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ABSTRACT. In this paper, we introduce and investigate a new class of generalized convex functions, called
generalized geometrically r-convex functions. Some new Hermite-Hadamard integral inequalities via gener-
alized geometrically r-convex functions have been established. Results proved in this paper can be viewed

as new significant contributions in this area of research.

1. INTRODUCTION

Several branches of mathematical and engineering sciences has been developed by using the crucial and
significant concepts of convex analysis and hence it becomes one of the most interesting and useful concept
of mathematics for last few decades. There are mainly two aspects of the convex functions which have played
very important and crucial part in the developments of various branches of pure and applied sciences. First
aspect is concerned with differentiable convex functions. It is known that if a function f is differentiable on

the convex set K, then the f is a convex function, if and only if, it satisfies the inequality
(f'(u),v—u) >0, Yve€EK, (1.1)
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where f/(.) is the Frechet differential of f, which is called the variational inequality. Variational inequalities
were introduced and studied by Stamapcchia [35] in potential theory. Variational inequalities can be viewed
as natural generalization of the variational principles. It is remarkable that a wide class of unrelated prob-
lems, which arises in every branch of pure and applied sciences can be studied in the unified and general
framework of variational inequalities and their variant forms. For the applications, formulation, dynamical
systems, sensitivity analysis, numerical methods, error bounds and other aspects of the variational inequal-

ities and optimization see [3,4,8,16-21, 35].

Hermite [13] and Hadamard [12] proved that a function f is convex function on the interval [a,b], if and

only if, f satisfies the inequality

a+b 1

. f(a) + 1 (b)
2 " T b—a

/b fl@)dx < T Ya,b € [a,b], (1.2)

which is known as Hermite-Hadamard inequality and is one of the most important inequality. In recent
years, much attention has been given to derive the Hermite-Hadamard type inequalities for various types of
convex functions, see [6,11,14,15,22-33].

The concept of convexity has been extended and generalized in several directions using new and innovative
techniques, see [1, 2, 3, 5, 7, 11, 12, 13]and the references therein. Pearce et. al [11] introduced the class
of r-convex functions. Several authors have derived Hermite-Hadamard type inequalities for various classes
of r-convex functions, see [22,28,31-33]. Gordji et al. [9] introduced an important class of convex functions
involving the bifunction, which is called generalized(p-convex) convex function. These generalized convex
functions are nonconvex functions. For recent developments, see [5, 6, 7, 14, 15, 16, 17, 18, 20, 21, 22] and

the references therein.

Inspired and motivated by the ongoing research in this field, we introduce a new class of generalized convex
function, which is known as generalized geometrically r-convex function. We derive some new Hermite-
Hadamard integral inequalities for these nonconvex functions. Some special cases are discussed, which can
be obtained from our new results. Using the technique and ideas of this paper, one may obtain Hermite-

Hadamard type integral inequalities for other classes of convex functions and their variant forms.

2. PRELIMINARIES

Let I = [a,b] be an interval in real line R. Let f : I — R be a continuous function and n(-,-) : RxR = R

be a continuous bifunction. First of all, we have the following well known and new concepts.
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Definition 2.1. [9]. A function f : I = [a,b] — R is said to be generalized convex function with respect to

a bifunction n(-,-) : R x R — R, if
S(A=t)a+1tb) < (1—1)f(a)+t[f(a) +n(f(b), f(a))],Va,b € I,t €[0,1].

Definition 2.2. [32]. A function f: I = [a,b] = R is said to be generalized r-convex function with respect

to a bifunction n(-,) : R xR = R, ifVa,b e I, t € [0,1]

{u—wumw+ﬂﬂ@+Mﬂmem}, r£0,
@117 (@) + n(FB), (@) F—o.

f(A—=t)a+tb) <

If n(f(b) — f(a)) = f(b) — f(a), then, the Definition 2.2 reduces to

Definition 2.3. [11]. A function f: I = [a,b] — R is said to be r-convex function, if

S|

{@=D[f (@] +tf®)]"}7, r#0,
[f(@)]* L f (D)), r=0.

F((1=ta+1tb) <

Note that for r = 1, we have classical convex functions and for r = 0, we have log-convex functions.
Definition 2.4. [33]. The set I C Ry is said to be geometrically convex set, if
a7t eI, Va,bel,te(0,1].
Definition 2.5. [33]. A function f: I C Ry =(0,00)— R is said to be geometrically convex, if

fla'7th) < (1 —t)f(a) + t(f (b)), Va,bel,tel0,1],

We now define a new concept of generalized geometrically r-convex functions.

Definition 2.6. . A function f : I = [a,b] — R is said to be generalized geometrically r-convex function

with respect to a bifunction n(-,-) : R xR =R, ifVa,be I, t € [0,1]

3=

{u—wuww+ﬂﬂ@+Mﬂwjmm} ey
(@17 (@) + 1), F(@)] N

f(al—tbt) S

Ift= %, then definition 2.6 reduces to

1

{ @) 4 @) ). @)) } Y

f(Vab) <

VI @][f(a) +n(f (@), f(a))], r=0.
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The function f is called generalized geometrically Jensen r-convex function.

IEn(f(b), f(a)) =

f(b) — f(a), then Definition 2.6 reduces to a new concept.

Definition 2.7. . A function f : I = [a,b] — R is said to be generalized geometrically r-convex function
with respect to a bifunction n(-,-) : R xR =R, if Va,be I, t € [0,1]

1
s

Fa) < {a-ou@r+wor}’. rzo

[f (@) O],

Ift= %, then

1

F@r+rer T
f(Vab) < { ’ } o
[f(a)f(D)], r=0.

The function f is called generalized geometrically Jensen r-convex function.

The generalized logarithmic means of order r of positive numbers a, b is defined by

roqrtl_prtl

r+1 a’—b" T#Ov_laa#bv

a—b
__a=b__ r=0,a#b
log a—log b’ ’ ’
L.(a,b) =
abilogz:}jogb, r=-1,a#b,
a, a=b.

Definition 2.8. The beta function, also called the Euler integral of the first kind, is defined as

Blx,y) = /0 711 —t)vldt = E((g;)i(;j))’ z,y >0

where I'(.) is a Gamma function.

3. MAIN RESULTS

In this section, we establish several new integral inequalities of Hermite-Hadamard type for generalized
geometrically r-convex functions.

Theorem 3.1. Let f: I — R be generalized geometrically r-convex function on I. Then for 0 <r <1, we
have

s | 2@ < (@ + @ s, s@n)
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Proof. Let f be generalized geometrically r-convex function on I. Then, Va,b € I,t € [0, 1], we have

Flal=tt) < {(1 —)[f(a)]" + t[f(a) +n(f(b)7f(a))]r} :

Using Minkowski’s inequality and the fact that f is generalized geometrically r-convex function, we have

1 ’1 R
— | = de = —'hh)dt
logb—loga/a xf(x) v /0 Ja )

/0 {@=D[f (@] +t[f(a) +n(f(b), f(a)]"} " dt

{(] - 0} (r(a)

IN

IN

which is the required result. |

Corollary 3.1. Ifn(f(b), f(a)) = f(b) — f(a), then, under the assumptions of Theorem 3.1, we have a new

result.

ﬁ /ab if@dw < <T_:1>{([f(a)]’” + [f(b)]’”)}-

Theorem 3.2. Let f: I — R be generalized geometrically r-convez function on I. Then for 0 <r <1, we

have

b
A VD) = oo [ GI@ + () @) s

(logb — x x " x

1 b .
= logbfloga/a @) dz

{If@]"+[f)"} 1
= 4 1

([f(a) +n(f(0), f(a)]" + [f(0) +n(f(a), f(b))]’"> 7

Proof. Let f be generalized geometrically r-convex function on I. Then, Va,b € I,t € [0, 1], we have

Flal=tt) < {(1 —)[f(a)]" + t[f(a) +n(f(b)7f(a))]r} :

Using (2.1) and substituting z = a'!~*b* and y = a’b'~*, we have

al—t AYES al—t i at 1—t al—t t T
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Integrating the above inequality with respect to ¢ on [0,1], we have

1

1
v < g [ e

+Mfw%*¢xme*H»V}m

ab

b
= St Tore /. @)+ @) 40D @) e

This implies

b
AV = Gogomms [ U@+ (7). f@) e

1 b1 )
< o —ioga) /. 2N

Consider

[f(a' ")) < {(1 = O[f(@)]" +tf(a) +n(f(b), f(a))]r}-

[f(a'd' ™))" < {(1 = OF O] +t[f(b) +n(f(a), f(b))}r}
Adding (3.2) and (3.3), we have

@) + @) < {awwww+ﬂﬂ@+MﬂMJmm}

+@1_wu@r+ﬂﬂw+nuw»ﬂww}.

Integrating the above inequality with respect to ¢ on [0,1], we have
2
logh —loga

Hﬂw+nwwxﬂmw)}m

which implies that

b
ngg%;/tﬂ@wm <

{{[f(a)]r +f0)"}

1 +

1
1
Hﬂ@+n@@%ﬂ®ﬁ)}

Combining (3.1) and (3.4), we have
i, 1 b1 ab, 1 ,
2[f(Vab)]" - m/a [;f(x)—i—n(f(;),;f(:v))] dz

1 b .
= logb—loga/a ()] dw

{f@]" +[f®)"} 1

- 4 4

[ r@as < [{a-orr e isor o1+ o, e

Qﬂ@+«ﬂw4mmr

+7 ([f(a) +0(f ), f(@)]" + [£(0) +n(f(a), f(b))]T) ;

(3.4)
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which is the required result. O

Corollary 3.2. If n(f(b), f(a)) = f(b) — f(a), then, under the assumptions of Theorem 3.2, we have a new

result.

VD) < ot [ ropas < (O TOI,

logb —loga J,
Theorem 3.3. Let f : I — R be generalized geometrically r-convex function on I and r > 0, then
e\ S (@40 ®). @) = [F (@) +)
1 "1 <+1>{ [F@+n(F ), @) =@ } r#0
_ —f(z)dx <
logb —loga

[F(a)-+n(F (b).] ()] [f(a)] r—0
Togl (@) +(F(8).f (@)~ loglF @] '

Proof. First, let r > 0 and f be generalized geometrically r-convex function on I. Then Va,b € I,t € [0,1],

we have

1 b1 !
7/ —f(x)dz = / fla*~tphdt
logb —loga J, = 0

/ {(1 C U@L + (@) + n(FB), f<a>>r} dt.

IN

Substituting v = [(1 — ¢)[f(a)]" + t[f(a) + n(f(b), f(a))]"] in (3.5), we have
1 [F(@)+a(f®).f(a)]" |
o ), Y S T T T Jyr v

_ ( r ) {(ma) n(f(b), f(a))"*! = [f(a)r*l)}
r+1 [£(a) +n(f (), F(a)) = [f(a)]"

For r = 0, we have

=) < {{ @ (o, s

Hence we have,

b 1
Fbibga/ %f(x)dx =/ f(a'~tbt)at
1
</ {[f(a)]lt[f(a)+n(f(b),f(a))]t}dt
e [ @) (B )
- Ul | { @) }‘“
@), fa)) - ()]
g7 (@) + (/). ()] ~loglf (@]’

which is the required result. ]
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Corollary 3.3. If n(f(b), f(a)) = f(b) — f(a), then, under the assumptions of Theorem 3.3, we have a new

result.

r Py )]+t
1 /blf( ' (0 { it | = 2o G@.s0). v 20
— X )axr

logb —loga T Fb)—f
{bg[ﬁf((bﬁlo(g[)}(a)] = L(f(a), (b)), r=0.

Theorem 3.4. Let f: I — R be generalized geometrically r-convex function on I and r > 0, then

fla),r #0, f(a) = f(b),

1 b1
— / —f(z)dz <
logb —loga J, = [1og[f(a)+n(f (6).f(a))] " ~log[f(a)] "]

@GO F @) T Fal T "= 1

Proof. First, let r > 0, f be generalized geometrically r-convex function on I and f(a) = f(b). Then

Va,b e I,t € [0,1], we have

1 bl ! 1-tt
b oga |, @ = [
1 I3

/ {(1 “ U@L + (@) + n(f(a), f(a))]’} dt.

IN

= fla)

For r = —1 and f(a) # f(b), we have

o [Lrwar = [ s
logb —loga J, x e = 0 “

1 [f (@) +n(£(),f(a)] ™" 1 q
— [fla) +0(f ), f(a)] -t = [f(a)]? /[f(a)]1 u

(@)t =[fl@]~+
which is the required result. |

Corollary 3.4. If n(f(b), f(a)) = f(b) — f(a), then, under the assumptions of Theorem 3.4, we have a new

result.

1 /bl f(a),r;éO,f(a):f(b),

—f(z)de <
F(a) f () ELDIZos @) — 1 (f(a), £(B), r=-1.

logb —loga
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Theorem 3.5. Let f,g : I — R be generalized r1-conver function and generalized ro-convez functions

respectively on I. Then for ry > 0,79 > 0 >, we have

r

oo | L gtes < () {wr@r + @+ s s |

T2

+( r ){([g<a>r2[g<a>+n<g<b>,g<a>>rz>}

r+1

Proof. Let f,g : I — R be generalized ri-convex function and generalized ry-convex functions respectively

on I with (r; > 0,75 > 0). Then Va,b € I,t € [0, 1], we have

fla 1) < {(1 C O @] + 1l (@) + (D), f(a))]fl}”,

o) < {(1 ~D)lg(@)]"™ + tlg(a) + n(g(bxg(a))r?}”.

Using Cauchy’s and Minkowski’s inequalities and the fact that f and g are generalized r; and rs-convex

functions, we have

1 bq
logh — loga / —f2)g(z)de

1
_ / f(al—tbt)g(al—tbt)dt
0
1 s

[H{a-ov@r + @+ uo. s}
0

IN

1
T2

{“ = Olg(@]™ + tlg(a) + n<g<b>,g<a>>1”} e

3
)

1

1
5 [ {a-ov@r i@+ o). s} a

IA

2
2

+%/0 {(1 —t)[g(a)]™ + tlg(a) + n(g(b),g(a))]Tz} ' dt

(] - 0% [7(o)Par) :

IA
I
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{7
+{ (T i 1) ’ ([9(a)]"*[g(a) + n(g(b), 9(a)))"?) g
<A¥>&“@W+Uwﬂnuwjmmﬂ}i
+<Til>{<@@ﬂ”ww>+n@wxgm»rﬂ}é,
]

which is the required result.
f(b) — f(a), then, under the assumptions of Theorem 3.5, we have

Corollary 3.5. If n(f(b), f(a))

b [ L <
logb —loga /, A

Theorem 3.6. Let f,g : I — R be generalized r1-conver function and generalized r9-convez functions

respectively on I. Then for ry > 0,79 > 0 and % + % =1, we have

1 b1 1
- - de < =
logb — loga/a f@gla)de < 2

Proof. Let f,g : I — R be generalized ri-convex function and generalized rs-convex functions respectively

on I with (r; > 0,79 > 0). Then Va,b € I,t € [0, 1], we have

Iy

Sk

fa=t) < { (=@ + 5@+ n(s0), ] |

stat=) < (1= Dla(@ + data) + (a0 @)
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Using Holder’s inequality and the fact that f and g are generalized r; and re-convex functions, we have

b
! / L f)g(a)da

logb — loga T

= [ sage
0
1

3
g

IN

/ {(1 —O)[f(a)]™ +t[f(a) +n(fD), f(a))]”}
0
{a= 01 + @) + nte) g0l | " ar

1

1
{ [ -+ s + o f(a))]”dt}

IA

1
{ [l + i) + n<g<b>,g<a>>r2dt}

which is the required result. ]

Corollary 3.6. If n(f(b), f(a)) = f(b) — f(a), then, under the assumptions of Theorem 3.6, we have a new

{(trr+ o) g (19(a1™ + loo ) }

1 b1
- | = <
logh — loga/a xf(x)g(x)dx - 2

Theorem 3.7. Let f,g : I — R be generalized geometrically r-convex function on I. Then for r > 0, we

result.

have

(emea [ #7ton) < {oren(5) + Mawio+1.2 o}

where

M(a,b) = ([f(a)ﬁg(a)r + [£(@) +n(f(0), £(a))]"[g(a) +n(g(b), g(a))]r>

N(a,b) = ([f(a)]r[g(a) +1(9(b), 9(a))]” + [g(a)]"[f (a) +n(f(b), f(a))]’")
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and B(-,-) is the Beta function.

Proof. Let f, g be two generalized geometrically r-convex functions on I. Then Va,b € I,t € [0, 1], we have

=) < {1 0@ + l5(a) + 0l 0. S}

o(a~8) < {1 = Dla(@)]" + lo@) +nta0) 900"}

Using Minkowski’s inequality and the fact that f and g are generalized geometrically r-convex functions, we

have

(logb loga x x)g(m)dx)

(/ Fla~t)g(al fbf)dt>

{ ( (1= D @]+ tlf(a) + n(F ). (@)

IN

(1 =8)lg(a)]" +tlg(a) + n(g(b), (a))V) dt}

- { [ (a-ortr@ris@r

(1 —1) ([f(a)]r[g(a) +1(9(0), 9(a)]” + [9(a)]"[f (a) +n(f(b), f(a))]r)

2 ([f(a) L n(F®), £(@) T9(a) + n(g(d), g(aw) }

{isrisr ([ a-ota)

+ ([f(a)]r[g(a) +n(9(b), 9(a))]"

IN

T

ol 1@+ 70 s ) [ - lFar)

+(1@ 4 000, 7@ lo(0) + ntao) st ) (| 1 tfdt)r

- ([f(a)]" (@] + /(@) + n(£®), (@) lg(a) + n<g<b>,g<a>>r) ( / t'f-dt)

n ([f(a)]r[g(a) T (g®), gla)]"

ol 1@+ s s ) ([ e lFar)

— {M(a,b) <Nt2> T N(a,b)(ﬂ(% +1, % + 1))T},



Int

. J. Anal. Appl. 16 (6) (2018) 880

which is the required result. O
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