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Abstract. In this paper, least squares approximation method is developed for solving a class of linear

fractional integro-differential equations comprising Volterra and Fredhlom cases. This method is based on

a polynomial of degree n to compute an approximate solution of these equations. The convergence analysis

of the proposed method is proved. In addition, to show the accuracy and the efficiency of the proposed

method, some examples are presented.

1. Introduction

Fractional calculus is a significant branch of mathematics that is used in many fields of science and

engineering [2–4]. Many researchers have investigated the analytic results on the existence and uniqueness of

solutions of the fractional differential equations [5–8]. As we know, for most fractional differential equations,

there are not method to obtain analytic solutions, so numerical techniques must be used. During the past

years, methods for solving fractional differential equations are developed. Additionally, some methods have

recently been emerged, such as the Adomian decomposition method [10,11], the operational matrix [12,13],

the collocation method [14,16], etc.
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In this paper, by using least squares approximation, a numerical method has been shown to linear fractional

integro-differential equations in the following form

Dαy(t) = p(t)y(t) + f(t) + λ1

∫ 1

0

k1(t, x)y(x) dx+ λ2

∫ t

0

k2(t, x)y(x) dx t ∈ I = [0, 1] (1.1)

with the initial conditions

y(k)(0) = dk i = 0, ..,m− 1, m− 1 < α ≤ m, (1.2)

where yk(t) stands for the kth-order derivative of y(t) and Dα denotes the Riemann-Liouville fractional

derivative of order α. Clearly, when λ1 = 0, λ2 = 0, the above equation reduces to a linear fractional

differential equation.

The rest of the paper is organized as follows: In section 2, we will briefly review some notations and

definitions of the fractional calculus theory are used in the paper. In Section 3, we introduce the least

squares approximation method for solving Eq. (1.1), and discuss its convergence. In Section 4, we show the

efficiency of the proposed method with some numerical examples. Section 5, as the final section, presents a

conclusion.

2. Brief review of fractional calculus

In this section, notations and definitions of the fractional calculus theory, which are going to be used in

this paper, are presented [1].

2.1. Definition. The Riemann-Liouville fractional integral operator Iα of order α ≥ 0 of a function f(x),

is defined as

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)(α−1)f(t) dt , α > 0, (2.1)

where x > 0 and Γ(.) is the Euler gamma function.

The Riemann-Liouville fractional derivative of order α will be denoted by Dα and defined by

Dαf(x) =
dm

dxm
(Im−αf(x)), (2.2)

where m − 1 < α ≤ m,m ∈ N and m is the smallest integer order greater than α. We just mention the

following property

Dαxβ =
Γ(β + 1)

Γ(β + 1− α)
xβ−α, β > −1. (2.3)
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3. Method of solution

In this section, we apply the least squares approximation method for solving Eq. (1.1). We define the

following operator

T (t, y(t)) = Dαy(t)− p(t)y(t)− f(t)− λ1
∫ 1

0

k1(t, x)y(x) dx− λ2
∫ t

0

k2(t, x)y(x) dx. (3.1)

We construct Taylor-series expansion for the solution y(t) in Eq.(1.1) as

y(t) ' yn(t) =

n∑
r=0

y(r)(0)

r!
tr =

n∑
r=0

dr
r!
tr. (3.2)

Substituting (3.2) into ( 3.1), we have

T (t, yn(t)) = Dαyn(t)− p(t)yn(t)− f(t)− λ1
∫ 1

0

k1(t, x)yn(x) dx− λ2
∫ t

0

k2(t, x)yn(x) dx

= Dα(

n∑
r=0

dr
r!
tr)− p(t)

n∑
r=0

dr
r!
tr − f(t)−

n∑
r=0

dr
r!
λ1

∫ 1

0

k1(t, x)xr dx−

n∑
r=0

dr
r!
λ2

∫ t

0

k2(t, x)xr dx

=

n∑
r=0

drΓ(r + 1)

r!Γ(r − α+ 1)
tr−α − p(t)

n∑
r=0

dr
r!
tr − f(t)−

n∑
r=0

dr
r!
λ1

∫ 1

0

k1(t, x)xr dx−

n∑
r=0

dr
r!
λ2

∫ t

0

k2(t, x)xr dx

=

n∑
r=0

drγr(t)− f(t),

where

γr(t) =
Γ(r + 1)

r!Γ(r − α+ 1)
tr−α − p(t) t

r

r!
− λ1
r!

∫ 1

0

k1(t, x)xr dx− λ2
r!

∫ t

0

k2(t, x)xr dx.

Let Rn(t) := T (t, yn(t))− T (t, y(t)), t ∈ [0, 1].

Remark 3.1. If Rn(t) = 0, then y(t) = yn(t); if limn→∞Rn(t) = 0, then limn→∞yn(t) = y(t).

Remark 3.2. For any t ∈ [0, 1], if Rn(t) ≡ 0, then yn(t) is an exact solution of Eqs. (1.1) and (1.2); if

limn→∞Rn(t) = 0, then yn(t) converges to the exact solution of Eqs. (1.1) and (1.2).

Let

J = J(dm, dm+1, ..., dn) =

∫ 1

0

T 2(t, yn(t))dt. (3.3)

The problem is to find real constants dm, dm+1, ..., dn such that these constants will minimize J . A necessary

condition for the constants dm, dm+1, ..., dn to minimize J is that
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∂J

∂dj
= 0,

for each j = m,m+ 1, ..., n. By referring (3.3), we get

∂J

∂dj
= 2[

n∑
r=0

dr

∫ 1

0

γr(t)γj(t)dt−
∫ 1

0

f(t)γj(t)dt] = 0. (3.4)

Thus, we have
n∑

r=m

dr

∫ 1

0

γr(t)γj(t)dt =

∫ 1

0

f(t)γj(t)dt− βj , (3.5)

where

βj =

m−1∑
r=0

dr

∫ 1

0

γr(t)γj(t)dt (3.6)

for each j = m,m+ 1, ..., n.

In order to find yn(t), we have to solve (n−m) a system of linear equations while assuming (n−m) unknowns

dr. The system (3.5) can be written in the form:

Gd = F (3.7)

where

G =



(γm, γm) (γm, γm+1) . . . (γm, γn)

(γm+1, γm) (γm+1, γm+1) . . . (γm+1, γn)

...
... . . .

...

(γn, γm) (γn, γm+1) . . . (γn, γn)


, (3.8)

d = [dm, dm+1, ..., dn]T ,

and

F = [(γm, f)− βm, (γm+1, f)− βm+1, ..., (γn, f)− βn]T

Definition 3.3. If Eq. (3.7) has a unique solution d, then yn(t) =
∑n
r=1

dr
r! t

r is called an optimal squared

approximation solution of Eqs. (1.1)-(1.2) defined on a set as span{1, t, t2, ...tn}, t ∈ [0, 1].

Remark 3.4. If limn→∞
∫ 1

0
T 2(t, yn(t))dt = 0, then the optimal squared approximation solution yn(t) con-

verges to the exact solution y(t) of Eqs. (1.1) and (1.2).

We are interested to know that as n → ∞ the optimal squared approximation solution yn(t) will converge

to the exact solution y(t) of Eqs. (1.1) and (1.2). This conception is proven in Theorem 3.5.
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Theorem 3.5. Suppose y(t), t ∈ [0, 1] is an exact solution and yn(t) is an optimal squared approximation

solution of Eqs. (1.1) and (1.2). If ∃pn(t) =
n∑
r=1

drt
r such that ∀t ∈ [0, 1], limn→∞ pn(t) = y(t) then

lim
n→∞

∫ 1

0

T 2(t, yn(t))dt = 0.

Proof. The proof is similar to proof of Theorem 3 in [19].

4. Illustrative examples

In this section, we use the presented method in Section 3 for solving two examples.

Example 4.1. For first example, consider the fractional integro-differential equation

D0.75y(t) +
1

5
t2ety(t)−

∫ t

0

xety(x) dx =
6t2.25

Γ(3.25)
,

y(0) = 0,

where the exact solution is given by y(t) = t3.

We applied the presented method with n = 3 for solving this example and achieved the corresponding

absolute errors in Table 1.

Table 1: Absolute errors for Example 1 for n = 3.

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

0 1.314×10−15 1.045×10−15 1.914×10−16 2.475×10−16 6.717×10−16

Example 4.2. Consider the equation

Dαy(t) +
7t2

12
y(t)−

∫ 1

0

txy(x) dx−
∫ t

0

(x+ t)y(x) dx =
2t2−α

Γ(3− α)
− t

4
,

y(0) = 0,

with the exact solution y(t) = t2. By the presented method in section 3 for n = 2 and different values of

α absolute errors are reported in Table 2.

Example 4.3. Consider the equation [20]

Dαy(t) + y(t) = t4 − 1

2
t3 − 3

Γ(4− α)
t3−α +

24

Γ(5− α)
t4−α,

y(0) = 0, 0 ≤ α ≤ 1

whose exact solution is given by y(t) = t4 − 1
2 t

3.
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Table 2: Absolute errors for Example 2.

t α = 0.2 α = 0.5 α = 0.7 α = 0.9 α = 1.0

0.0 0 0 0 0 0

0.1 0 1.734× 10−17 1.387× 10−17 0 0

0.2 0 3.469× 10−17 2.775× 10−17 0 0

0.3 0 4.163× 10−17 4.163× 10−17 0 0

0.4 0 5.551× 10−17 5.551× 10−17 0 0

0.5 0 5.551× 10−17 5.551× 10−17 0 0

0.6 0 5.551× 10−17 5.551× 10−17 0 0

0.7 0 5.551× 10−17 1.110× 10−16 0 0

0.8 0 0 1.110× 10−16 0 0

0.9 0 1.110× 10−16 1.110× 10−16 0 0

1.0 0 0 2.220× 10−16 0 0

By taking different values of α, we solved the above problem by means of the presented method. The

maximum absolute error with the presented method and SCT method [20] for n = 4 are compared in Table

3.

Table 3: Comparison of maximum absolute error for example 3.

α n=4 Present method Method of [20]

0.01 1.26×10−14 1.2×10−5

0.1 1.41×10−14 1.3×10−4

0.5 5.30 ×10−15 7.8 ×10−4

0.99 1.30 ×10−15 8.6 ×10−4

1 1.14 ×10−15 8.6 ×10−4

Example 4.4. Consider the equation

D
3
2 y(t) + y(t) =

6

Γ(2.5)
t1.5 +

6

Γ(1.5)
t0.5 + t3 + t2,

y(0) = 0, y′(t) = 0,

whose exact solution is given by y(t) = t3 + t2.

By applying the technique described in section 3 with m=4, we approximate solution as

y(t) =

4∑
r=0

y(r)(0)

r!
tr =

4∑
r=0

dr
r!
tr
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Here, by using Eq. (3.7), we obtain


1.00901 0.422206 0.123762

0.422206 0.19103 0.0586763

0.123762 0.0586763 0.0186265




d2

d3

d4

 =


4.55127

1.9906

0.599582

 (4.1)

Finally by solving Eq.(4.14), we get

d2 = 2, d3 = 6, d4 = 0.

Thus we can write

y(t) = d0 + d1t+ d2
t2

2!
+ d3

t3

3!
+ d4

t4

4!
= t3 + t2,

which is the exact solution.

5. Conclusion

In this paper, we proposed least squares approximation method to solve a class of linear fractional

integro-differential equations comprising of Fredholm and Volterra cases based on a polynomial of degree

n. The numerical experiments show that the proposed method can be suitable method for solving these

equations.
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