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Abstract. In this paper, we are concerned with one of the difficult class of optimization problems called

the interval-valued optimization problem with vanishing constraints. Sufficient optimality conditions for a

LU optimal solution are derived under generalized convexity assumptions. Moreover, appropriate duality

results are discussed for a Mond-Weir type dual problem. In addition, numerical examples are given to

support the sufficient optimality conditions and weak duality theorem.

1. Introduction

Due to the mathematical challenges and important roles in various fields, mathematical programs with

vanishing constraints have attracted many mathematicians in the past decade. Mathematical programming

problem with vanishing constraints is a constrained optimization problem and it is closely related to the

Mathematical programs with equilibrium constraints, see for example [9, 10, 14]. This problem was first

studied by Achtziger and Kanzow in [2] and this serves as a model for many problems from topology and

structural optimization (see [2, 5]). For Mathematical programming problems with vanishing constraints,
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it is well known that the usual nonlinear programming constraint qualifications such as Slater constraint

qualification, Mangasarian-Fromovitz constraint qualification, Cottle constraint qualification and linear in-

dependence constraint qualification do not hold (see [12]), while Mishra et al. [12] proved that the standard

generalized Guignard constraint qualification holds in many situations, and some sufficient conditions are

presented in [12].

The Guignard constraint qualification (GCQ) was introduced by Guignard [8] and is one of the weakest

among the most prominent constraint qualifications such as the Slater constraint qualification [19], Abadie

constraint qualification [1], Mangasarian-Fromovitz constraint qualification [11], Cottle constraint qualifica-

tion [7] and linear independence constraint qualification etc. For more information and inter-relation between

these constraint qualifications one can see the survey papers [15,22].

In recent years, a number of approaches have been developed to deal with interval-valued optimization

problems. In [24, 25], Wu derived Karush-Kuhn-Tucker type optimality conditions for a optimization prob-

lem with an interval-valued objective function. Further, the Karush- Kuhn-Tucker type necessary optimality

conditions for a optimization problem in which objective and constraints functions are assumed to be interval

valued were investigated by Singh et al. [17]. However, optimality conditions for an interval-valued multiob-

jective programming with generalized differentiable functions (viz. gH-differentiable functions) are discussed

in [18]. Bhurjee and Panda [6] provided an overview of an interval-valued optimization problem by developing

a methodology to study the efficient solution for an interval-valued optimization problem. For more details

related to interval-valued optimization problems, we refer to the papers (see, for example [3,13,16,20,23,26]).

To the author’s knowledge, there are no results for an interval-valued mathematical programming problem

with vanishing constraints in the literature. Therefore, this paper focuses on an interval-valued mathemat-

ical programming problem with vanishing constraints to explore the sufficient optimality conditions and

Mond-Weir type duality results.

The rest of the article is organized as follows: Some background material and preliminary definitions are

provided in Section 2. The sufficient optimality conditions for a LU optimal solution for considered problem

under generalized convexity assumptions are given in Section 3. In Section 4, weak, strong and strict

converse duality theorems are discussed for a Mond-Weir type dual model. Finally, Section 5 is devoted to

the conclusion.

2. Preliminaries

For a nonempty subset Q of Rn, we use the notations clQ and clcoQ to denote the closure of Q and

closure of the convex hull of Q, respectively. Let Θ be the set of all closed and bounded intervals in R. Let

Θ1 = [τL, τU ],Θ2 = [ρL, ρU ] ∈ Θ, then we have

(i) Θ1 + Θ2 = {τ + ρ | τ ∈ Θ1 and ρ ∈ Θ2} = [τL + ρL, τU + ρU ],
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(ii) −Θ1 = {−τ | τ ∈ Θ1} = [−τU ,−τL],

(iii) Θ1 −Θ2 = Θ1 + (−Θ2) = [τL − ρU , τU − ρL],

(iv) k + Θ1 = {k + τ | τ ∈ Θ1} = [k + τL, k + τU ],

(v) kΘ1 = {kτ | τ ∈ Θ1} =


[kτL, kτU ], if k ≥ 0,

[kτU , kτL], if k < 0,

where k is a real number.

For Θ1 = [τL, τU ] and Θ2 = [ρL, ρU ], the order relation ≤LU is defined as follows:

(i) Θ1 ≤LU Θ2 if and only if τL ≤ ρL and τU ≤ ρU .

(ii) Θ1 <LU Θ2 if and only if Θ1 ≤LU Θ2 and Θ1 6= Θ2.

It is obvious that, Θ1 <LU Θ2 if and only if

τL < ρL and τU < ρU ,

or, τL ≤ ρL and τU < ρU ,

or, τL < ρL and τU ≤ ρU .

An interval-valued function Ψ : Rn → Θ can be written as Ψ(x) = [ΨL(x), ΨU (x)], where ΨL(x), ΨU (x)

are real-valued functions satisfying the condition ΨL(x) ≤ ΨU (x) and Θ be the set of all closed and bounded

intervals in R. In the present analysis, we consider the following inter-valued optimization problem with

vanishing constraints:

(IVVC) min
x∈F

Ψ(x) = [ΨL(x),ΨU (x)]

subject to

ϕi(x) ≤ 0, ∀i = 1, 2, ..., p,

ζi(x) = 0, ∀i = 1, 2, ..., q,

`i(x) ≥ 0, ∀i = 1, 2, ..., r,

Φi(x)`i(x) ≤ 0, ∀i = 1, 2, ..., r,

where Ψ : Rn → Θ is an interval-valued function and ΨL, ΨU , ϕi, ζi, `i,Φi : Rn → R are assumed to be

continuously differentiable functions. The feasible region is given by

F = {x ∈ Rn|ϕi(x) ≤ 0, ∀i = 1, 2, ..., p,

ζi(x) = 0, ∀i = 1, 2, ..., q,

`i(x) ≥ 0, ∀i = 1, 2, ..., r,

Φi(x)`i(x) ≤ 0, ∀i = 1, 2, ..., r}.
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Definition 2.1 (Sun and Wang [21]). A point ā ∈ F is said to be a LU optimal solution to (IVVC), if there

exists no x0 ∈ F such that Ψ(x0) <LU Ψ(ā).

Let x∗ ∈ F be any feasible solution of the (IVVC). The following index sets will be used in the sequel.

Λϕ = {i ∈ {1, 2, ..., p}|ϕi(x∗) = 0},

Λζ = {1, 2, ..., q},

Λ+ = {i ∈ {1, 2, ..., r}|`i(x∗) > 0},

Λ0 = {i ∈ {1, 2, ..., r}|`i(x∗) = 0}.

Furthermore, the index set Λ+ can be divided into the following subsets

Λ+0 = {i ∈ {1, 2, ..., r}|`i(x∗) > 0,Φi(x
∗) = 0},

Λ+− = {i ∈ {1, 2, ..., r}|`i(x∗) > 0,Φi(x
∗) < 0}.

Similarly, the index set Λ0 can be partitioned in the following way

Λ0+ = {i ∈ {1, 2, ..., r}|`i(x∗) = 0,Φi(x
∗) > 0},

Λ00 = {i ∈ {1, 2, ..., r}|`i(x∗) = 0,Φi(x
∗) = 0},

Λ0− = {i ∈ {1, 2, ..., r}|`i(x∗) = 0,Φi(x
∗) < 0}.

Also, for x∗ ∈ F, we define the sets Qk, Q
k
, k = L,U and Q as follows:

Qk =

{
x ∈ Rn|Ψi(x) ≤ Ψi(x∗),∀i = L,U, i 6= k,

ϕi(x) ≤ 0, ∀i = 1, 2, ..., p,

ζi(x) = 0, ∀i = 1, 2, ..., q,

`i(x) ≥ 0, ∀i = 1, 2, ..., r,

Φi(x)`i(x) ≤ 0, ∀i = 1, 2, ..., r

}
.

Q
k

=

{
x ∈ Rn|Ψi(x) ≤ Ψi(x∗),∀i = L,U, i 6= k,

ϕi(x) ≤ 0, ∀i = 1, 2, ..., p,

ζi(x) = 0, ∀i = 1, 2, ..., q,

`i(x) = 0, Φi(x) ≥ 0, ∀i ∈ Λ0+,

Φi(x) ≤ 0, `i(x) ≥ 0, ∀i ∈ Λ0− ∪ Λ00 ∪ Λ+0 ∪ Λ+−

}
.

and

Q =

{
x ∈ Rn|ΨL(x) ≤ ΨL(x∗), ΨU (x) ≤ ΨU (x∗),
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ϕi(x) ≤ 0, ∀i = 1, 2, ..., p,

ζi(x) = 0, ∀i = 1, 2, ..., q,

`i(x) = 0, Φi(x) ≥ 0, ∀i ∈ Λ0+,

Φi(x) ≤ 0, `i(x) ≥ 0, ∀i ∈ Λ0− ∪ Λ00 ∪ Λ+0 ∪ Λ+−

}
.

The linearizing cone Q
k
, k = L,U at x∗ ∈ F is given by

L(Q
k
;x∗) =

{
δ ∈ Rn|∇Ψi(x∗)

T
δ ≤ 0,∀i = L,U, i 6= k,

∇ϕi(x∗)T δ ≤ 0, ∀i ∈ Λϕ,

∇ζi(x∗)T δ = 0, ∀i ∈ Λζ ,

∇`i(x∗)T δ = 0, ∀i ∈ Λ0+,

∇`i(x∗)T δ ≥ 0, ∀i ∈ Λ00 ∪ Λ0−,

∇Φi(x
∗)T δ ≤ 0, ∀i ∈ Λ+0 ∪ Λ00

}
.

and the symbol T denotes the transpose of a matrix. The linearizing cone to Q at x∗ ∈ Q, given by.

L(Q;x∗) = L(Q
L

;x∗) ∩ L(Q
U

;x∗).

Definition 2.2. The tangent cone to Q at x∗ ∈ clQ is defined by

T(x∗) =

{
δ ∈ Rn|∃{xn} ⊆ F, {tn} ↓ 0 : xn → x∗ and

xn − x∗

tn
→ δ

}
The modified Guignard constraint qualification was introduced by Mishra et al. ( [12], Definition 6.14)

for a mathematical programming problem with vanishing constraints. From this perspective, we define the

modified Guignard constraint qualification (IVVC-GCQ) for an interval-valued optimization problem (IVVC)

as follows.

Definition 2.3. The modified Guignard constraint qualification (IVVC-GCQ) is said to holds at x∗ ∈ F, if

L(Q;x∗) ⊆ clcoT(QL;x∗) ∩ clcoT(QU ;x∗).

Mishra et al. [12] proved the Karush-Kuhn-Tucker type necessary optimality conditions for a multiob-

jective optimization problem with vanishing constraints under modified Guignard constraint qualification.

Along the lines of Mishra et al. ( [12] Theorem 6.4), if we set m = 2, we acquire the following Karush-Kuhn-

Tucker type necessary optimality conditions for (IVVC) as follow:
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Theorem 2.1. Let x∗ ∈ F be a LU optimal solution of (IVVC) such that (IVVC-GCQ) holds at x∗. Then

there exist 0 < λL, λL ∈ R, µi ∈ R+, i = 1, 2, ..., p, γi ∈ R, i = 1, 2, ..., q and η`i , η
Φ
i ∈ R, i = 1, 2, ..., r such

that

λL∇ΨL(x∗) + λU∇ΨU (x∗) +

p∑
i=1

µi∇ϕi(x∗) +

q∑
i=1

γi∇ζi(x∗)

−
r∑
i=1

η`i∇`i(x∗) +

r∑
i=1

ηΦ
i ∇Φi(x

∗) = 0, (2.1)

ϕi(x
∗) ≤ 0, µiϕi(x

∗) = 0, ∀i = 1, 2, ..., p, (2.2)

ζi(x
∗) = 0, ∀i = 1, 2, ..., q, (2.3)

η`i = 0, i ∈ Λ+, η
`
i ≥ 0, i ∈ Λ00 ∪ Λ0−, η

`
i free, i ∈ Λ0+, (2.4)

ηΦ
i = 0, i ∈ Λ+− ∪ Λ0− ∪ Λ0+, η

Φ
i ≥ 0, i ∈ Λ+0 ∪ Λ00, (2.5)

η`i `i(x
∗) = 0, ηΦ

i Φi(x
∗) = 0,∀i = 1, 2, ..., r. (2.6)

We define the following index sets which will be useful to prove the sufficient optimality conditions and

duality results.

Λ+
ϕ = {i ∈ {1, 2, ..., p}|µi > 0}, Λ+

ζ = {i ∈ Λζ |γi > 0},

Λ−ζ = {i ∈ Λζ |γi < 0}, Λ+
+ = {i ∈ Λ+|η`i > 0}

Λ+
0 = {i ∈ Λ0|η`i > 0}, Λ−0 = {i ∈ Λ0|η`i < 0},

Λ−0+ = {i ∈ Λ0+|ηΦ
i < 0}, Λ−00 = {i ∈ Λ00|ηΦ

i < 0},

Λ−+0 = {i ∈ Λ+0|ηΦ
i < 0}, Λ+

00 = {i ∈ Λ00|ηΦ
i > 0},

Λ−00 = {i ∈ Λ00|ηΦ
i < 0}, Λ+

+0 = {i ∈ Λ+0|ηΦ
i > 0},

Λ−+0 = {i ∈ Λ+0|ηΦ
i < 0}, Λ+

0− = {i ∈ Λ0−|ηΦ
i > 0},

Λ+
+− = {i ∈ Λ+−|ηΦ

i > 0}.

We now turn our attention to define some well-known concepts of convexity and generalized convexity for

a real valued differentiable function (see, for example, [4]).
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Definition 2.4. Let Ω : X ⊆ Rn → R be a continuously differentiable function. Then, Ω is said to be a

(strictly) convex at (x 6= x∗ ∈ X) x∗ ∈ X if for any x ∈ X, we have

Ω(x)− Ω(x∗)(>) ≥ (x− x∗)T∇Ω(x∗).

Definition 2.5. Let Ω : X ⊆ Rn → R be a continuously differentiable function. Then, Ω is said to be a

quasiconvex at x∗ ∈ X if for any x ∈ X, we have

Ω(x) ≤ Ω(x∗)⇒ (x− x∗)T∇Ω(x∗) ≤ 0,

equivalently

(x− x∗)T∇Ω(x∗) > 0⇒ Ω(x) > Ω(x∗).

Definition 2.6. Let Ω : X ⊆ Rn → R be a continuously differentiable function. Then, Ω is said to be a

(strictly) pseudoconvex at x∗ ∈ X if for any x ∈ X, we have

(x− x∗)T∇Ω(x∗) ≥ 0⇒ Ω(x)(>) ≥ Ω(x∗),

equivalently

Ω(x)(≤) < Ω(x∗)⇒ (x− x∗)T∇Ω(x∗) < 0.

3. Sufficient optimality conditions

In this section, we establish sufficient optimality conditions for the problem (IVVC) using the concept of

generalized convexity.

Theorem 3.1 (Sufficient optimality conditions). Let x̃ ∈ F and there exist 0 < λL, λU ∈ R, µi ∈ R+, i =

1, 2, ..., p, γi ∈ R, i = 1, 2, ..., q and η`i , η
Φ
i ∈ R, i = 1, 2, ..., r such that

λL∇ΨL(x̃) + λU∇ΨU (x̃) +

p∑
i=1

µi∇ϕi(x̃) +

q∑
i=1

γi∇ζi(x̃)

−
r∑
i=1

η`i∇`i(x̃) +

r∑
i=1

ηΦ
i ∇Φi(x̃) = 0, (3.1)

ϕi(x̃) ≤ 0, µiϕi(x̃) = 0, ∀i = 1, 2, ..., p, (3.2)

ζi(x̃) = 0, ∀i = 1, 2, ..., q, (3.3)

η`i = 0, i ∈ Λ+, η
`
i ≥ 0, i ∈ Λ00 ∪ Λ0−, η

`
i free, i ∈ Λ0+, (3.4)

ηΦ
i = 0, i ∈ Λ+− ∪ Λ0− ∪ Λ0+, η

Φ
i ≥ 0, i ∈ Λ+0 ∪ Λ00, (3.5)
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η`i `i(x̃) = 0, ηΦ
i Φi(x̃) = 0,∀i = 1, 2, ..., r. (3.6)

Further, assume that λLΨL(.) + λUΨU (.) is pseudoconvex at x̃ on F and that
p∑
i=1

µiϕi(.), ζi(.)(i ∈ Λ+
ζ ),

−ζi(.)(i ∈ Λ−ζ ), −`i(.)(i ∈ Λ+
+∪Λ+

0 ), `i(.)(i ∈ Λ−0 ), −Φi(.)(i ∈ Λ−0+∪Λ−00∪Λ−+0), Φi(.)(i ∈ Λ+
00∪Λ+

0−∪Λ+
+0∪

Λ+
+−) are quasiconvex at x̃ on F. Then x̃ is a LU optimal solution of the problem (IVVC).

Proof. Suppose contrary to the result that x̃ is not a LU optimal solution to the problem (IVVC), then by

Definition 2.1 there exists x0 ∈ F such that

Ψ(x0) <LU Ψ(x̃).

That is, 
ΨL(x0) < ΨL(x̃)

ΨU (x0) < ΨU (x̃)

, or


ΨL(x0) ≤ ΨL(x̃)

ΨU (x0) < ΨU (x̃)

, or


ΨL(x0) < ΨL(x̃)

ΨU (x0) ≤ ΨU (x̃)

.

Since λL > 0, λU > 0, therefore the above inequalities yield

λLΨL(x0) + λUΨU (x0) < λLΨL(x̃) + λUΨU (x̃),

which by pseudoconvexity of λLΨL(.) + λUΨU (.) at x̃ on F, we obtain

(x0 − x̃)T
[
λL∇ΨL(x̃) + λU∇ΨU (x̃)

]
< 0. (3.7)

For x0 ∈ F, µi ∈ R+, i = 1, 2, ..., p, we have µiϕi(x0) ≤ 0, i = 1, 2, ..., p, which in view of (3.2) implies that

p∑
i=1

µiϕi(x0) ≤
p∑
i=1

µiϕi(x̃),

which by quasiconvexity of
p∑
i=1

µiϕi(.) at x̃ on F, we get

(x0 − x̃)T
p∑
i=1

µi∇ϕi(x̃) ≤ 0. (3.8)

By similar arguments, we have

(x0 − x̃)T∇ζi(x̃) ≤ 0,∀i ∈ Λ+
ζ ,

−(x0 − x̃)T∇ζi(x̃) ≤ 0,∀i ∈ Λ−ζ ,

−(x0 − x̃)T∇`i(x̃) ≤ 0,∀i ∈ Λ+
+ ∪ Λ+

0 ,

(x0 − x̃)T∇`i(x̃) ≤ 0,∀i ∈ Λ−0 ,

−(x0 − x̃)T∇Φi(x̃) ≤ 0,∀i ∈ Λ−0+ ∪ Λ−00 ∪ Λ−+0,

(x0 − x̃)T∇Φi(x̃) ≤ 0,∀i ∈ Λ+
00 ∪ Λ+

0− ∪ Λ+
+0 ∪ Λ+

+−,
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which by the definition of index sets one has

(x0 − x̃)T
[ q∑
i=1

γi∇ζi(x̃)−
r∑
i=1

η`i∇`i(x̃) +

r∑
i=1

ηΦ
i ∇Φi(x̃)

]
≤ 0. (3.9)

On adding (3.7), (3.8) and (3.9), we get

(x0 − x̃)T
[
λL∇ΨL(x̃) + λU∇ΨU (x̃) +

p∑
i=1

µi∇ϕi(x̃) +

q∑
i=1

γi∇ζi(x̃)

−
r∑
i=1

η`i∇`i(x̃) +

r∑
i=1

ηΦ
i ∇Φi(x̃)

]
< 0,

which contradicts (3.1). This completes the proof of this theorem. �

Now, we verify the sufficient optimality conditions by the following example.

Example 3.1. Consider the following interval-valued optimization problem:

(IVVC-1) min
x∈F1

Ψ(x) = [ΨL(x),ΨU (x)] = [x+ x3, x5]

subject to

`1(x) = 1 + x3 ≥ 0,

Φ1(x)`1(x) = x(1 + x3) ≤ 0,

which is the form of (IVVC) with n = 1, p = q = 0 and r = 1. The feasible region of (IVVC-1) is

F1 = {x ∈ R|`1(x) ≥ 0, Φ1(x)`1(x) ≤ 0}.

Note that x̃ = 0 is a feasible solution of (IVVC-1) and it can be easily observe that there exist 0 < λL, λU ∈ R,

η`1, and ηΦ
1 ∈ R such that the relations (3.1)-(3.6) hold for the problem (IVVC-1). Also, it is not difficult

to see that λLΨL(.) + λUΨU (.) is pseudoconvex at x̃ on F1 and `1(x), Φ1(x) are quasiconvex at x̃ on F1.

Since all the assumptions of Theorem 3.1 are satisfied, then x̃ = 0 is a LU optimal solution of the problem

(IVVC-1).

4. Mond-Weir type duality

We present the following Mond-Weir type dual for (IVVC).

(IMWDVC) max Ψ(y) =
[
ΨL(y),ΨU (y)

]
subject to

λL∇ΨL(y) + λU∇ΨU (y) +

p∑
i=1

µi∇ϕi(y) +

q∑
i=1

γi∇ζi(y)

−
r∑
i=1

η`i∇`i(y) +

r∑
i=1

ηΦ
i ∇Φi(y) = 0, (4.1)



Int. J. Anal. Appl. 18 (5) (2020) 793

µi ≥ 0, µiϕi(y) ≥ 0, ∀i = 1, 2, ..., p, (4.2)

γi ∈ R, γiζi(y) = 0, ∀i = 1, 2, ..., q, (4.3)

η`i ≥ 0, ∀i ∈ Λ+, η
`
i ∈ R,∀i ∈ Λ0, (4.4)

−η`i `i(y) ≥ 0, ∀i = 1, 2, ..., r, (4.5)

0 < λL, λU ∈ R, ηΦ
i ≤ 0, ∀i ∈ Λ0+, η

Φ
i ≥ 0, ∀i ∈ (Λ0− ∪ Λ+−), (4.6)

ηΦ
i ∈ R, ∀i ∈ (Λ00 ∪ Λ+0), ηΦ

i Φi(y) ≥ 0, ∀i = 1, 2, ..., r. (4.7)

We denote by W1 the set of all feasible solutions of the problem (IMWDVC) and let prW1 = {y ∈

Rn|(y, λL, λU , µ, γ, η`, ηΦ) ∈W1} be the projection of the set W1 on Rn.

Now, we prove duality results between problems (IVVC) and (IMWDVC) under certain generalized con-

vexity assumptions imposed on the involved functions.

Theorem 4.1 (Weak Duality). Let x ∈ F and (y, λL, λU , µ, γ, η`, ηΦ) ∈W1. Further, assume that λLΨL(.)+

λUΨU (.) is pseudoconvex at y on F ∪ prW1 and that
p∑
i=1

µiϕi(.), ζi(.)(i ∈ Λ+
ζ ), −ζi(.)(i ∈ Λ−ζ ), −`i(.)(i ∈

Λ+
+ ∪Λ+

0 ), `i(.)(i ∈ Λ−0 ), −Φi(.)(i ∈ Λ−0+ ∪Λ−00 ∪Λ−+0), Φi(.)(i ∈ Λ+
00 ∪Λ+

0− ∪Λ+
+0 ∪Λ+

+−) are quasiconvex at

y on F ∪ prW1, then Ψ(x) ≥LU Ψ(y).

Proof. Suppose, contrary to the result, that

Ψ(x) <LU Ψ(y).

That is, 
ΨL(x) < ΨL(y)

ΨU (x) < ΨU (y)

, or


ΨL(x) ≤ ΨL(y)

ΨU (x) < ΨU (y)

, or


ΨL(x) < ΨL(y)

ΨU (x) ≤ ΨU (y)

.

Since λL > 0, λU > 0, therefore the above inequalities yield

λLΨL(x) + λUΨU (x) < λLΨL(y) + λUΨU (y),

which by pseudoconvexity of λLΨL(.) + λUΨU (.) at y on F ∪ prW1, we obtain

(x− y)T
[
λL∇ΨL(y) + λU∇ΨU (y)

]
< 0. (4.8)
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For x ∈ F, µi ≥ 0, i = 1, 2, ..., p, we have µiϕi(x) ≤ 0, i = 1, 2, ..., p, which in view of (4.2) implies that

p∑
i=1

µiϕi(x) ≤
p∑
i=1

µiϕi(y),

which by quasiconvexity of
p∑
i=1

µiϕi(.) at y on F ∪ prW1, we get

(x− y)T
p∑
i=1

µi∇ϕi(y) ≤ 0. (4.9)

By similar arguments, we have

(x− y)T∇ζi(y) ≤ 0,∀i ∈ Λ+
ζ ,

−(x− y)T∇ζi(y) ≤ 0,∀i ∈ Λ−ζ ,

−(x− y)T∇`i(y) ≤ 0,∀i ∈ Λ+
+ ∪ Λ+

0 ,

(x− y)T∇`i(y) ≤ 0,∀i ∈ Λ−0 ,

−(x− y)T∇Φi(y) ≤ 0,∀i ∈ Λ−0+ ∪ Λ−00 ∪ Λ−+0,

(x− y)T∇Φi(y) ≤ 0,∀i ∈ Λ+
00 ∪ Λ+

0− ∪ Λ+
+0 ∪ Λ+

+−,

which by the definition of index sets one has

(x− y)T
[ q∑
i=1

γi∇ζi(y)−
r∑
i=1

η`i∇`i(y) +

r∑
i=1

ηΦ
i ∇Φi(y)

]
≤ 0. (4.10)

On adding (4.8), (4.9) and (4.10), we get

(x− y)T
[
λL∇ΨL(y) + λU∇ΨU (y) +

p∑
i=1

µi∇ϕi(y) +

q∑
i=1

γi∇ζi(y)

−
r∑
i=1

η`i∇`i(y) +

r∑
i=1

ηΦ
i ∇Φi(y)

]
< 0,

which contradicts (4.1). This completes the proof of this theorem. �

Now, we verify the weak duality theorem by the following example.

Example 4.1. Consider the following interval-valued optimization problem:

(IVVC-2) min
x∈F2

Ψ(x) = [ΨL(x),ΨU (x)] = [x+ x3, x5]

subject to

`1(x) = x3 ≥ 0,

Φ1(x)`1(x) = (−2 + x)x3 ≤ 0,

which is the form of (IVVC) with n = 1, p = q = 0 and r = 1. The feasible region of (IVVC-2) is

F2 = {x ∈ R|`1(x) ≥ 0, Φ1(x)`1(x) ≤ 0}.
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For any feasible x ∈ F2, the corresponding Mond-Weir type dual problem for the primal problem (IVVC-2)

is given by

(IMWDVC-1) max Ψ(y) =
[
ΨL(y),ΨU (y)

]
= [y + y3, y5]

subject to

λL∇ΨL(y) + λU∇ΨU (y)− η`1∇`1(y) + ηΦ
1 ∇Φ1(y)

= λL + 3λLy2 + 5λUy4 − 3η`1y
2 + ηΦ

1 = 0,

η`1 ≥ 0, if 1 ∈ Λ+, η
`
1 ∈ R, if i ∈ Λ0,

ηΦ
1 ≤ 0, if 1 ∈ Λ0+, η

Φ
1 ≥ 0, if 1 ∈ (Λ0− ∪ Λ+−), ηΦ

1 ∈ R, if i ∈ (Λ00 ∪ Λ+0),

0 < λL, λU ∈ R,

−η`1`1(y) ≥ 0, ηΦ
1 Φ1(y) ≥ 0.

Let W2 be the set of all feasible solutions of the problem (IMWDVC-1) and note that, (y, λL, λU , η`1, η
Φ
1 ) =

(0, 1
2 ,

1
2 , 1,−

1
2 ) is a feasible solution for (IMWDVC-1). Furthermore, it is not difficult to see that λLΨL(.) +

λUΨU (.) is pseudoconvex at y on F2 ∪ prW2 and `1(.), Φ1(.) are quasiconvex at y on F1 ∪ prW2.

Also, for the feasible solutions x = 1 for (IVVC-2) and (y, λL, λU , η`1, η
Φ
1 ) = (0, 1

2 ,
1
2 , 1,−

1
2 ) for (IMWDVC-

1), we observe that

Ψ(x) >LU Ψ(y).

Hence the weak duality Theorem 4.1 is verified.

Theorem 4.2 (Strong Duality). Let x̃ be a LU optimal solution to the problem (IVVC) and the generalized

Guignard constraint qualification (IVVC-GCQ) is satisfied at x̃. Then there exist λ̃U > 0, λ̃L > 0, µ̃ ∈ Rp+,

γ ∈ Rq, η` ∈ Rr, and ηΦ ∈ Rr such that (x̃, λL, λU , µ, γ, η`, ηΦ) is a feasible solution for (IMWDVC) and

the two objective values are same. Further, if all the assumptions of the Theorem 4.1 are fulfilled, then the

point (x̃, λL, λU , µ, γ, η`, ηΦ) is a LU optimal solution of (IMWDVC).

Proof. By assumption x̃ is a LU optimal solution for (IVVC) and the generalized Guignard constraint

qualification (IVVC-GCQ) is satisfied at this point, then by Theorem 2.1, there exist λ̃U > 0, λ̃L > 0, µ̃ ∈ Rp+,

γ ∈ Rq, η` ∈ Rr, and ηΦ ∈ Rr such that the conditions (2.1)-(2.6) are satisfied. Thus, (x̃, λL, λU , µ, γ, η`, ηΦ)

is feasible in (IMWDVC), moreover, the corresponding objective values of (IVVC) and (IMWDVC) are equal.

Further, if (x̃, λL, λU , µ, γ, η`, ηΦ) is not a LU optimal solution to (IMWDVC), then there exists a feasible

solution (ỹ, λL, λU , µ, γ, η`, ηΦ) for (IMWDVC), such that the following inequality is satisfied

Ψ(x̃) <LU Ψ(ỹ).
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This is a contradiction to the Theorem 4.1. Hence (x̃, λL, λU , µ, γ, η`, ηΦ) is a LU optimal solution to

(IMWDVC). �

Theorem 4.3 (Strict Converse Duality). Let x̃ ∈ F and (ỹ, λ̃L, λ̃U , µ̃, γ̃, η̃`, η̃Φ) ∈W1 such that

λ̃LΨL(x̃) + λ̃UΨU (x̃) ≤ λ̃LΨL(ỹ) + λ̃UΨU (ỹ). (4.11)

Further, assume that λ̃LΨL(.) + λ̃UΨU (.) is strictly pseudoconvex at ỹ on F ∪ prW1 and that
p∑
i=1

µ̃iϕi(.),

ζi(.)(i ∈ Λ+
ζ ), −ζi(.)(i ∈ Λ−ζ ), −`i(.)(i ∈ Λ+

+ ∪ Λ+
0 ), `i(.)(i ∈ Λ−0 ), −Φi(.)(i ∈ Λ−0+ ∪ Λ−00 ∪ Λ−+0), Φi(.)(i ∈

Λ+
00 ∪ Λ+

0− ∪ Λ+
+0 ∪ Λ+

+−) are quasiconvex at ỹ on F ∪ prW1, then x̃ = ỹ.

Proof. Suppose, contrary to the result, that x̃ 6= ỹ. Since x̃ and (ỹ, λ̃L, λ̃U , µ̃, γ̃, η̃`, η̃Φ) are feasible solutions

in problems (IVVC) and (IMWDVC), respectively, then

p∑
i=1

µ̃iϕi(x̃) ≤
p∑
i=1

µ̃iϕi(ỹ),

which by quasiconvexity of
∑p
i=1 µ̃iϕi(.) at ỹ on F ∪ prW1, we get

(x̃− ỹ)T
p∑
i=1

µ̃i∇ϕi(ỹ) ≤ 0. (4.12)

By similar arguments as in Theorem 4.1, we have

(x̃− ỹ)T∇ζi(ỹ) ≤ 0,∀i ∈ Λ+
ζ ,

−(x̃− ỹ)T∇ζi(ỹ) ≤ 0,∀i ∈ Λ−ζ ,

−(x̃− ỹ)T∇`i(ỹ) ≤ 0,∀i ∈ Λ+
+ ∪ Λ+

0 ,

(x̃− ỹ)T∇`i(ỹ) ≤ 0,∀i ∈ Λ−0 ,

−(x̃− ỹ)T∇Φi(ỹ) ≤ 0,∀i ∈ Λ−0+ ∪ Λ−00 ∪ Λ−+0,

(x̃− ỹ)T∇Φi(ỹ) ≤ 0,∀i ∈ Λ+
00 ∪ Λ+

0− ∪ Λ+
+0 ∪ Λ+

+−,

which by the definition of index sets one has

(x̃− ỹ)T
[ q∑
i=1

γ̃i∇ζi(ỹ)−
r∑
i=1

η̃`i∇`i(ỹ) +

r∑
i=1

η̃Φ
i ∇Φi(ỹ)

]
≤ 0. (4.13)

On adding (4.12) and (4.13), we get

(x̃− ỹ)T
[ p∑
i=1

µ̃i∇ϕi(ỹ) +

q∑
i=1

γ̃i∇ζi(ỹ)−
r∑
i=1

η̃`i∇`i(ỹ) +

r∑
i=1

η̃Φ
i ∇Φi(ỹ)

]
≤ 0,

which together with (4.1), implies that

(x̃− ỹ)T
[
λL∇ΨL(y) + λU∇ΨU (y)

]
≥ 0.
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In view of strict pseudoconvexity of λ̃LΨL(.) + λ̃UΨU (.) at ỹ on F ∪ prW1, the above inequality gives

λ̃LΨL(x̃) + λ̃UΨU (x̃) > λ̃LΨL(ỹ) + λ̃UΨU (ỹ),

which contradicts (4.11). This completes the proof of this theorem. �

5. Conclusion

In this paper, we have derived sufficient optimality conditions for an interesting class of interval-valued

optimization problems with vanishing constraints under generalized convexity assumptions. Furthermore,

weak, strong and strict converse duality results for a Mond-Weir type dual model have been established. It

would be interesting to see whether the results derived in this paper hold for a non-differentiable multiple

interval-valued objective programming problems with vanishing constraints. We shall investigate it in our

forthcoming papers.
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