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Abstract. In this paper, we consider, a new nonlinear scalarization function in vector spaces which

is a generalization of the oriented distance function. Using the algebraic type of closure, which is

called vector closure, we introduce the algebraic boundary of a set, without assuming any topology,

in our context. Furthermore, some properties of this algebraic boundary set are given and present the

concept of the oriented distance function via this set in the concept of vector optimization. We further

investigate Q-proper efficiency in a real vector space, where Q is some nonempty (not necessarily

convex) set. The necessary and sufficient conditions for Q-proper efficient solutions of nonconvex

optimization problems are obtained via the scalarization technique. The scalarization technique relies

on the use of two different scalarization functions, the oriented distance function and nonconvex

separation function, which allow us to characterize the Q-proper efficiency in vector optimization with

and without constraints.

1. Introduction

Many works have been done with vector optimization problems under real linear spaces without any

particular topology [1,2,4–14]. However, only a few authors focus on nonconvex vector optimization

problems [5,7,13–15]. Inspired by this fact, the main purpose of this paper is to study some optimality

conditions on Q-proper efficiency of general nonconvex optimization problems in a real linear vector

space without topology, by using nonlinear scalarization functions.
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Efficiency is one of the most important concepts in vector optimization. This concept has been

studied in many papers [1,2,4,5,8]. Kuhn and Tucker and Geoffrion [16,17], introduced the concept

of proper efficiency. Since then, different definitions of proper efficient points have been introduced

by the other authors. Wang and Li [18, 19] studied the Benson and Borwein proper efficiency in

finite-dimensional Euclidean spaces. Borwein [20] has proposed a definition for extending Geoffrion’s

concept of proper efficiency to the vector maximization problem in which the domination cone could

be any nontrivial, closed convex cone.

Adán and Novo [1,2,8] used the vector closure to define the concept of Benson proper efficiency of

vector optimization problems and they proved scalarization theorems. Also, they investigated weak and

proper efficiency of vector optimization problems with generalized convex set-valued maps involving

relative algebraic interior and vector closure of ordering cone in linear spaces. Ha [21] presented the

notion of Q-minimal solution of vector optimization problems via topological concepts, where Q is

some nonempty open (not necessarily convex) cone. Q-minimal points were characterized by the

Hiriart-Urruty function.

Scalarization techniques play a vital role in sketching the numerical algorithms and duality results

[5,7,8,10,12,22,23]. During the last three decades, many authors have been interested in extending

scalarization approaches in vector optimization. Nonlinear scalarization approaches have been widely

used as efficient methods to study several optimization problems in recent years.

In vector optimization, two types of nonlinear scalarization functions are most widely used, the Ger-

stewitz function [24] and the oriented distance function [21]. The Gerstewitz function is a nonlinear

scalarization function most commonly used in optimization problems with vector-valued or set-valued

maps [5, 13, 15, 22, 25]. This function was introduced by different names such as the Gerstewitz

function, nonlinear scalarization function, shortage function, and smallest strictly monotonic func-

tion, [25–28]. The properties of the Gerstewitz function in a topological vector space with a closed

convex (solid) cone, have been studied in [26–29]. Hernández and Rodríguez-Marín [30] presented an

extension of the Gerstewitz function and characterized some topological properties to obtain a non-

convex scalarization and optimality conditions for set-valued optimization problems. The nonconvex

separation functional in real linear spaces without considering a topology has been presented by La

Torre, Popovici, and Rocca [31, 32] . They showed that weakly cone-convex vector-valued functions

can be characterized in terms of weakly convexity and weakly quasiconvexity of the Gerstewitz scalar-

ization functions. The authors in [13,15] extend the Gerstewitz function from the topological spaces

to real linear via algebraic concepts.

Beside the Gerstewitz function, the oriented distance function is a common scalarization function

in vector spaces introduced by Hiriart–Urruty [33]. The oriented distance function has been used to

study well-posedness and stability for vector optimization problems in [35–38]. The generalized version
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of the oriented distance function introduced by Crespi et al. [35] can be used to characterize optimality

conditions of set-valued vector optimization.

In this paper, we propose a new definition of distance function by using vector closure. For this a new

definition of the boundary set is presented which can be used to define the new form of the oriented

distance function. The aim of this work is to provide a necessary and sufficient conditions of Q-Global

Borwein Vectorial Proper Efficient (Q-GBOV) solutions in a real vector space. We use algebraic

concepts such as algebraic interior and vectorial closure to define and characterize Q-GBOV. The

necessary and sufficient conditions for Q-proper efficient solutions of nonconvex optimization problems

are obtained via scalarization by oriented distance function and nonlinear scalarization function in a

vector space. As the reader sees, some arguments developed for Global Borwein’s proper efficiency

are still valid for Q-GBOV. Some results in this paper, are the generalization of several results given

in [1, 2, 5, 8, 13,39].

The remainder of the paper is organized as follows: In Section 2, we introduce an algebraic boundary

set in a vector space and study its properties. We discuss the notion of Q-proper efficiency where

Q is not necessarily a convex set in Section 3. Section 4 is devoted to the scalarization functions;

We describe a new nonlinear scalarization functions and explain how to use these functions to obtain

optimality conditions. Finally, constrained problems in real vector spaces have been discussed in

section 5. We use the results of previous sections to obtain optimality conditions for the constrained

problems without convexity assumption. The results of this paper can be also used to develop a

vector optimization on vector spaces, which can be applied to any numerical and theoretical scalar

optimization.

2. Preliminaries

Throughout the paper, X and Y are real spaces and A is a subset of X. Furthermore, we consider

K ⊆ Y be a pointed convex proper cone which introduces a partial order on Y by the equivalence

relation y1 ≤ y2 ⇔ y2 − y1 ∈ K. K is called pointed if K ∩ (−K) = {0}. The cone generated by A

is denoted by cone(A). Moreover, a nonempty set F ⊂ Y is said to be free disposal with respect to

a convex cone K ⊂ Y if F + K = F . The algebraic interior of A and the vectorial closure of A are

denoted by cor(A) and vcl(A), respectively and these are defined as follows [1]

cor(A) = {x ∈ A : ∀x ′ ∈ X , ∃λ′ > 0; ∀λ ∈ [0, λ
′
], x + λx

′ ∈ A},

vcl(A) = {b ∈ X : ∃x ∈ X ; ∀λ′ > 0, ∃λ ∈ [0, λ
′
]; b + λx ∈ A}.

When cor(A) 6= ∅ we say that A is solid, A is algebraically open if cor(A) = A and A is called

vectorially closed if A = vcl(A). It is known that, if cor(K) 6= ∅, then cor(K)∪{0} is a convex cone,
in addition cor(K) +K = cor(K) and cor(cor(K)) = cor(K) for solid nontrivial convex cone K [8].

For each q ∈ Y , q-vector closure of A in the direction q is denoted by vclq(A) and define as follows:

vclq(A) = {x ∈ X : ∀λ′ > 0, ∃λ ∈ [0, λ
′
] ; x + λq ∈ A}.



4 Int. J. Anal. Appl. (2022), 20:11

In fact it can be shown that

vclq(A) = {x ∈ X : ∃λn ≥ 0, λn → 0 ; x + λnq ∈ A, ∀n ∈ N}.

Obviously,

A ⊂ vclq(A) ⊂ ∪q∈Y vclq(A) = vcl(A).

Now, for an arbitrary functional h : Y → <∪ {±∞}, define

S(h, r, R) := {y ∈ Y : h(y)R r}, ∀r ∈ Re, ∀R ∈ {≤, <,>,≥},

S(h, r,=) := {y ∈ Y : h(y) = r}, ∀r ∈ Re ∪ {±∞},

for a free disposal Q. The following proposition shows that there is e ∈ corK such that vcle(Q) +

(0,+∞)e = cor(Q).

Proposition 2.1. [15] Suppose that Q is free disposal with respect to an algebraic solid convex cone

K. Then

vcle(Q) + cor(K) = vcle(Q) + (0,+∞)e = cor(Q),

where e ∈ cor(K).

The boundary of a subset A of a topological space X is the set of points which can be approached

both from A and from the outside of A. More precisely, it is the set of points in the closure of A not

belonging to the interior of A. The algebraic boundary of a set A in a vector space can be defined by

using algebraic type of interior and closure.

Definition 2.1. The algebraic boundary of a set A denoted by bd(A) and is defind as follows

bd(A) = vcl(A)\cor(A).

which is the set of points in the vectorial closure of A not belonging to the algebraic interior of A.

It is clear that bd(tA) = tbd(A) for t > 0 because vcl(tA) = tvcl(A) and cor(tA) = tcor(A),

cor(tA) = {x ∈ tA : ∀x ′ ∈ X , ∃λ′ > 0; ∀λ ∈ [0, λ
′
], x + λx

′ ∈ tA},
cor(tA) = {1t x ∈ A : ∀x ′ ∈ X , ∃λ′ > 0; ∀λ ∈ [0, λ

′
], 1t x + λ

t x
′ ∈ A}

which lead to 1t x ∈ cor(Q) for a free disposal Q. Also, we have

vcl(tA) = {b ∈ X : ∃x ∈ X ; ∀λ′ > 0, ∃λ ∈ [0, λ
′
]; b + λx ∈ tA}.

vcl(tA) = {1t b ∈ X : ∃ xt ∈ X ; ∀λ′ > 0, ∃λ ∈ [0, λ
′
]; 1t b + λ xt ∈ A}.

Proposition 2.2. For Q ⊂ Y , we have

vcl(Y \Q) = Y \cor(Q).

Proof. Assume by contradiction that x ∈ vcl(Y \Q) and x ∈ cor(Q). x ∈ vcl(Y \Q) implies that for

all λ
′
> 0 there exist x

′ ∈ X and λ ∈ [0, λ
′
] such that

x + λx
′ ∈ Y \Q. (2.1)
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On the other hand, for x ∈ cor(Q) we have

∀x ′′ ∈ X, ∃λ′′ > 0, ∀λ ∈ [0, λ
′′
], x + λx

′′ ∈ Q. (2.2)

If we consider x
′′

= x
′
and λ

′
= λ

′′
then we can write

∃λ′ = λ
′′
> 0, ∀λ ∈ [0, λ

′′
], x + λx

′′
= x + λx

′ ∈ Q, (2.3)

which contradicts 2.1. Therefore x /∈ cor(Q). �

From Proposition 2.2, it is now clear that bd(Y \Q) = bd(Q).

3. Proper Efficiency

Definition of Global Borwein vectorial proper efficient solutions in vector spaces, for the first time,

introduced in [8] where the concept of vector closure has been used.

The notion of Q-minimal points which Q is some nonempty open (not necessarily convex) cone was

presented by Ha [21]. Necessary and sufficient conditions for these Q-minimal points were character-

ized by the Hiriart-Urruty function.

Now, we are in the position to introduce a general concept of Weak Proper Efficiency, Proper Effi-

ciency, and Global Borwein Proper Efficiency via algebraic concepts.

Let Y and Z be two real spaces that are partially ordered by nontrivial ordering convex cones K and

M, respectively. Let f : X → Y and g : X → Z be two maps on X.

Consider the following unconstrained and constrained problems:

(UP ) Min {f (x) : x ∈ X},

(CP ) Min {f (x) : x ∈ X, g(x) ∈ (−M)},

and the following vector optimization problem:

(P ) Min {f (x) : x ∈ S},

where the feasible set S can be either

S = X or S = {x ∈ X; g(x) ∈ (−M)}.

Definition 3.1. A point x0 ∈ S is called a Q-Proper Efficient solution (Q-EF) of (P) if

(f (S)− f (x0)) ∩ (−Q\{0}) = ∅. (3.1)

If Q is a solid set and 0 /∈ cor(Q), then x0 is called Q-Weak Proper Eficient solution (Q-WEF) of

(P) when

(f (S)− f (x0)) ∩ (−cor(Q)) = ∅. (3.2)
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Definition 3.2. A point x0 is a Q-GBOV for (P) with respect to Q if

vcl(cone(f (S)− f (x0))) ∩ (−Q\{0}) = ∅. (3.3)

It is easy to see that if x0 is a Q-GBOV for (P), then x0 is also a (Q-EF) and a (Q-WEF) for (P).

4. Scalarization

In this section, we will present the necessary and sufficient optimality conditions for Q-Global

Borwein Vectorial Proper Efficient solutions of vector optimization problems. A useful approach for

solving a vector problem is to reduce it to a scalar problem. In general, scalarization means the

replacement of a vector optimization problem by a suitable scalar problem which tends to be an

optimization problem with a real valued objective function. The main idea of this section obtained

from [13, 15]. In [13] the Gerstewitz function is generated by a general convex cone in a real space

and the authors investigated some properties of this function such as sub-additive and positively

homogeneous. However, similar to [15], in this section we consider the nonconvex separation function

which is an extension of the Gerstewitz function and generated by a subset of a linear space instead

of a convex cone. The main properties of the nonconvex separation functional were extended from

the topological framework to the linear setting via suitable algebraic counterparts [15].

Now, let e ∈ cor(K). The Gerstewitz function heQ(y) : Y −→ R is defined by

heQ(y) := inf {t ∈ R : y ∈ te −Q}, (4.1)

where Q ⊂ Y . It has been proved that heQ is finite [31, Remark 2.3], whenever Q is a vectorially

closed and algebraic solid proper convex cone, and in this case, one has

heQ(y) = sup{h(y) : h ∈ Q+, h(e) = 1}, ∀y ∈ Y ,

where Q+ denotes the positive polar cone of Q [5].

In the following, some properties of the Gerstewitz function are addressed. One can find [15, Theorem

4.1, Theorem 4.2]. Specifically, these theorems are the generalization of [13, Lemma 2.8, Lemma 2.9].

Theorem 4.1. [15] Consider e ∈ Y \ {0} and ∅ 6= Q ⊂ Y . We have the following properties of heQ
i) S(heQ, 0,≤) = (−∞, 0]e − vcleQ,
ii) S(heQ, 0, <) = (−∞, 0)e − vcleQ,
iii) S(heQ, 0,=) = (−vcleQ)\((−∞, 0)e − vcleQ),

iv) S(heQ, 0,≥) = Y \((−∞, 0)e − vcleQ).

Theorem 4.2. [15] Consider e ∈ Y \ {0} and ∅ 6= Q ⊂ Y . If vcle(Q) is a cone, then heQ is positively

homogeneous. It means that

heQ(αy) ≤ αheQ(y),

where y ∈ Y and α > 0.
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In Theorem 4.3, we prove heQ is sub-additive whenever Q is closed under addition. This theorem

will be used in the sequel.

Theorem 4.3. Consider e ∈ Y \ {0} and let ∅ 6= Q ⊂ Y be closed under addition and heQ is finite.

Then

heQ(y1 + y2) ≤ heQ(y1) + heQ(y2),

for all y1, y2 ∈ Y , except for these make it indeterminate form ∞−∞.

Proof. From definition of heQ given in ( 4.1) and Lemma 3 in [15], we have

yi ∈ heQ(yi)e − vcle(Q), i = 1, 2.

We can use the fact that hevcle(Q) = heQ to obtain

yi ∈ hevcle(Q)(yi)e − vcle(Q), i = 1, 2.

Then obviously,

y1 + y2 ∈ (hevcle(Q)(y1) + hevcle(Q)(y2))e − vcle(Q),

which implies

hevcle(Q)(y1 + y2) ≤ hevcle(Q)(y1) + hevcle(Q)(y2),

and this yields

heQ(y1 + y2) ≤ heQ(y1) + heQ(y2).

�

Definition 4.1. Let Q ⊂ Y . A distance function is defined by

d(y ,Q) = inf {λ ∈ R≥0 : y ∈ vcl(λQ)},

and d(y , ∅) = +∞.

For a set Q ⊂ Y let the oriented distance function 4Q : Y → R ∪ {±∞} be defined as

4Q(y) = d(y ,Q)− d(y , Y \Q).

One can find the main properties of the oriented distance function in topological spaces in [33, 40].

However, here we recall them for conveniences. If y ∈ cor(Q), then there exists a sequence λn → 0

such that y ∈ vcl(λnQ), thus we get d(y ,Q) = 0 and then 4Q(y) < 0. Also, if d(y ,Q) = 0, then

y ∈ cor(Q). Therefore, we can write y ∈ cor(Q) if and only if 4Q(y) < 0. Moreover, 4Q(y) > 0 if

and only if y ∈ vcl(Q). Since bd(Y \Q) = bd(Q) and bd(Q) = vcl(Q)\cor(Q), we have 4Q(y) = 0

if and only if y ∈ bd(Q). Furthermore, it is obvious that

4Y \Q = −4Q .

Theorem 4.4. For t ∈ (0,+∞), we have
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∆Q(ty) = t∆Q(y).

Proof. Consider y ∈ Y . Thus

d(ty ,Q) = inf {λ ≥ 0; ty ∈ vcl(λQ)},

from definition of vcl(Q), for all µ
′
> 0, there exist x ∈ Y such that

d(ty ,Q) = inf {λ ≥ 0; ∃µ ∈ [0, µ
′
], ty + µx ∈ λQ}

= inf {λ ≥ 0; ∃µ ∈ [0, µ
′
], y +

µ

t
x ∈

λ

t
Q}

= tinf {
λ

t
≥ 0; ∃µ ∈ [0, µ

′
], y +

µ

t
x ∈

λ

t
Q}.

(4.2)

Therefore,

∆Q(ty) = t∆Q(y).

�

In the following theorem, we use the Gerstewitz function to obtain the sufficient condition for Q-

GBOV.

Theorem 4.5. Let e ∈ cor(K), ∅ 6= Q ⊂ Y be an algebraically open set which is closed under addition,

and let vcle(Q) be a cone. If x0 satisfies the following condition

heQ(f (x)− f (x0)) ≥ 0 ∀x ∈ S,

then x0 is a Q-GBOV for (P).

Proof. For x ∈ S we have

heQ(f (x)− f (x0)) ≥ 0.

Thus, by theorem 4.1, one has

f (x)− f (x0) ∈ Y \((−∞, 0)e − vcle(Q)) ∀x ∈ S.

Now, let 0 6= y ∈ vcl(cone(f (S)− f (x0))). By definition of vectorial closure, there exist x ∈ Y and

a sequence of positive real numbers λn such that λn → 0 and

y + λnx ∈ cone(f (S)− f (x0)). (4.3)

Therefore, there are sequences αn ≥ 0 and yn ∈ f (S) such that

y + λnx = αn(yn − f (x0)).

It is obvious that there exist an n ∈ N such that αn > 0. Since heQ(yn − f (x0)) ≥ 0, then it implies

that

heQ(y + λnx) ≥ 0.
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and

0 ≤ heQ(y + λnx) ≤ heQ(y) + λnh
e
Q(x).

By taking limit n →∞, we have

heQ(y) ≥ 0.

Now, by applying Theorem 4.1, we conclude that y ∈ Y \((−∞, 0)e − vcle(Q)). On the other hand,

for q ∈ cor(Q) there exists λ > 0 such that

q − [0, λ]e ⊆ Q.

It means that

q ∈ λe +Q ⊆ (0,∞)e + vcle(Q).

Therefore,

cor(Q) ⊆ (0,∞)e + vcle(Q).

Since Q is an algebraically close set, we have

Q ⊆ (0,∞)e + vcle(Q),

and

−Q ⊆ (−∞, 0)e − vcle(Q),

which implies that

y ∈ Y \(−Q).

Hence,

vcl(cone(f (x)− f (x0))) ∩ (−Q\{0}) = ∅ ∀x ∈ S.

Thus, x0 is a Q-GBOV for (p). �

The following theorems state the necessary condition for a point to become a Q-GBOV for problem

(P). In Theorem 4.6, we use the nonconvex separation function to obtain the necessary condition

while in Theorem 4.7, the oriented distance function has been used. We would like to point out that

the oriented distance function is a simple tool to work, thus optimality conditions can be obtained with

simple calculations by using the properties of the oriented distance function without any condition on

the set Q.

Theorem 4.6. Let ∅ 6= Q ⊂ Y is free disposal with respect to an algebraic solid convex cone K.

Suppose that there exists e ∈ cor(K) such that x0 is a Q-GBOV for problem (P), then x0 satisfies

the following condition
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heQ(f (x)− f (x0)) ≥ 0 ∀x ∈ S.

Proof. Let us suppose x0 does not satisfy the condition and we have

heQ(f (x)− f (x0)) < 0,

for some x ∈ S. Hence, from Theorem 4.1 we get

f (x)− f (x0) ∈ (−∞, 0)e − vcle(Q).

On the other hand, since Q is free disposal with respect to K, then by Proposition 2.1, one has

f (x)− f (x0) ∈ (−∞, 0)e − vcle(Q) = −cor(Q) ⊂ −Q\{0}.

Therefore,

f (x)− f (x0) ∈ (f (S)− f (x0)) ∩ (−Q\{0}).

But as one can see, this contradicts the definition of Q-GBOV. �

Theorem 4.7. Let e ∈ corK and x0 ∈ S such that x0 is a Q−GBOV for (P), then

4−Q(f (x)− f (x0)) ≥ 0, x ∈ S. (4.4)

Proof. By contrary suppose that for e ∈ corK there exists x ∈ S such that

4−Q(f (x)− f (x0)) < 0.

Thus, we can write

f (x)− f (x0) ∈ −cor(Q) ⊂ −Q\{0},

which means

f (x)− f (x0) ∈ (f (S)− f (x0)) ∩ (−Q\{0}).

Furthermore, we have

f (x)− f (x0) ∈ vcl(cone(f (S)− f (x0))) ∩ (−Q\{0}) = ∅, ∀x ∈ S,

which contradicts the assumption that x0 is Q−GBoV. Therefore,

4−Q(f (x)− f (x0)) ≥ 0.

�

From Theorems 4.5 and 4.6 we conclude the following corollary.

Corollary 4.1. Let e ∈ cor(K), ∅ 6= Q ⊂ Y is free disposal with respect to an algebraic solid convex

cone K and be closed under addition such that cor(Q) = Q, and let vcle(Q) be a cone. Then x0 is

a Q-GBOV for problem (P) if and only if x0 satisfies the following condition

heQ(f (x)− f (x0)) ≥ 0 ∀x ∈ S.
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In the following theorem, we present necessary and sufficient conditions of Q-WEF for the problem

(P).

Theorem 4.8. Let us assume x0 ∈ S. The point x0 is a Q-WEF if and only if

4−Q(f (x)− f (x0)) > 0, ∀x ∈ S. (4.5)

Proof. Assume that x0 is not Q-WEF. Then one has

(f (S)− f (x0)) ∩ (−cor(Q)) 6= ∅.

Hence, there exists f (x) ∈ f (S) such that

(f (x)− f (x0)) ∈ (−cor(Q)),

which implies

4−Q(f (x)− f (x0)) < 0.

�

Then this proofs the necessary condition. The sufficient condition follows easily.

5. Scalarization and constrained problems

Constrained problems in real vector spaces were originally studied in [5,8]. In [8, Theorem 4.3], the

authors showed a relation between Hurwicz victorial proper efficient solutions and Benson Vectorial

Proper Efficient solutions in unconstrained and constrained problems. Moreover, the relation between

ε-Benson Vectorial Proper Efficient solutions in unconstrained and constrained problems studied in [5,

Theorem 4.12]. Here, we use the results of previous theorems to obtain optimality conditions for the

constrained problems without convexity assumption. In addition, the relation between solutions of

constrained and unconstrained problems will be discussed.

Definition 5.1. We say that the Slater constraint qualification for constraint problems (CP) holds if

there exists x ∈ S such that g(x) ∈ (−cor(M)).

Hereafter, the set of all linear operators from Z to Y is denoted by O(Z, Y ), and Γ is denoted by

Γ = {T ∈ O(Z, Y ) : T (M) ⊆ cor(K)},

where M and K are as above.

It is important to know Lagrangian mapping L : X × Γ −→ Y , corresponding to the constrained

vector optimization problem is defined by L(x, T ) = f (x) + T (g(x)), where f and g are defined in

section 3 and T ∈ Γ . By the map L, one can convert (CP) to an unconstrained vector optimization

problem

Min {f (x) + (T ◦ g)(x) : x ∈ X}. (5.1)

In the following theorem, we discuss Q-GBOV in corresponding problems.
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Theorem 5.1. In a constrained vector optimization problem, assume that e ∈ cor(K), ∅ 6= Q ⊂ Y
be an algebraically open set which is free disposal with respect to the algebraic solid convex cone K,

and closed under the addition that 0 ∈ vcl(Q). Let the convex cones K and M are pointed and the

Slater constraint qualification holds,

Assume that T (g(x0)) = 0 for x0 ∈ S and T ∈ Γ. If x0 is a Q-GBOV for problem given in 5.1, then

x0 is a Q-GBOV for (CP).

Proof. As discussed in Theorem 4.6, since x0 is a (Q-GBOV) for problem 5.1, one has

heQ(f (x) + (T ◦ g)(x)− (f (x0) + (T ◦ g)(x0))) ≥ 0.

From Theorem 4.3, we have

heQ(f (x)− f (x0)) + heQ((T ◦ g)(x)− (T ◦ g)(x0))) ≥

heQ(f (x) + T ◦ g)(x)− (f (x0) + (T ◦ g)(x0))) ≥ 0.

Since T (g(x0)) = 0, this implies

heQ(f (x)− f (x0)) + heQ(T ◦ g)(x))) ≥ 0. (5.2)

On the other hand, 0 ∈ vcl(Q), then by Proposition 2.1, we have

(T ◦ g)(x) ⊆ −cor(K)− vcl(Q) = (−∞, 0)e − vcle(Q) = −cor(Q).

From Theorem 4.1, we deduce that

heQ((T ◦ g)(x)) ≤ 0. (5.3)

Therefore 5.2 and 5.3 yield

heQ(f (x)− f (x0)) ≥ 0.

Thus, by Theorem 4.5 it follows that x0 is a (Q-GBOV) for (CP). �
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