defined by using the g-translation operator, as follow For f € Lg and g € L}I,

the g-convolution product is given by

+oo
fxgly) = K/_ Tquf(@)g(x)dg.

The g-convolution product satisfying the following properties:

(a) frg=gxf.

(b) Vfig € LN L, Folf *q9) = Folf)Fa(9)-

() Vfig€S,, frqg€S,

(d) f*g e L2 if and only if F,(f)F,(g) € L2 and we have

Fo(f *9) = Fo(f)Fq(9)-
(e) Let f,g € L2. Then we have
1 % 91132 = Kl Fe())Fa(@7.25

and

f*ngq_l(fq(f)fq(g))-

(2.14)

(2.15)



Int. J. Anal. Appl. 18 (3) (2020)

371

(f) If f,g € L} then f*g € L and

1+ 9llqn = KM fllg1llgllq1-

3. L2-MULTIPLIER OPERATORS FOR THE ¢-RUBIN-FOURIER TRANSFORM

(2.16)

In this section we study the ¢2-Fourier-multiplier operators and we establish theirs Calderén’s reproducing

formulas in L2-case.

Definition 3.1. Leta € R(‘;, m € Lﬁ and f a smooth function on R,. We define the q*-Fourier L?-multiplier

operators Tp, for a regular function f on R, as follow

where the function m, is given by

mq(x) = m(az).

Remark 3.1. Leta € R;, m € Lg and f, we can write the operator T, as

where
_ 1__ x
Fitma) @) = F; m)(5)
Proposition 3.1. (i) If m € Lﬁ and f € Lé, then T, f € Lg, and we have
2K
Tm < ————m .
[T fllq.2 a@ 0w [mllg2llfllaa

(i) If m € Ly® and f € L2, then T, f € L?I, and we have

q’
[T Flla2 < llmlloo,qll fllq,2-

(iii) If m € L2 and f € L2, then Ty f € L°, and we have

mmwamwmmwmwM,m&

and

2K
[T fllg.00 < m\\mllq,zllfllq,z-
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Proof. i) Let m € L7, and f € L'. From the definition of the ¢*-Fourier L*-multiplier operators (3.1) and

relations (2.5) and (2.8) we get that the function T, f belongs to L2, and we have

[Tmfllaz = lImaFqe(f)llgz2
1
< ﬁllml 0.2 F4(F)llg.00
2K
< lmlg.2]lfllq.1-

Val(q, q)so

ii) The result follows from the Plancherel Theorem for the Rubin operator.

iii) Let m € Lg, and f € Lg, then from inversion formula we get 7,, f € Lg°, and by relation (2.5) we obtain

2K
1T Fllgoe = Ty ImaFalFlg

then, using Holder’s inequality, we get

2K

[T fllg.00 < m\\mllq,zllfllq,z-

In the following, we give Plancherel and pointwise reproducing inversion formulas for the ¢2-Fourier-

multiplier operators 7,,.

Theorem 3.1. Let m be a function in Lg satisfying the admissibility condition:

i d
/ m@P =1, zeR, (3.3)
0

i) Plancherel formula: For all f in Lg, we have

oo d oo
| Tt =k [Py

i1) First Calderdén’s formula: Let f be a function in Lé such that F,f in Lé then we have

dqa

f(x)/ooo (Tmf*]:(;l(mia)) (x) , TER,

a

Proof. 1) According to identity (2.14) and relation (3.2) we have

dqa > d
| oimae s ~ [ Hff(ma)mz,g%“
0 0

2da

Il
=
\

|ma

K / Fola) ( | dq“) Iy
— 00 0 a
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The result follows from Plancherel Theorem (2.8) and the assumption (3.3).

ii) Let f be a function in L}, then

| Turemm) @ = [ (5 [ Tsm 5 ) tdu )

From Proposition 3.1 i), relation (2.12) and Plancherel Theorem, it is obvious that T, f, 7. (F, ' (a)) € L2.

After that, according to relation (2.13), identity (3.1) and Plancherel Theorem of the ¢-Fourier transform,

we obtain

| Tt r ) 0% =k [ (/ myq)f(fxy)ma(ndqy)d

Since

/OOO (/oo e(iwy;qQ)fq(f)(y)lma(y)Iquy> S92 <N Fy()llgn < o0,

— 00 a

then, by Fubini’s theorem, we have

|t ) @% = k[ iR ([ im0 ) dy

a

= K/jo e(ixy;qQ)}"q(y)dqy = f(x).

We need the following technical lemma to establish the Calderén’s reproducing formulas for the ¢?-Fourier

L?-multiplier operators.
Lemma 3.1. Let m be a function in L?] N L satisfy the admissibility condition (3.8). Then the function

)
d
= / [m(a)[? =L
- a

belongs to Li for all0 < v < § < oo and we have

D, 5(x) € L2N LY.

Proof. Using Holder’s inequality for the measure d%, we get

s
\q)%(;(x)|2 <In (5/7)/ |m(ax)|4@, r € Ry.

~

125, 121,2 < In(d/y) [/6 (/O; |m(a:1:)|4dqa:> %a
In (6/7) /j (/O:O |m(x)|4dqx> %

1
< (7— )m(a/w Iml12 sllml . < oo,

Therefore,

IN

S
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On the other hand, from the admissibility condition (3.3), we get

H‘I)%ti q

,ooglv

which completes the proof. O

Theorem 3.2. (Second Calderén’s formula) Let f € L2 m € L2 N Ly° satisfy the admissibility condition

(3.3) and 0 < v < 6 < 00. Then the function

)
1 dqa
Frs(@) :/ (Tonf « F ) )92, 2 e R,
¥
belongs to Lg and satisfies
li — =0. 3.4
(%5)5[(10700) [ fr.6 = fllg.2 (3.4)

Proof. Let f be a function in L2, and m € L7 N L°, then

| Turemm) @ = [ (5 [ Tsm (5 m) )

According to Proposition 3.1, relation (2.12) and Plancherel Theorem, it is obvious that

T+ Ta,e (Fy H(Mq)) € L2. Then, from relation (2.13) and the identity (3.1), we obtain

o) =5 [ ([ etz )

By Fubini-Tonnelli’s theorem, Hélder’s inequality and Lemma 3.1, we get

5 s poo . )
/ (/— |e(l$y7q2)]:q(f)(y)||ma< )‘ d ) da S ﬁ‘/_ |]:q(f)(y)|q)'y’6(y)dqy
2
< m“f”qa\l@%é g2 < 00.

Then, according to Fubini’s theorem and the inversion formula, we have

K [ elirna (/ may) 222 )

K / e(izy, @) Fy(F) ()5 (y)dqy

= q [fq(f)q)wé}( )

fv8(x)

On the other hand, the function ®, 5 belongs to Lg® which allows to see that f, s belongs to Li and using
the identity (2.15), we obtain

‘Fq(f’y,zi) = ]-_q(f)CI),Y’(;,

By the Plancherel formula we get

1 £y.5 = fl52 = /OO Fo (NP = @45(y))*dgy.

— 00
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The the admissibility condition (3.3) leads to

lim o, 5(y) =1, yeR,

(7,8)=(0,00)
and
Fo(H WP = 255())* < [F(Hw)]*
Finally, the relation (3.4) follows from the dominated convergence theorem. ]

4. THE EXTREMAL FUNCTION ASSOCIATED WITH q2—FOURIER L2-MULTIPLIER OPERATORS

In this section, we study the extremal function associated to the ¢?-Fourier L2-multiplier operators.

Let s € R and 1 < p < oo, the g?-analogue Sobolev type spaces is defined in [15] by
Wb ={ueS,: (1+[¢)2Fy(u) € L2}
In the particular case p = 2, we denote W, by H; which provided with the inner product

“+o0 -
(1, 0}y = / (1 + €2)° Fy(u) () Fy () (€ gt

— 00

and the norm
HuHH; =1/ (u, U)H-;-
H; is a Hilbert space satisfying the following properties

(a) HY = L2

(b) For all s > 0 the space H} is continuously contained in L? and we have

1 lla.2 < 11f 1l (4.1)

Proposition 4.1. Let m be a function in Ly°. Then the q%-Fourier L?-multiplier operators T, are bounded

and linear from H; into Lg and we have for all f € H;

[T fllg.2 < llmllg,c0ll fll2-
Proof. Let f € H;. According to Proposition 3.1 (ii), the operator 7,, belongs to Lg and we have

[T fllg.2 < lImllg,00ll f

q,2:

On the other hand, by the inequality (4.1) we have [|f|[¢,2 < |[fl3;, which gives the result. O
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Definition 4.1. Letn > 0 and let m be a function in Lg®. We denote by (u, U>7-lf,,n the inner product defined

on the space Hy by
(£ Dz =nlf g + (T f . Tng)a,2 (4.2)
and the norm

1Fl#gm = \/Fs Pz -

It is easy to show the following results.

Proposition 4.2. Let m be a function in L? and f in H;

(i) The norm | - ||z, satisfies:

1 1Bes =l 1B + 1Ton F12.-

(i) The norms || - |

My and -1

ny are equivalent and we have

VIl < A Fllegn < g fn+ ImllF oo 1115

Theorem 4.1. Let s > & and m be a function in LZ°. Then the Hilbert space (Hg, (-, ")uz,y) has the following

reproducing Kernel

[ elizg, ¢?)e(—iy€, ¢°)
Vol = [ SR R -

such that
(i) For all y € Ry, the function x — W ,(x,y) belongs to H.

(ii) For all f € H; and y € Ry, we have the reproducing property

<f7 \I/s,n('a y)>7~lf1,n = f(y)
(i4i) The Hilbert space (M, (-, '>H;) has the following reproducing Kernel

[ e(izg, ¢)e(—iyE, ¢°)
e = [y

Proof. (i) Let y € R, and s > 1. From the relation (2.3), we show that the function

6(72@[6, q2)
n(1+ [€7)° + [ma(§)[?

belongs to L}I N Lg. Hence the function ¥, ,, is well defined and by the inversion formula, we obtain

dy(E)- (4.4)

‘Py5§4>

U, n(z,y) = f;l(wy)(x), z € R,.
On the other hand, using Plancherel theorem, we get that ¥, , (-,y) belongs to L?I and we have

_ )
f"q (\PS,U(',y)) (5) - 77(1 + |£‘2)9 + |ma(£)|2, 5 S Rq. (45)

Therefore, by the identity (2) we obtain
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(¢,9)
|]:q (\Ils,n('7y)) @< Wa

and
1513 < (20( @)oo) AL+ 2) 5 lg1 < o0
This proves that for every y € Ry, the function ¥y, (-,y) belongs to H;.

(ii) Let f € H; and y € R;. According to the definition of inner product (4.2) and identity (4.5), we

obtain
oo

Vel = [ elint @) F(€)du(0)
On the other hand, the function & — (1 + [¢]?)%/2 belongs to L2 for all s > 1/2. Therefore, the function
Fq(f) belongs to L, and we have
(fs Vs ) rgm = f(y)-

(iii) The result is obtained by taking m a null function and n = 1. O

The main result of this section can be stated as follows.

Theorem 4.2. Let s > % and m be a function in Ly° and a > 0. For any h € L?I and for any n > 0, there

exists a unique function fy, . where the infimum
h,

inf {n]|f]

fers %%; + [l — Tmflli,z} (4.6)

is attained. Moreover the extremal function fy, . is given by

Fona) = [ 8 (47)

o0

where

00 ; 2
Ounli) = [ TG gt )

Proof. The existence and unicity of the extremal function f; , , satisfying (4.6) is given by [8,10,13]. On

the other hand from Theorem 4.1 we have

Frna @) = (s T (W (5 9))) g 2-

From Proposition 3.1 and identity (4.5) we obtain

68717(1'7?/) = Tm<ws,n(ay))(m)

/°° ma(§)e(izg, ¢*)
—oo N1+ [E17)* + [ma(§)

|2 6(—’Ly£7 q2)dq§
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Theorem 4.3. Let s > % and m be a function in Ly and h € Lg. Then the extremal function f;,h’a satisfies

the following properties:

_ ma(§)
n(1+[517)* + [ma (&)

Fo(Fn,a) (&) sFa()(E), £€Ry

and

1
* ZS < h
1fhallfes < 477|| |

2
q,2°

Proof. Let y € Ry, then the function

Me (g)@(—lyé_, q2)
n(1+[€12)° + [ma(§)[?

belongs to Lé N Lg and by the inversion formula we obtain

Gy 1§ —

@Sm(gj?y) = f;l(gy)(x), HAIS Rq-

Hence, by Plancherel formula, we have ©,,(-,) belongs to L2 and

fona) = [ R AOGRGLE

_ / ma(§)Fq(h)(€)
—oo N1+ [E[7)* + [ma(§)

2 e(iyg, q2)dq§-

On the other hand, the function
ma(§)Fq(h)(§)

n(1+[€1%)* + [ma(&)[?
belongs to L, N L2 and by the inversion formula we obtain

F:.&—

Fona(y) = FgH(F)(y)-
Afterwards, by Plancherel formula, it follows that f, . belongs to Li and we have

] __ ma(§F(h)(E)
]‘—q(fn,h,a)(f) - ,'7(1 + |€|2)5 + |ma(§)‘2, 5 € Rq.

Hence

ma(§)Fy(h)(€)
n(1+[§17)° + [ma (&)

L+ 1€ |F ()@ = (1 +1gP)

@ me|
1+ Py P

1 2
S [Fa(R)(E)]” -

IN

(1+1*)

Finally, using Plancherel theorem, we obtain

. 1
15 mall3e; < E||h| 2.2
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Theorem 4.4. (Third Calderén’s formula). Let s > 1 5, M be a function in Lg° and f € H,. The extremal
function given by
= [ Tus@. i, (48)
satisfies
1. * - s = 0
S e = Fllwg

Moreover, {fy ,}n>0 converges uniformly to f when n converge to 0t.

Proof. Let f € Hg, h =Ty f and f; , = f;, .- According to Proposition 4.1 the function h belongs to Lg.
From the definition of the ¢?-Fourier-multiplier operators 7,, and Theorem 4.3, we obtain

ma (9]
(1 +[€2)° + [ma(&)]

‘FQ(f;]k,a)(g): qu(f)(§)7 §ER,.

Hence, it follows that

il o PP P (4.9)

Faql ;ya - e = n(1+ [€]2)* 4+ |ma(§)]? !

Therefore,

[T POERROEWNEOR,
W50 == | (11 + E2)° + Ima( @) "

Then, from the dominated convergence theorem and the following inequality

(1 + 1€1%)% 1 F (N (O
(n(1 + [€[2)* + [ma(€)2)* ~

< L+ [EP)IF (NP,

we deduce that

o
im0~ f

’HZ - 0
On the other hand, the function & — (1 + [£]?)~%/2 belongs to L2 for all s > 1/2. Therefore, the function

F,(f) belongs to L<11 ﬂLg for all f € H;. Then, according to (4.9) and the inversion formula for the ¢*-Fourier

transform, we get

] e [T AP F(AE) o
f ,a(y)_f(y) _K/—oo ,,7(1+|£‘ ) +|ma(£)|26(zy£aq )dq.’II

By using the dominated convergence theorem and the fact

(L + [€1%)°|F4 (N
n(L+[E2)* + [ma(€)

E < [Fo(HE],

we deduce that

lim - sup [|.f; . (y) = f(y)[| = 0.

n—0% yeR,

which completes the proof of the Theorem. |
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