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Abstract. The problem of nonlinear ion-acoustic waves equation in a magnetized plasma, known as

Zakharov-Kuznetsov equation, is investigated by using symmetry analysis. The carryover of the symmetry

analysis has led to certain similarity reductions of this equation. Furthermore, exact solutions of similarity

reductions are obtained by modified Exp-Function method with computational symbolic. Some figures are

obtained to show the properties of the solutions.

1. Introduction

There are many well-known methods to obtain exact solutions [1−5]. In order to unite and widen various

specialized solution method for partial differential equations Lie introduced the notion of continuous groups

now know as Lie groups. contiuing his investigations he shown that partial differential equation can be

reduced to many ordinary differential equations which is led to varied solutions . In the last century, the

application of the Lie groups has been developed by a number of reserchers. Ovsiannikov [6], Olver [7],

Ibragimov [8], and Bluman et al. [9] are some of the mathematicians who have huge number of studies in

that field.
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Consider the nonlinear ion-acoustic waves equation which is called (1+3)-dimensional Zakharov-Kuznetsov

(Zk) equation [10, 11] in the following form:

ut + p1u ux + p2ux,x,x + p3ux,y,y + p4ux,z,z = 0 (1)

where p1, p2, p3 and p4 are nonzero constants. ZK [10] is described the diffusion of nonlinear ion-acoustic

waves in magnetized plasma [10]. This equation was devoted to study many properties including presence

and stability of solitary wave solutions for the ZK model [10, 13− 15].

2. Determination of the symmetries

Firstly, we shall conclude the similarity reductions using Lie group method [16 − 22]. In order to apply

Lie group method we can write the one parameter Lie group of infinitesimal transformations as follow:

t∗ = t+ εA(t, x, y, z, u) + o(ε2), x∗ = x+ εB(t, x, y, z, u) + o(ε2),

y∗ = y + εC(t, x, y, z, u) + o(ε2), z∗ = z + εD(t, x, y, z, u) + o(ε2),

u∗ = u+ εE(t, x, y, z, u) + o(ε2). (2)

If we set

∆ = ut + p1u ux + p2ux,x,x + p3ux,y,y + p4ux,z,z = 0 (3)

where subscripts t, x, y and z to the function u denote differentiation with respect to these variables. The

infinitesimal generator V associated with the above mentioned group of transformations can be presented as

following expression

V = A
∂

∂t
+B

∂

∂x
+ C

∂

∂y
+D

∂

∂z
+ E

∂

∂u
, (4)

when the following invariance condition is satisfied:

Γ(3)(∆) = 0, (5)

where Γ(3) is the third order prolongation of the operator V

Γ(3) = V + E[x]
∂

∂ux
+ E[t]

∂

∂ut
+ E[xxx]

∂

∂uxxx
+ E[xyy]

∂

∂uxyy
+ E[xzz]

∂

∂uxzz
, (6)

where the components E[x], E[xx], E[xyy], E[xz], E[t]....can be determined from the following expressions:

E[x] = DxE − utDxA− uxDxB,

E[xt] = DtE[s] − utxDtA− uxxDtB. (7)
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Substituting (3) into invariance condition (5), yields an identity components Ax, Axx, Bt, Bx, .... hence we

collect the coefficients of ux, ux,x,x,... and equate it to zero, which led to obtain a system of linear differential

equations of the infinitesimals A,B,C and E

Ax = Ay = Az = Au = At,t = 0,

By = Bz = Bu = Bt,t = 0, Bx =
1

3
At,

Ct = Cx = Bu = 0, Cy =
1

3
At, Cz =

−p3
p4

Dy,

Dt = Dx = Du = Dy,y = 0, Dz =
1

3
At,

−p21u2Bx + p1uAx − p1uBx − p1E +At = 0,

3p2Cx,x + p3Cy,y + p4Cz,z = 0, (8)

Solving resulting of partial differential equations system, we got:

A = c1t+ c2, B =
1

3
c1x+ p1c7t+ c4

C =
1

3
c1y − c3

p3
p4
z + c5, D =

1

3
c1z + c3y + c6,

E =
−2

3
c1u+ c7. (9)

We can be easily write the vector field operator V from (9) as

V = V1(c1) + V2(c2) + V3(c3) + V4(c4) + V5(c5) + V6(c6) + V7(c7), (10)

where

V1 = t
∂

∂t
+

1

3

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
− 2u

∂

∂u

)
,

V2 =
∂

∂t
, V3 =

−p3
p4

z
∂

∂y
+ y

∂

∂z
,

V4 =
∂

∂x
, V5 =

∂

∂y
, V6 =

∂

∂z
,

V7 = p1t
∂

∂x
+

∂

∂u
. (11)

The commutator relations are given in Table 1.
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Table 1: The commutator table

V1 V2 V3 V4 V5 V6 V7

V1 0 −V2 0 −1
3 V4

−1
3 V5

−1
3 V6

2
3V7

V2 V2 0 0 0 0 0 p1V4

V3 0 0 0 0 −V6 p3
p4
V5 0

V4
1
3V4 0 0 0 0 0 0

V5
1
3V5 0 0 V6 0 0 0

V6
1
3V6 0 −p3

p4
V5 0 0 0 0

V7
−2
3 V7 −p1V4 0 0 0 0 0

From the commutator relations in table 1, we utilized the following six non-equivalent possibilities of Lie

algebra

(I)V1 +m1V2 +m2V4 +m3V5 +m4V6 +m5V7,

(II)V2 +m1V4 +m2V5 +m3V6

(III)V4 +m1V5 +m2V7

(IV)V2 +m1V5 +m2V7

(V)V2 +m1V4 +m2V7

(VI)V2 +m1V4 +m2V5

3. Reductions and exact solutions

In order to obtain the invariant transformation, we can write the characteristic equation as follow

dt

A(t, x, y, z, u)
=

dx

B(t, x, y, z, u)
=

dy

C(t, x, y, z, u)
=

dz

D(t, x, y, z, u)
=

du

E(t, x, y, z, u)
. (12)

This equation is solved for the above six cases the invariant variables, then the corresponding reductions

to partial differential equations are obtained and by using the similarity transformations the govern partial

differential equations reduced to ordinary differential equations
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Table 2: The invariant variables and their corresponding partial differential equations

Case The invariant variables Corresponding partial differential equations

ζ1 ζ2 ζ3 u

I(i)
x−m5

2 p1t+n

(t+m1)
1
3

y+n3

(t+m1)
1
3

z+n4

(t+m1)
1
3

F

(t+m1)
2
3

+m5

2 2F+ζ1Fζ1+ζ2Fζ2+ζ3Fζ3-3p1FFζ1

-3p2Fζ1ζ1ζ1 -3p3Fζ1ζ2ζ2 -3p4Fζ1ζ3ζ3=0.

Case The invariant variables Corresponding partial differential equations

ζ1 ζ2 ζ3 u

I(ii)
x−m5

2 p1t+n

(t+m1)
1
3

y+n3

(t+m1)
1
3

z+n4

(t+m1)
1
3

F

(t+m1)
2
3

+m5

2 If we put p1FFζ1+(p2Fζ1ζ1ζ1+p3Fζ2ζ2

+p4Fζ3ζ3)ζ1=0, we conclude that

[2F+ζ1Fζ1+ζ2Fζ2+ζ3Fζ3 ]=0

II x−m1t y-m2t z-m3t F m1Fζ1+m2Fζ2+m3Fζ3−p1FFζ1

−p2Fζ1ζ1ζ1−p3Fζ1ζ2ζ2−p4Fζ1ζ3ζ3=0,

III t y-m1x z-m2x F Fζ1−p1F(m1Fζ1+m2Fζ2)−m1(p2m2
1

+p3)Fζ2ζ2ζ2−m2(3p2m2
1+p3m1)

Fζ2ζ2ζ3−m1(3p2m2
2+p4m1)Fζ2ζ3ζ3

−m2(3p2m2
2+p4)Fζ3ζ3ζ3=0

IV x y-m1t z-m2t F m1Fζ2+m2Fζ3−p1FFζ1−p2Fζ1ζ1ζ1

−p3Fζ1ζ2ζ2−p4Fζ1ζ3ζ3=0,

V x-m1t y z-m2t F m1Fζ1+m2Fζ3−p1FFζ1−p2Fζ1ζ1ζ1

−p3Fζ1ζ2ζ2−p4Fζ1ζ3ζ3=0,

VI x-m1t y-m2t z F m1Fζ1+m2Fζ2−p1FFζ1−p2Fζ1ζ1ζ1

−p3Fζ1ζ2ζ2−p4Fζ1ζ3ζ3=0,

where n3 = 3m3, n4 = 3m4, n = 3m2 − 9
2p1m2m5
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Case I(i):

In this case, we put θ = k1ζ1 + k2ζ2 + k3ζ3,then, the equation can be written in the form:

2F + θF ′ − 3p1k1FF
′ − 3k1(p2k

2
1 + p3k

2
2 + p4k

2
3)F ′′′ = 0. (13)

To obtain the solution for the ODE corresponding to this case, we assume that this solution takes the

following form

F = a0 + a1θ + a2θ
2 +

b1
θ

+
b2

θ2
. (14)

Substituting Eq. (14) into Eq. (13), equating to zero the coefficients of all powers of θ yields a set of

algebraic equations for a0, a1, a1, b1, b2,solving the system of algebraic equations with the aid of Maple, we

obtain the following results:- a0=a1=b1=b2=0, a1= 1
k1p1

, then, the final solution of Eq. (1) can be written

in the form:

u(t, x, y, z) =
1

k1p1(t+m1)
[k1(x− m5

2
p1t+ n) + k2(y + n3) + k3(z + n4)] +

m5

2
. (15)

Case I(ii): In this case we have to solve the following two PDEs

p1FFζ1+p2Fζ1ζ1ζ1+p3Fζ1ζ2ζ2+p4Fζ1ζ3ζ3 = 0, (16)

2F+ζ1Fζ1+ζ2Fζ2+ζ3Fζ3 = 0. (17)

We now introduce the simplified form of Lie-group transformations namely, the scaling group of transfor-

mation

F = eε
−
F , ζ1 = eε1

−
ζ 1, ζ2 = eε2

−
ζ 2, ζ3 = eε3

−
ζ 3. (18)

Substituting from (18) into (17) we have ε1 = ε2 = ε3 = −ε.

This mean that (16) is invariant under the transformation (18) and the characteristic equation can be

written as

dζ1
ζ1

=
dζ2
ζ2

=
dζ3
ζ3

=
−dF
F

(19)

We get the similarity variables

η1 =
ζ1
ζ2
, η2 =

ζ3
ζ2
, F =

f

ζ22
(20)

Substituting from (20) into (17) we find that it is satisfied. Also substituting from (20) to Eq.(16) we

obtain

p1ffη1 + p2fη1η1η1 + 12p3fη1 + 8p3η1fη1 + 8p3η2fη2

p3η
2
1fη1η1η1 + p3η

2
2fη1η1η2 + 2p3η1η2fη1η2η2 + p4fη1η2η2 = 0. (21)

By using θ = η1 + η2 (21) can be written in form

p1ff
′ + p2f

′′′ + 4p3(3 + 2θ)f ′ + (p3θ
2 + p4)f ′′′ + 4θ + θ2 + 2− θ = 0. (22)
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Using the same method in the previous case, hence, we have obtained the following exact solution to ODE

corresponding this case in the form f = −12(p2+p4)
p1θ2

, then the solution of Zk equation is

u(t, x, z) =
m5

2
− 12(p2 + p4)

p1(n+ n4 − m5

2 t+ x+ z)2
. (23)

Case II: We take θ = k1ζ1 + k2ζ2 + k3ζ3, then equation of case (II) can be written in the form

(k1m1 + k2m2 + k3m3)F ′ − p1k1FF ′

− k1(p2k
2
1 + p3k

2
2 + p4k

2
3)F ′′′ = 0. (24)

To utilize the solution for the ODE corresponding to this case, we used modified Exp-Function method

[13,23], which is expressed in the form:

F (θ) =

p∑
n=−c

an[φ(θ)]n

q∑
m=−d

bm[φ(θ)]m

=
a−c[φ(θ)]−c + ...+ ap[φ(θ)]p

b−d[φ(θ)]−d + ...+ bq[φ(θ)]q
(25)

where φ(θ) satisfies the following Riccati equation

φ′(θ) = A+B φ(θ) + C φ2(θ). (26)

see [24-25].

We can freely choose the values of n and m in (25), that the solution does not depend on the balancing

of the highest order linear and nonlinear terms [24].

F ′′′ =
a1[φ(θ)]−c−8d−3 + ...+ a2[φ(θ)]p+8d+3

b1[φ(θ)]−9d + ...+ b2[φ(θ)]9q
, (27)

FF ′ =
a3[φ(θ)]−2c−7d−3 + ...+ a4[φ(θ)]2p+7d+3

b3[φ(θ)]−9d + ...+ b4[φ(θ)]9q
, (28)

where ai and bi are determined coefficients only for simplicity. From balancing the lowest order and highest

order of φ (27-28) we obtain−c−8d−3 = −2c−7d−3, which leads to the limit c = d and p+8d+3 = 2p+7d+3,

which leads to the limit p = q. For simplicity, we set p=q=1, we have

F =
a−1[φ(θ)]−1 + a0 + a1[φ(θ)]

b−1[φ(θ)]−1 + b0 + b1[φ(θ)]
.

=
a−1 + a0[φ(θ)] + a1[φ(θ)]2

b−1 + b0[φ(θ)] + b1[φ(θ)]2
(29)
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Substituting (29) into (24), equating to zero the coefficients of all powers of φ(θ) yields a set of algebraic

equations for ai and bi. By aid Maple we solve this algebraic equations, we get:

a−1 = [
1

k1p1
(k1m1 + k2m2 + k3m3

− k1(B2 + 8AC)(p2k
2
1 + p3k

2
2 + p4k

2
3))]b−1,

a0 = [
−12BC

p1
(p2k

2
1 + p3k

2
2 + p4k

2
3)]b−1,

a1 = [
−12C2

p1
(p2k

2
1 + p3k

2
2 + p4k

2
3)]b−1, b0=b1=0. (30)

The corresponding traveling wave solutions to (1) are:

Case 1: A 6= 0, B 6= 0, C 6= 0.

u(t, x, y, z) =
1

k1p1
(k1m1 + k2m2 + k3m3 − k1(B2 + 8AC)(p2k

2
1 + p3k

2
2 + p4k

2
3))

− 12BC

p1
(p2k

2
1 + p3k

2
2 + p4k

2
3)[
−B
2C

+

√
4AC −B2

2C

tan (
1

2
(
√

4AC −B2(k1(x-m1t) + k2(y-m2t) + k3(z-m2t)+d0)))]

− 12C2

p1
(p2k

2
1 + p3k

2
2 + p4k

2
3)[
−B
2C

+

√
4AC −B2

2C

tan (
1

2
(
√

4AC −B2(k1(x-m1t) + k2(y-m2t) + k3(z-m2t)+d0)))]
2
.

(31)

Case 2: A= 0, B 6= 0, C6= 0.

u(t, x, y, z) =
1

k1p1
(k1m1 + k2m2 + k3m3 − k1(B2 + 8AC)(p2k

2
1 + p3k

2
2 + p4k

2
3))

− 12BC

p1
(p2k

2
1 + p3k

2
2 + p4k

2
3)

[
−B exp(B(k1(x-m1t) + k2(y-m2t) + k3(z-m2t)) +Bd0)

C exp(B(k1(x-m1t) + k2(y-m2t) + k3(z-m2t)) +Bd0)− 1

]
− 12C2

p1
(p2k

2
1 + p3k

2
2 + p4k

2
3)

[
−B exp(B(k1(x-m1t) + k2(y-m2t) + k3(z-m2t)) +Bd0)

C exp(B(k1(x-m1t) + k2(y-m2t) + k3(z-m2t)) +Bd0)− 1

]2
.

(32)

Case 3: A= 1
2 , B= 0, C= 1

2 .

u(t, x, y, z) =
1

k1p1
(k1m1 + k2m2 + k3m3 − 2k1(p2k

2
1 + p3k

2
2 + p4k

2
3))

− 3

p1
(p2k

2
1 + p3k

2
2 + p4k

2
3)

[
tan(k1(x-m1t) + k2(y-m2t) + k3(z-m2t))

1± sec(k1(x-m1t) + k2(y-m2t) + k3(z-m2t))

]2
.

(33)
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Case III: We have two subcases

Subcase(a) We take θ = k1ζ1 + k2ζ2 + k3ζ3, then equation of case (III) can be written in the form

k1F
′ − p1(k2m1 + k3m2)FF ′ − (k2m1 + k3m2)

(p2(k2m1 + k3m2)2 + p3k
2
2 + p4k

2
3)F ′′′ = 0. (34)

Substituting (29) into (34), equating to zero the coefficients of all powers of φ(θ) yields a set of algebraic

equations for ai and bi i.e i=-1:1. By aid Maple we solve this algebraic equations, yields

a1 = b−1 = b0 = 0, B = 0, a0 is arbitrary

k1 = (k2m1 + k3m2)(a0p1 + 8AC(k2m1k3m2p2

+ k21(m2
1p2 + p3) + k23(m2

2p3 + p4))),

a−1 = [
−12 A2

p1
(k2m1k3m2p2 + k21(m2

1p2 + p3)

+ k23(m2
2p3 + p4))]b1. (35)

We apply the related φ(θ) functions for this choice of A, B and C.

Using the cases in Appendix A wherein A= 1, C= 1, yields

u(t, x, y, z) = a0 −
12

p1
(k2m1k3m2p2

+ k21(m2
1p2 + p3) + k23(m2

2p3 + p4))

1

tan2(k1t+ k2(y-m1x) + k3(z-m2x)).
(36)

where k1 = (k2m1 + k3m2)(a0p1 + 8(k2m1k3m2p2 + k21(m2
1p2 + p3) + k23(m2

2p3 + p4))).

For A= 1
2 , C= −1

2 , we get the following solutions

u(t, x, y, z) = a0 +
3

p1
(k2m1k3m2p2

+ k21(m2
1p2 + p3) + k23(m2

2p3 + p4))

[
1± sec h(k1t+ k2(y-m1x) + k3(z-m2x))

tanh(k1t+ k2(y-m1x) + k3(z-m2x))
]2 (37)

where k1 = (k2m1 + k3m2)(a0p1 − 2(k2m1k3m2p2 + k21(m2
1p2 + p3) + k23(m2

2p3 + p4)))

Subcase(b) Using the scaling transformation to case III

F = eε
−
F , ζ1 = eε1

−
ζ 1, ζ2 = eε2

−
ζ 2, ζ3 = eε3

−
ζ 3. (38)

Substituting from Eq.(38) into case III we have −23 ε1 = −2ε2 = −2ε3 = ε.

Then, the characteristic equation can be written as

−2

3

dζ1
ζ1

=
−2dζ2
ζ2

=
−2dζ3
ζ3

=
dF

F
(39)
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We get the similarity variables

η1 =
ζ2

ζ
1
3
1

, η2 =
ζ3

ζ
1
3
1

, F =
f

ζ
2
2
1

(40)

By substituting into case III we get

2

3
f +

1

3
η1fη1 +

1

3
η2fη2 +m1p1ffη1 +m2p1ffη2

+m1(m2
1p2 + p3)fη1η1η1 +m2(3m2

1p2 + p3)fη1η1η2

+m1(3m2
2p2 + p4)fη1η2η2 +m2(m2

2p2 + p4)fη2η2η2 = 0. (41)

By using θ = k1η1 + k2η2,(41) can be written in form

2

3
f +

1

3
θf ′ + p1(m1k1 +m2k2)ff ′

+m1k
3
1(m2

1p2 + p3)f ′′′ +m2k
2
1k2(3m2

1p2 + p3)f ′′′

+m1k
2
2k1(3m2

2p2 + p4)f ′′′ +m2k
3
2(m2

2p2 + p4)f ′′′ = 0. (42)

To find the solution for the ODE corresponding to this case, we assume that this solution takes the

following form

f = a0 + a1θ + a2θ
2 +

b1
θ

+
b2

θ2
, (43)

where a0, a1, a2, b1and b2 are arbitrary constants, Substituting from (43) into (42) and collecting the various

powers of θ then equating them to zero, we get system of algebraic equations in the constants a0, a1, a2,

b1and b2 . Solving this system with the aid of Maple program, we get the following solutions:

a0 = a2 = b1 = b2 = 0,

k1 =
−(1 + a1p1m2k2)

a1p1m1
. (44)

Then, we have obtained the following new exact solution for (1)

u(t, x, y, z) =
a2
t

(k1(y-m1x) + k2(z-m2x)) . (45)

Cases IV: We take the transformation θ = k1ζ1 + k2ζ2 + k3ζ3,we get

(k2m1 + k3m2)F ′ − p1k1FF ′

− 3k1(p2k
2
1 + p3k

2
2 + p4k

2
3)F ′′′ = 0. (46)

To obtain the solution for the ODE corresponding to this case, substituting (29) into (46), equating to

zero the coefficients of all powers of φ(θ) yields a set of algebraic equations for a0, ai, bi, i=1, 2. By aid
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Maple we solve this algebraic equations, yields

a0 =
1

12p1k1A2
(a−1k1p1(B2 + 8AC) + 12b1A

2(m1k2 +m2k3))

p2 = − 1

12k1A2
(
p1a−1

b1
+ 12A2(p3k

2
2 + p4k

2
3)), a0 =

a−1B

p1

b−1 = b0 = 0. (47)

Using choices for A, B and C, then we obtain the follwing exact solutions of (1)

u(t, x, y, z) =
1

3p1k1
(2a−1k1p1 + 3b1(m1k2 +m2k3))

+
a−1

b1 (tan(k1x+ k2(y-m1t) + k3(z-m2t))± sec(k1x+ k2(y-m1t) + k3(z-m2t)))
2 ,

(48)

where A= 1
2 , B= 0, C= 1

2 and p2 = − 1
3k1

(p1a−1

b1
+ 3(p3k

2
2 + p4k

2
3)).

u(t, x, y, z) =
1

3p1k1
(−2a−1k1p1 + 3b1(m1k2 +m2k3))

+
a−1

b1 (tanh(k1x+ k2(y-m1t) + k3(z-m2t))± sech(k1x+ k2(y-m1t) + k3(z-m2t)))
2 ,

(49)

where A= 1
2 , B= 0, C= −1

2 and p2 = − 1
3k1

(p1a−1

b1
+ 3(p3k

2
2 + p4k

2
3)).

4. Conclusion

Symmetry analysis and modified Exp method were successfully used to obtain new solitary wave solutions

for ZK equation. The solutions have physical structures and depend on the real parameters. finally, new

type solutions of Riccati were obtained in family 1-4.
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