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ABSTRACT. In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the bi-Cauchy-Jensen
functional equation and the bi-additive-quadratic functional equation in paranormed spaces. Moreover, we

investigate the Hyers-Ulam-Rassias stability of the generalized Cauchy-Jensen equation in such spaces.

1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations was initiated by Ulam in 1940 [17] arising from concerning
the stability of group homomorphisms. These question form is the object of the stability theory. In 1941,
Hyers [7] provided a first affirmative partial answer to Ulam’s problem for the case of approximately additive
mapping in Banach spaces. In 1978, Rassias [16] gave a generalization of Hyers’s theorem for linear mapping
by considering an unbounded Cauchy difference. A generalization of Rassias’s result was developed by
Gavruta [6] in 1994 by replacing the unbounded Cauchy difference by a general control function. For more
information on that subject and further references we refer to a survey paper [3] and to a recent monograph

on Ulam stability [4].
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Let R and N be the set of real numbers and the set of natural numbers, respectively. Next, let X and Y
be vector spaces and k be a positive integer, a function f: X* — Y is called k-additive functional equation

if and only if f satisfies the equation

f(.fl,l‘g,...,xi_l,xi +y)$i+l7"' )xk:)
=f(ry, 21, 2) + f(w1, 22,0, 21, Y, Tign, -, Tk)
for all i € N, 1 <4 < k and for every x1,x2,...,2k,y € X, that is, f is additive in each of its variables
z; € X for all i = 1,2,...,k. Some fundamental properties on such mappings be mentioned in [10]. In

particular, a 2-additive functional equation is called bi-additive functional equation.
A mapping f: X x X — Y is called a bi-additive-quadratic functional equation (bi-AQE, shortly) if f

satisfies the system equations

f(x—i—y,z) :f(x7z)+f(yaz)7
f@y+2)+ flz,y —2) =2f(z,y) + 2f (2, 2) (1.1)

for all z,y,2 € X. When X =Y = R, the solution of (1.1) is given by the function f(z,y) = cxy? where

x,y,c € R. For mapping f: X x X — Y satisfies
fletyz+w)+ flx+y,z—w) =2f(,2) + 2f(z,w) + 2f(y,2) + 2/ (y, w) (1.2)

for all z,y,z,w € X. In 2005, Park, Bae and Chung [13] proved that the mapping f : X x X — YV
satisfies (1.1) if and only if it satisfies (1.2) and provided the general solution of (1.1) which is given by
flx,y) = M(z,y,y) and M(z,y,2) = M(x,z,y) for all x,y,2 € X where M : X x X x X — YV is a
multi-additive mapping.

A mapping f : X x X = Y is called a bi-Cauchy-Jensen functional equation (bi-CJE, shortly) if f satisfies

the system equations
flx+y,2)= f(z,2) + f(y,2)
21 (2,252 = flo) + flo.2) (1.3

for all z,y,z € X. In particular, For X =Y = R, The solution of (1.3) is given by the function f(z,y) =

azxy + bx where x,y,a,b € R. For mapping f: X x X — Y satisfies

zZ+

21 (4.5 ) = £, + Fow) + £0.2) + o) (1.4

for all z,y,z,w € X. In 2006, Park and Bae [12] showed that the mapping f : X x X — Y satisfies (1.3) if
and only if it satisfies (1.4) and gave the general solution of (1.4) which is given by f(z,y) = B(x,y) + A(x)

for all z,y € X where B: X x X =Y is a bi-additive mapping and A : X — Y is an additive mapping.
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Next, we recall the concepts of paranormed space and some basic facts on the Fréchet spaces.

Definition 1.1 ([18]). Let X be a vector space. A paranorm on X is a function P : X — R such that for
all z,y € X, the following conditions hold :
(i) P(0) =0;
(i) P(—x) = P(z);
(#i1) P(x +y) < P(x)+ P(y) (triangle inequality);
() If{t,} is a sequence of scalars with t, — t and {x,} C X with P(x,—x) — 0, then P(t,a,—tx) — 0.

(continuity of scalar multication)

The pair (X, P) is called a paranormed space if P is a paranorm on X. Note that
P(nx) < nP(x)

for all n € N and all x € X. The paranorm P on X is called total if, in addition, P satisfies
(v) P(xz) =0 implies = 0.
A Fréchet space is a total and complete paranormed space.

In 2015, Bae and Park [2] proved the Hyers-Ulam stability of the functional equation (1.2) and (1.4) in
paranormed spaces in the sense of Rassias [16]. We refer to some works of stability of the functional equation
(1.2) and (1.4) and various functional equations in paranormed spaces with [1,8,9,11,13-15]. In the first
section of main results, we investigate stability of the functional equation (1.2) and (1.4) in paranormed
spaces in the sense of Gavruta [6].

In 2009, Gao et al. [5] introduced the generalized Cauchy-Jensen functional equation and gave some useful
properties. Let G be an n-divisible abelian group where n € N and X be a normed space with norm |- || x.
For a mapping f : G — X is called a generalized Cauchy-Jensen functional equation (GCJE, shortly) if it

satisfies the equation
Tty
af (5 42) = 1) + 1) + af() (15)
for all z,y,z € X and for any fixed positive integer a@ > 2. In particular, when o = 2, it is called a

Cauchy-Jensen functional equation (CJE, shortly).

Proposition 1.1 ([5]). Let G be an n-divisible abelian group for some positive integer n and X be a normed

space with norm ||- ||x. Then a mapping f : G — X is additive if and only if it satisfies

1f(2) + f(y) + nf(2)]x <

et

forall x,y,z € G.

The following corollary is an immediate consequence of Proposition 1.1.
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Corollary 1.1 ([5]). For a mapping f : G — X, the following statements are equivalent.
(a) f is additive.
) flx)+ fly) +nf(z) = nf(% +2), forall z,y,z € G.
(© If(x)+ fly) +nf(2)lx < lInf(52 +2)|lx, for all 2.y, 2 € G.

Clearly, a vector space is n-divisible abelian group, so Corollary 1.1 is right when G is a vector space. In
the second section of main results, we proved the stability of the functional equation (1.5) in paranormed

spaces in the sense of Rassias [16].

Throughtout this paper, assume that (X, P) is a Fréchet space and that (E, ||-||) is a Banach space.

2. THE STABILITY OF THE BI-CAUCHY-JENSEN FUNCTIONAL EQUATION AND BI-ADDITIVE-QUADRATIC

FUNCTIONAL EQUATION IN PARANORMED SPACES

The following result is the generalized Hyers-Ulam-Rassias stability of the functional equation (1.4).

Theorem 2.1. Let ¢ : E X Ex E X E — [0,00) be a function and f : E x E — X be a mapping satisfying
f(x,0) =0 for all x € E such that

P(2f (o490 550) = 102) - fow) - 109) - S0

<e(x,y,2,w) (2.1)
for all x,y,z,w € E. Then there exists a unique mapping F : E X E — X satisfying (1.4) such that
P2f(z,y) — F(z,y)) < ¢(z,2,y,y) (2.2)
for all x,y € E where

o(z,y,z,w) (2.3)

. = j T Y zw ) ( T y  z w )
o ZOG [690 (2j+1’ 2/+17 3417 3j+1 g 20+17 9j+17  3j+17 3i+l
j=

x Yy z w x Y z w
+20 (2j+1’ i1 3j+1° 3j+1) +20 (2j+1’ 217 31’ 37)
x Yy oz ow
+o (g g )| <

for all x,y,z,w € E and the mapping F': E x E — X 1is given by

. i r y
F(z,y) :jlggo 2-6'f (27a 37)

forallx,y € E.
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Proof. Letting y = x in (2.1), we obtain that
P (2f <2x, z—|2—w> —2f(z,z) — 2f(x,w)> < p(z,z,z,w) (2.4)
for all x,z,w € E. Letting w = —z in (2.4), we get that
for all z,z € E. Subtituting z by —z and w by —z in (2.4), we get
PQ2f (2, —2) = 4f(z,~2)) < p(x, 2, —2,~2) (2.6)
for all ,z € E. Tt follows from (2.5) and (2.6) that
P(4f(x, 2) +2f (22, —2)) (2.7)
=P(Af(z,z)+4f(z,—2) — 4f(x,—2) + 2f(2z, —2))
< Pldf(z,2z) +4f(x,—2))+ P(2f(2x,—2) — 4f(z,—2))
<2¢p(xz,z,z,—2) + p(x,T,—2,—2)
for all x,z € E. Letting w = —3z in (2.4), we have
P(Qf(Ql‘, _Z) - 2,]0(33, _3Z) - 2f($, Z)) < QO(J?,J?, 2, _3Z)
for all z,z € E. By (ii) of definition 1.1, we have
P2f(x,—32)+2f(x,2) —2f(2x,—2)) < p(z,z,2,—32) (2.8)
for all 2,z € E. By (2.7) and (2.8), we have
P6f(,2) +2f(x, =32)) (2.9)
=P(4f(x,2)+2f(2x,—2) + 2f(x,—32) + 2f(z,2) — 2f(2z, —%))
<PAf(x,2z) +2f(2x,—2)) + P(2f(x,—32) + 2f(x,2) — 2f (22, —2))
SQQO(I, €T, z, 72) + QO(I, T, —=z, 72) + QO(SC, €T, z, 732)
for all z,z € E. Putting z = 3z in (2.6), we obtain that
P(2f(2z,-3z) — 4f(x,—32)) < p(z,z,—32,—32) (2.10)
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for all z,z € E. It follows from (2.9) and (2.10)

P12f(x, 2) + 2f (23, —32)) (2.11)
—P(12f(x, 2) + 4f (z, —32) — Af (z, —32) + 2f (23, —32))

<P12f (2, 2) + 4f (z, —32)) + P(2f(2z, —32) — 4 (z, —37))

<2P(6f(x, 2) + 2f(x, —32)) + P(2f (23, —32) — Af (z, —32))

<dg(z,2,2,—2) + 20(2, 7, —2, —2) + 20(, 7, 2, —32)

+ p(z,x,—32,—32)
for all x,z € E. Replacing z by —z in the above inequality, we get that

P(12f(x, —z) + 2f(2x,3%)) (2.12)

S4Q0($7 T, —z, Z) + 230(@', €, z, Z) + 230(l', €, —z, 32) + 30('1:’ €, 3Z7 32)
for all z,z € E. By (2.5) and the above inequality, we have

P(12f(x,2) — 2f(22,32)) (2.13)
—P(12f (2, 2) + 12f (z, —2) — 12f (x, —2) — 2f (22, 32))
<P(12f(x,2) + 12f (x, —2)) + P(—=12f(z, —2) — 2f (22, 32))
=P(12f(z,2) + 12f (z, —2)) + P(12f (z, —2) + 2f (22, 32))
<6P(2f(x,z) +2f(x,—2)) + P(12f(z, —2) + 2f (2, 3z))
<6p(z,x, 2, —2) + dp(z, 2, —2, 2) + 20(, 7, 2, 2)

+2¢(x,x,—2,32) + o(x, x,32,32)

for all z, 2 € E. Replacing = by 5% and z by 35 in (2.13), we obtain that

P (i (5 550) -2 (3-3) 2

=0¥ <2j+1’ DIRSRETESE _3j+1) i (2j+17 21 35+ 3j+1)

9 T x z z 9 xT T z z
Aind (2j+1’ 9i+1 3+ 3j+1) Mind (2j+1’ 2j+1’*3j+1’§)

T T z Z
+o(Fmzmy3)
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for all z,z € E. By (2.14), for any integers I, m such that 0 <1 < m, we get that

Pos (o) 201 (302) o
_P(2 6mf(2m :;n) 267 1f(2m 1’315 1)+2 e 1f<2’” 1’3’: 1)
_2.6m" 2f(2m e 5)+2:6m Qf(zm s ;)

o 26 f (21+1’3zil) 6f<2l’31>>
o () (g g )

+P( 2.6m 1f(zm 1a3mz 1) 2.6~ Qf(zm 2 3mz 2))

P s () -207 (25
<6™~ 1P(12f(2m 3Tn>_ f(zm 1’3"’Z 1)>

+6772P (127 (G ger) — 27 (gmz gocs))

+---+6'P (12f (2l+1’3lj-1) -2/ (%,é))

( 2f(2ﬂ+1’3az+1> 2f (2%3%»

6j 6 X X z z 4 X X z z
{ ¥ (2j+1’ 2i+17 3i+1” _3j+1) tde (2j+1’ 25+ 3517 3j+1)

3
L

<.
i

<

e

J

9 X x z z 9 X T z z
toy (2J‘+1’ 2iH1 31 3J‘+1) Ty (2J‘+1’ 21 3 37>

x €T z z
+o (g g3 y)

for all z,z € E. It follows from (2.3) that

11520276 60 (g g e —pen) + 9 (g e o i
p

9 X X z z 9 X i z z
2y (2j+1’ 9i+1° 3i+1’ 3j+1> + e (2j+1’ 2J‘+1’_3J‘+1’§)

X X z z —O
+‘p(2j+1’ 2j+1’§’§)] -

for all 7, z € E. This implies that the sequence {2- 67 f (2%, 3%) }320 is a Cauchy sequence in X forallz, 2 € E.
Since X is complete paranormed space, the sequence {2-67 f (2%7 3%)}‘;‘;0 converges for all x,z € E. Define

F:ExFE— X by

F(z,2) = lim 2.6/ f ( v Z) (2.16)

j—o0 247 39
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for all z,z € E. By (2.3), we get that

1 ; T Yy z w

oo L2 2
26 26‘”(2a"2j’3ﬂ"3a‘)
_ 1 9. i1 x Y z w
_Zoé' ' S0(2a'+1’2J‘+1’3j+1’3j+1)
_ > i x Yy z w )
_22 67 (2.j+17 9j+17 3j+1° 3j+1

<D 667 (2j+1’ 2517 35417 3]+1 26 2]+1’ 2 +1 35417 3j+1

. ] . ] _ —
+2:) 6 ‘P(Qj+1’ DYESE 3j+1’3j+1) +2 26 ‘p(gjﬂ’ 91’ 351 3]’)
0 =0

io(L_ Y iﬂ)
+26 S0<2j+1’2j+1’3j’3j

= x Y Z w x Y Z w
< Z 6’ [690 (2j+1 7 9i+17 3j+17 _3j+1> +dp (2j+1 7 9j+17 _3j+1 ’ 3j+1)

g x Yy z w 5 x Y z  w
T2 (2j+1’ 217 35+1° 3j+1) T (2j+1’ 21’ 351’ 37)

x Y zZ w
+o(gm g5 5)

:Lﬁ(x’ y) Z’ w) < oo

for all x,y, z,w € E. This implies that

xyzw)_

1 _
lim 2.6 ( ,
N 6 P\%7i" 27353

j—o0
for all z,y, z,w € E, which implies

e y z w):
Jim 2:6 ( 5r57) =0 (2.17)

for all z,y, z,w € E. It follows from (2.1), (2.16) and (2.17) that we have

P (2F (x by 2T w) — F(z,2) — F(z,w) — F(y, 2) — F(y, w))

2
<P (2 lim 2.6/ f ‘”y = fhm26jf( =)
- j—00 73] j—o0o 3]
s (5 8) o (1.3) - s (3.8)
jlir&”f(zj 37) ~ im0 (55 57) — i 267 (55 5
, e r oz T w
< . LRI 7 37 37 _ Baded _ Bl
_jlggf(ip(zf( +2J 2 ) f(2i’3ﬂ') f(2i’3j)

(53) (D)
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for all z,y, z,w € E. Since X is total, we have

z4+w
2

2F<w—|—y, ):F(x,z)—i—F(m,w)—i—F(y,z)—i—F(y,w)

for all z,y,z,w € E. Setting | = 0 and taking m — oo in (2.15), this implies that the inequality (2.2).
Next, we will show that F' is unique. Let G : E x E — X be another mapping satisfying (1.4) and (2.2).
By [12], there exists bi-additive mapping B, B’ : E x E — X and additive mapping A, A’ : E — X such that
F(z,y) = B(z,y) + A(z) and G(z,y) = B'(z,y) + A'(x) for all z,y € E. Since B is bi-additive mapping, A

is additive mapping and f(z,0) =0 for all € E, we have

Fa) 68 (5, 5) = By + 4@ 6B (2.2) + 4 ()]

273 2’3 :
= B(x,y) + A(z) — 6B (g’ %) — 64 (g>

= B(z,y) + A(z) — B(z,y) — 34 (2)
= —24()

— —92B(x,0) — 2A(x)

= —2F(x,0)

=2 lim 2.6/ (%,0) =0

for all x,y € E, that is,

F(z,y) = 6F (g %) (2.18)

for all z,y € E. Replacing x by § and y by § in (2.18), we have

P(33) = (%)

for all z,y € E. Continuing this process, we have F(z,y) = 6"F (QL, 34) for all z,y € E and for all n € N.

Similarly, we get that G(z,y) = 6"G (2%, 3%) for all z,y € E and for all n € N. For any n € N, we obtain
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that
P(F(z,y) — G(z,y)) (2.19)
:P<6 F 5’37) -0 G(Z" 3n>)
r vy Y r oy
(0 (7 30) ~26f (5 35) + 261 (5o 35) - ¢ (75-37))
(6 2I'L 37’L 37L + 2” 3FL n 37L
xr Yy x Y
crr(22) 209( ) p o0 (2 2)-oe(22)
2n " 3n on’ 3n 2n’ 3n
Ty Y Y Ty
<P (F (530) ¥ (& )) &P (2 (5537) = (5739))
~(T T Yy Yy
<2 6n (77757a7>
P \gngn g 3
o an ; g g T 3w G = 3w -
=2:6"> 6 [6“’ (2j+1’2j+1’3j+1’ 3g+1>+4‘p<2j+1’2j+1’ 3j+1’3j+1>
=0
+20 <2j+1’ 24117 35+1 3]+1> +2 <2j+1’ 21’ 3j+l’ 3;)
+90 (2j+1’ 2j+1’§’ 3]>:|
IR — x z vy )
=2> 6 [690<2n+j+1’2n+j+1’3n+j+1’ i+
=0
+do (2n+j+1’ ontj+1l’  gntjtl’ 3n+j+1) +2p (2n+j+1’ on+j+17 g+l Jntj+l
2 (g g g o) ¢ (g g 3 5|
Y\ onti+1 gntgr1  gnrgti  gntg ) T P\ gntsr ) gntsrl 3nts ) 3nts
o\ rx oy y r oz oy oy
_226 {6('0 (2i+1’ 2i+1’ 3i+1 ’ _3i+1) + 4('0 (2i+1’ 2i+1’ 3i+1’ 3i+1)
29 (2i+1’ 9i+1’ i1’ 3i+1> +2¢ (21‘+17 i+l il §>
+o (o e 0 7))
for all z,y € E. By (2.3), we obtain that
S r wy oy r x Yy oy
nlggoz 6 {6@ (2i+1’ 9i+17 gi+1’ _3i+1> +dp (2i+1’ 9i+1’ " gi+1’ 3i+1> (2:20)

+2¢ (21'+17 2iF1 3it1” 3z‘+1) +2 <2i+1’ i+l gitl’ §>

T Ty Y\l _
T (2i+1’ 2i+1’?’?)] =0

for all z,y € E. From (2.20), taking limit n — oo in (2.19), we obtain that

lim P(F(z,y) — G(z,y)) =0

n—roo

for all x,y € E. Since paranorm P on X is total, we have F(z,y) — G(z,y) =0 for all z,y € E. Hence F is

a unique mapping satisfying (1.4) and (2.2).

O
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Remark 2.1. Let r,0 be positive real numbers with r > log, 6. If we set o(x,y,z,w) = 0(||z||” + |ly||” +

121" + llw||") for all z,y,z,w € E, then Theorem 2.1 recovers Theorem 2.1 in [2].

The following result is the generalized Hyers-Ulam-Rassias stability of the functional equation (1.2).

Theorem 2.2. Let ¢ : EX E X E X E —[0,00) be a function and f: E x E — X be a mapping satisfying
f(x,0) =0 for all x € E such that

<e(z,y,z,w)

for all x,y,z,w € E. Then there exists a unique mapping F : E X E — X satisfying (1.2) such that

P(f(z,y) = F(z,y) < ¢(z,2,y,y) (2.22)
for all x,y € E where
y oz w
p(x,y,2,w) ZSJ (2]+1’ 23 +17 9517 2]+1> <0 (2:23)

for all x,y, z,w € E where the mapping F : E x E — X is given by

— hm s (X ﬂ)
F(z,y) Jim 8 f(zj, 5
forallx,y € E.

Proof. Letting y = 2 and w = z in (2.21), we obtain that

P(f(2x72z) - 8f(x,z)) < go(x,x,z,z)

for all x, z € E. Replacing x by 5757 and z by 577 in the above inequality, we get that

X z X z X X z z
P (f (27 27) -8f <2j+1’ 21’+1>) 4 (2J‘+1’ 2J+17 9j+17 2J‘+1) (2.24)

for all nonnegative integer j and for all x, z € E. It follows from (2.24) that we have

P15 5) 5 (o) o2
(1 (35) - (5hre5)

=0 (2j+1’ DIRSRYES 2j+1)
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for all nonnegative integer j and for all x,z € E. By (2.25), for any integers [ and m such that 0 <1 < m,

we have

(8lf(2l’2l) -8 (2m 221)) (226)
(8f(21’2l) 8 (le%) +8 (%21%)
ot s 1f(2m 1’273 1)_ mf(?m 2%))
<P (8lf () =¥ (g5 7))
P (81 (g gen) =87 (g7 )
et (57 (e ) - (3 )

—1

v <2j+1’ DYRSRDYES 2j+1)
l

3

<.
Il

&

—

v (2j+1’ 2i+17 9541 2j+1)
J

for all z,z € E. Tt follows from (2.23) that we obtain that

T x z z
11132028 ¥ (2J+1’ 27+17 9j+17 2J+1> =0

for all 2,z € E. This implies that {8/ f (QJ y 57 )} is Cauchy seqeunce in X for all z, 2z € E. By completeness

of X, the sequence {8/ f (QJ,QJ)}iS convergent sequence for all x,y € F. Define F': E x E — X by
F(zz)*hm8jf< Z)
j—o0 7 9J
for all z,z € E. By (2.21), we obtain that
P(F(z+y,z+w)+ Fz+y,z—w)—2F(x,2) - 2F(z,w) — 2F(y, 2) — 2F(y, w))
_ . j r+y z+w j r+y z—w B j ( Z)
P(jlinio8f< TR T e R A S YRY 2 lim 877550
_ j B), J(ii), a(y w)
> Jim 81 (57 57) =2 7 (5 37) =2 Jm ¥ (555

L j r+y z+w j rT+Yy z—w o .qi (ii)
_jILI&P<8f( 5 ) T8 2 20 287555
J
)

20727 )
. j r+y z+w T+ —
SjlingoégP(f( TR R W TR

a1(82) -2 (53)

Ty z w)
< J
Jim 8o (QJ 5 2i72i) =0

291 (3 )29 (hg) 29 (4.)
z

)2 (Gs) 2 (55
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for all z,y, z,w € E. Since X is total, we have
Fla+y,z+w)+Flz+y,z—w)=2F(x,z2)+2F(x,w) + 2F(y, z) + 2F (y, w)

for all z,y,z,w € E. Setting I = 0 and letting m — oo in (2.26), the inequality (2.26) holds. Next, we will
show that F'is unique.

Let G : E x E — X be a another mapping satisfying (1.2) and (2.22). It follows from Theorem 3
in [13] that there exists multi-additive mapping M, M’ : E x E x E — X such that F(z,y) = M(z,y,y),
G(z,y) = M'(z,y,y), M(z,y,2) = M(x,z,y) and M'(x,y,z) = M'(xz,2,y) for all z,y,2z € E. For any

n € N, we get that
P(F(x,y) = G(x,y)) =P (M(2,y,y) — M'(z,y,y))
2mx 2y 2"y 2nx 2"y 2"y
<M<2”’2”72"> (2"72”’2")>
(& 1 (g gmae)| -5 M (& %’%)D
( 37) M

s [V (gm0
) A
Flgrge) = (gog) 1 (grge) —€
SS"[P(F(Q%,Q%)_JC(£7£) +P<f(£g

¢ (2n i)ﬂ

(T T Yy ¥y
<2-8" (7777777)
=20 P \gn gngn g0

I
B

[
~

£ Y Y

o anN"aj . [ 27 37 3% g%
=2:8") 87y <2j+1’ 2iF17 9j41 2j+1>
—

o0
_9. n+j €z €T Yy Y )
=2 Z 8 (2n+j+1’ Onti+1’ onti+l’ gntitl

_ i Y Y
=2 28 (2z+1’ 21+1’ 21+1’ 21+1)

for all z,y € E. By (2.23), we get that

Y Y
nlbnéozg (2L+1’ i+l 9itl’ 2%+1) =0
for all z,y € E. Hence

lim P(F(z,y) - G(z,y)) =0

n—oo
for all x,y € E. Since paranorm P on X is total, we have F(z,y) — G(z,y) =0 for all z,y € E. Hence F is
a unique mapping satisfying (1.2) and (2.22). O
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Remark 2.2. Let r,0 be positive real numbers with r > 3. If we set p(z,y, z,w) = 0(||z||” + ||ly||” + [|z]|" +

lw||") for all x,y,z,w € E, then Theorem 2.2 recovers Theorem 3.1 in [2].

3. STABILITY OF THE GENERALIZED CAUCHY-JENSEN FUNCTIONAL EQUATION IN PARANORMED SPACE

The following result is the Hyers-Ulam-Rassias stability of the functional equation (1.5).

Theorem 3.1. Let r be a positive real number with r > 1, and let f : E — X be a mapping satisfying

P(af (FE =) - 1@~ ) - af2)) < 6lall + Il + 117 (3.1)

for all z,y,z € E. Then there exists a unique mapping F : E — X satisfying (1.5) such that

P (f(z) - Fx)) < (3“ + 1) ol (3.2)

aT

for all x € E where the mapping F : E — X is given by

F(z) = lim o™f (%)

n—oo

forallx € E.

Proof. Putting x =y = z = 0 in (3.1), we have P(f(0)) < 0. Since X is total, we obtain that f(0) = 0.

Letting x = =2,y = £ and 2z = 0 in (3.1), we obtain that

/—\/\

(i

20,
=— =
«

T’)

for all z € E. Replacing = by az in the inequality (3.3), we get that

P(f(=2) + f(z)) < 20]]«]" (3.4)
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for all € E. Replacing x = —z, y =0, and z = £ in (3.1), we have
p (f(—:f:) +af (2)) (3.5)
(oo (2)
=2 (af (FE2 4 (-2)) - 00 - 50) - 0f ()
<6 (=" + ol + || Z||")
= (1 + 1T> 0||x||"
e
for all x € E. Tt follows from (3.4) and (3.5) that we have
P(af (2) = f@) =P (af (Z) + f(=2) = f(-2) — f()) (3.6)
<P(af (2)+f(=2)) + P(f(-2) + ()
< (1 37 ) Ollel” + 201a1
< (34 5 ) ollelr
for all x € E. For i € N, replacing x = % in (3.6), we get that
P () — ot (3)) 2o (o1 () =7 (7)) 7
<a (34 ) ol
_ (afl) (3 + M) ol
for all x € E. For given nonnegative integer [, m such that [ < m, we have
Pl () -1(2) o0

- (’"f (a) —em 1 ( =) e ()
el ()~ ()
7)

= (o ()~ (5
><3+ )0||x
)

)

INA
HMS +

IN

(

A 3+ ) ol Z(
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for all x € E. Since r > 1, we have oﬁ —=1 < L. Since = < 1, the sequence {a" f ( )} is Cauchy sequence

for all z € E. By completeness of X, the sequence {a™ f ( 7 )} converges. Define F': E — X by

F(z) = lim o™f (of") (3.9)

n— oo

for all x € E. Moreover, letting [ = 0 and taking limit m — oo in (3.8), we can obtain that inequality (3.2).
It follows from (3.1) and (3.9) that

P(aF( l’y+ ) F(m)—F(y)—aF(z))
(o g o (S5 ) < () o ()
)
=l P (o f("+‘ SRICORICORN )

< oo (|5 2] + |2

n—oo

o1 1
=0zl nh_)rrgo <of—1) =0

for all xz,y,2z € E. Since X is total, we have

oF (i‘y + z) — F(2) + F(y) + oF(2)

for all z,y,z € E. By Corollary 1.1, F' is additive. Next, we will show that F' is unique. Let G be another

mapping satisfying (1.5) and (3.2). Then, we consider
P(F(z) - G(2)) = P (nF (%) —nf (%) +nf (%) —nG (g)) (3.10)
<n(P(r(3)-rG)+r((2)-¢(2))
o (50 o]
= () 2 () o

for all z € E. Since r — 1 > 0, taking limit n — oo in (3.10), we have P(F(z) — G(z)) = 0 for all z € E.

Since X is total, we have F(x) = G(z) for all z € E, that is F' is unique. O
Theorem 3.2. Let r be a positive real number with r < 1 and let f : X — E be a mapping satisfying

Haf (Zy n ) —f@) = f) —af ()| < Py + P+ Py (3.11)

for all x,y,z € X. Then there exists a unique mapping F : X — E satisfying (1.5) such that

2+ 3a”
a—a”

1f(2) = F(z)]| <

P(z)" (3.12)
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for all x € X where the mapping F' : X — E is given by

F(z) = lim €L (")

n—oo

forallx € X.

Proof. Letting x =y =2z =01n (3.11), we get that

12001 = o7 (22 +0) = 10~ 70 - as0)

<P(0)"+P(0)" + P(0)
=0

So f(0) = 0. Subtituting + = —ax, y =0 and z = x in (3.11), we obtain that

—ax +0

+ ) ~ f(—az) - £(0) — af(x)

I5(-aa) + af@ = o (
<P(—az)" +P(0) + P(z)
<(14a")P(z)"
for all x € X. Letting x = —ax, y = ax and z = x, we get that

[f(—ax) + f(ax)]| =

af (FHE 0 - fl-an) - flas) - af (0

< P(—ax)" + P(ax)" + P (x)"
<(1+2a")P(z)"
for all z € X. Then we have

[ f(ax) —af(z)| = |[flaz) + f(—az) — f(—az) — af ()]
= [f(az) + f(—az)|| + [ f(—az) + af ()]
<(1+a")P(@)" + (1+2a")P (z)"
= (2+3a") P(2)"

and so

|2 stan) - s < 252

—P(a)’ (3.13)

for all z € X. Replacing = a’z and multiplying by & in (3.13), we have

1, 1, 1 243a" _, .
rE—— - = < - P v r .14
)~ flan)| < - 25 plat) (314)
2+ 3a” I
< P(x)"
- o (1:) (al—r>
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for all z € X. By (3.14), for any integers [, m such that 0 <[ < m, we obtain that

@) - rta's) (3.15)

1

am

1
(@) 4 e el )

N Halmf(amx) + ani—1 fla™ ) =

— fa'a)

m—1 )
24307 [ 1
<Y 2rer ()

i=l

2+3 T [e%s) i
- o Z(al r)

1=

for all z € X. Since = < 1, we have Y} (== )l < oo. It follows from (3.15) that the sequence

{-L f(a"z)} is Cauchy sequence for all z € X. Since E is complete, the sequence {- f(a"z)} is convergent

sequence. We define a mapping F' : X — E by

F(z) = lim if (") (3.16)

n—oo a
for all x € X. Moreover, letting | = 0 and taking limit m — oo in (3.15), we can obtain that inequality

(3.12). Tt follows from (3.11) and (3.16) that we have

HaF (“”Zy + z) _ F(x) - F(y) — aF(2)

n—oo ™ n—oo ™ n—oo ™

o 1 1f< (mzy“» ~ lim —f (a"y) — lim —f(a"2)

—a lim if(cu 2)

n—oo O{
< Jim o for (TR pans) < p () - f @) - af (@"2)
< lim 1 ’ozf (M + a"z) — fa™y) — f(a"z) —af (a"2)
n—oo " o

1 .
lim — (P(a"x)" 4+ P(a™y)" + P(a™2)")
n—oo Q"

IN

IN

lim
n—oo ™

(P(2)" + P(y)" + P(2)") lim (1>n —0

n—ooo \ al—T

(P(z)"+ P(y)" + P(2)")

IN

for all x,y,z € X. Hence
+
aF< ay + ) F(z) + F(y) + oF(2)
for all x,y,z € X, that is F' is the generalized Cauchy-Jensen functional equation. By tha same reasoning

as in the proof of Theorem 3.1, F' is unique. |
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