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1. INTRODUCTION

The set of bicomplex numbers [8] is denoted by C3 and sets of real and complex numbers are denoted as

Cp and Cy, respectively.The set of bicomplex number is defined as (cf. [8], [9])
Cy = {(11 4+ d1a9 + iga3 + i1igays : a € Co, 1 <k < 4}
= {wy +iows : wy,we € Cq}

where Z% = Z% = —1, ilig = igil.
The set of bicomplex numbers Cs have exactly two non-trivial idempotent elements denoted by e; and
es give as e; = (1 + i142)/2 and e; = (1 — i1i2)/2. Note that e; + ea = 1 and ej.e = 0. The number

& = wy + i2wy can be uniquely expressed as a complex combination of e; and es [8].
€= wi +iswy = 'Ee1 + *Lea, (1.1)

where ¢ = w; — iywy and 26 = wy + i;ws. The complex coefficients '¢ and 2¢ are called the idempotent
components of £, and €e; + 2£es is known as idempotent representation of bicomplex number .

The auxiliary complex spaces A; and A, are defined as follows:
Alz{lf : §€(C2} and A2:{2§ : {6@2}.

The norm in C, is defined as follows:

[1E7 + [2€12

Il = et +ad+ad+ad = VioP P =/

(1.2)

Further, the norm of the product of two bicomplex numbers and the product of their norms are connected

by means of the following inequality:

1€ nll < V2 [I€]] - lInll (1.3)

The inequality given in (1.3) is the best possible relation . For this reason, we call Co as modified complex
Banach algebra [8].

Throughout the paper, the wy, ¢, cp and (&, denote the space of all bicomplex sequences, convergent
sequences, null sequences and all bounded sequences. We denote the zero sequence (0,0,0,...,0,...) by .
Refer the book by Mursaleen [?] for details about summability methods.

The Orlicz function M is defined as M : [0,00) — [0,00). It is continuous, non-decreasing and M(0) =

0, M(z) > 0 for x > 0. Also, for A € (0,1) it satisfies the condition
MAz+(1=Ny) < AIM(z)+ (1 - A)M(y) (1.4)

and If the condition of convexity of the Orlicz function M is replaced by M(z + y) < M(z) + M(y), then

the function M is called the modulus function.
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The notations (X :Y') denote the class of all matrices M, such that M : X — Y. Therefore, M € (X :Y)
if and only if M(z) = {(Mz),}nen €Y.

A sequence {£,} in C; is said to be M-summable to the bicomplex number £ if M(&,) converges to &
which is called M-limit of {&,}.

In [1], the sequence space bv, is defined, which have all sequences such that their A-transform is in ¢,

where A denotes the matrix A = {§,,, } as

(- F n—1<m<n
Onm = (1.5)
0 ,0<m<n—-1lork>n

We consider following matrices for our Cs-sequence spaces.

£ ,1<m<ng

Wnm 1= (1.6)
0 ) g <1d M
£ ,m=mn

Tnm ‘= *f , N — 1=m (17)
0 , otherwise

& J1<m<n

Tm = (1.8)
0 ,m>n
and
&1 ,n=m
Tam = -6 n—1=m (1.9)
0 otherwise

Here we must note that ¢! exists if and only if £ € Cy/Qs.
The integrated and differentiated sequence space were first studied by Goes and Goes [3]. In this paper,
we define and study some Cs-sequence space. In the last section we studied the a-dual of these sequence

spaces.

2. BICOMPLEX INTEGRATED (int) AND DIFFERENTIATED (diff ) C2-SEQUENCE SPACES

Goes and Goes [3] has given the concept of the integrated sequence space. In this section we will obtain the
matrix domains of the sequence space ¢ by using the bicomplex matrices. We shall show that the integrated

and differentiated Cs-sequence spaces are Banach Spaces, BK-spaces, norm isomorphic to ¢, separable these
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spaces have AK-property. The spaces [bv and [ {1 have monotone norms and therefore the spaces [ bv and
[ 41 have AK-property. Let wy denote the family of bicomplex sequences.

Now we are giving the definitions of some Cs-sequence spaces as follows:

Definition 2.1 (Integrated Co-sequence spaces).

O (Co, ML) = {{fn} € wy : ZM(@) < 00, for some K > 0}

n=1

and

%(CLM, 1) = {5 ={¢,} €wy : iM(W) < 00, for some K > 0}
n=2

Definition 2.2 (Differentiated Cy-sequence spaces).

L(Co, ML) = {5 ={&} €wy ZM<|§HI§7L|> < o0, for some K > O}

n=1

bu(Co, ML) == {§= {&} €wa e ZM(W) < 00, for some K > 0}
n=2

we can redefine the spaces £(Ca, M, |.||), bv(Ca2, M, |.||), £(Cq, M, ||.||) and bv(Cz, M, ||.||) by

() =1 (Co, ML 11D, (E)r = bu(Co, ML LD, () = G (Co, ML LD, (€1)x = bu(C2, M, L)
Let ¢ = {€,} € 01(Cy, M, ||.]|). Then the Q-transform of ¢ is defined as
@ﬁ%ﬂ@%zézw(mﬁ?mv for some K > 0
or equivalently,
%ﬁ#mﬂh=§éMcmEM>am %ﬁqm%m:§3M<m;m>
=1 =

Let &€ = {¢,} € bu(Co, M, ||.||). The I-transform of {¢,} is defined as

&1 ,p=1

Alp&) p=2
Let £ = {&,.} € £i(Ca, M, ||.]]). The II-transform of {¢,,} is defined as

Cn =16, = ZM(”E%I)”) for some K > 0
p=1

Let £ = {&,} € bu(Cy, M, ||.||). The E-transform of {&,} is defined as
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gl apzl

Ap™¢&) p>2

For the convenience, we use the following notations.
Ky :E(C%/VLH'H), KZ:%((C%MvH'”)’ K3:€71((CQ7M7”H)7 K4:@(C27Ma“||)

Proposition 2.1. A4 sequence {&,} is in X(Co, M, ||.||) if and only if {*&,} € S(A, M, |.||) and {3¢.} €
S(Ag, M, ||.Il), where X = K1, Ks, K3 and Ky.

Theorem 2.1. The space {1(Ca, M, ||.||) is a linear space over Cy.
Proof. Let {&n}, {nn} € t1(C2, M, ||.||). Then there exist P; > 0 and P, > 0 such that

ZM(H”an) o  and ZM<||n§n>

Now let o, 8 € C3 \ Oz and P = max{2||a|| Py, 2||8||P2}. Then

ZM(HOA(k&);ﬂA(kﬁk ||> ZM(W) +ZM(WAI(DIZ77’“)”>

k=1

Therefore, {a&, +Bnn} € £1(Ca, M, ||.||). Hence, the space £1(Cz, M, ||.||) is a linear space over C2\ Oy. O

Lemma 2.1. The functions [€llz;c, a1 = Yot lwnm&ml and |Elle, ot ) = Yomeet 1TnmEml| are

norms on the spaces €1(Ca, M, ||.|) and ¢1(Ca, M, ||.||), respectively.

Theorem 2.2. The spaces £1(C2, M, ||.||) and £1(C2, M, ||.||) are Banach spaces with norms 1€lle cory =

Zfrﬁ:l Hwnmfm” and ||§||Q(C2,M,\|-\|) = 270:13:1 HangmH; respectively.

Proof. Let {£'} be a Cauchy sequence in ¢1(Ca, M, ||.||). Then for given € > 0, 3 mq € N such that

168 — &'l <€, Vn,m >mg (2.1)

Therefore,

DoA™ = QUEl < e, Vn,m > mg
k

= {EY)k, Q) UED Ky -+, QE)k, - ..} is a Cauchy Sequence of bicomplex numbers. Since, Cz is a

modified Banach space. Therefore, {2(£™)x} is convergence in Cy. Suppose that
QE ) — Q) n — oo, Vk

Using all these limits, we define a sequence {Q(&)1,Q2(£)2, ()3, ..., -
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and from equation (2.1), we have
P
Do lIRE™)k — UMl < € (2:2)
k=1
For any n > mg, by letting m — oo and p — co, we have

1€" = Elzcommpy S €

In particular,
||f||E(<c2,M,\|.|\) <K+ ||§n||E((c2,M,||,H)7 for some K >e.

Hence, ¢ € £1(Cy, M, ||.||). Further, £&" — &. Therefore, £1(Cz, M, ||||) is complete. O
Corollary 2.1. The space {1(Cq, M, ||.||) is a Banach space.

Theorem 2.3. The spaces {1(Ca, M, ||.||) and ¢1(C2, M, ||.||) are BK-spaces with norms 1€l oty =

Yoot [Wnm&mll and [|€]l e, (cor, 1) = Yomeet ITnm&mll, respectively.

Proof. Let {&,} € £1(Ca, M, |.||). Define f,(£,) = &y, ¥n € N. Then

l&nlzrics aa iy = D In&nll

So that [n&ull < [&nllgconyy = Iénll € Kllénlmcomy = Il < Kliénllmconn -

Therefore, f, is a continuous linear functional for each n. So, f1(Ca, M, ||.||) is a BK-space. O
In the similar manner, we can prove that ¢1(Ca, M, ||.||) is a BK-space.
Theorem 2.4. The space bv(Ca, M, ||.||) is a BK-space with the norm 1€l cont i = Yoo L IAMER)]-

Proof. As we know, bu(Ca, M, |.||) = (¢1)x is true and ¢, is a BK-space with respect to the norm |[|{||¢, and

also the matrix ¥ is a triangular matrix.Then by Wilansky [?], the space bv is a BK-space. O
Theorem 2.5. The function ||€|l5cyrn. ) = Yoo IA(mER)| is a norm on bu(Ca, M, ||.).
Theorem 2.6. The spaces bv(Ca, M, ||.||) and bv have AK-property.

Proof. Let {&} € bu(Cy, M, [|.|]) and [§5] = {&7, €5, €5+, €1, 0,0,0,...}

El?_ [ l?] :{anaoa-"agl?-&-lagl?-&-%"-a}'

= ||€IZL - [EI?]HILU(CLM,HH) = ||070a07---a§]?+1a§£+2a'--7”@(@2,/\/{,“.”)'
= ZM(W)%O, as p— 0.
p>k+1

= [ =& as k- oo
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Then, the space bv(Cy, M, ||.||) has AK-property. O

Theorem 2.7. The spaces {1(Ca, M, ||.||), bv(Ca, M, |.]|), £1(C2, M, ||.||) and bv(Ca, M, ||.||) are norm iso-

morphic to £1.

Proof. We must show that there is a one-one and onto linear mapping between bv(Cy, M, ||.||) and ;.
Suppose that T : bu(Ca, M, ||.]|) — ¢ be a mapping defined as & +— TE€.
Clearly, for € =60 =T¢=90.
Now, let 1 € ¢1. Define a sequence {&x} € bv(Ca, M, ||.||) by

L E
=12
p=1

Then
k k—1
1€k l5scontyn = 2 AES) = Y I pop—(p-1)>
k k p=1 p=1
= >l = lnlle,
k
Therefore, &, € bu(Cq, M, ||.||). Hence, the spaces bv(Cz, M, ||.||) and ¢; are isomorphic. O

In the similar way, we can prove the isomorphism of remaining spaces.
Theorem 2.8. The spaces £1(Co, M, ||.||) and bv(Cy, M, ||.||) have monotone norm.

Proof. Let {&,} € bu(Ca, M, ||.|)).
Define (1€ l55(co,nm,1.1) = 2ok=1 A(KEk)

and ||[fp]||%(cz,/v1,||.||) =2 1A@EN,  Y{&} € bu(Co, M, L))
Now, suppose g > p, then

P
e lmcanyyy = 2 IAKEE)]
k=1

q

< D lAES)
k=1

< N&alllsoica,

Also,

e T (Z ||A<ksk>||) Vel

k=1

Therefore, the space bv(Cz, M, ||.|) has the monotone norm. O
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Remark 2.1. The spaces {1 and bv(Ca, M, ||.||) have AB-property.

Theorem 2.9. The following statements hold for bv(Cq, M, ||.||) and bv(Co, M, ||.||) given as :
(1) If ¢ = {Q(lm)} is sequence where {Q(lm)} € bv(Cq, M, ||.||) of elements of bu(Ca, M, ||.||), defined as
1/m ,n>m

G o=
0 ,m<m

This sequence is the basis for the space bv(Ca, M, ||.||) and select By, = (M), for allm € N and

matriz M defined in equation (77), then & € bu(Ca, M, |.||) has the unique representation of the

type:

§= (M) ™

(2) Define a sequence {n™} with n™ € bv(Cq, M, ||.||) as

0 ,n<m

Then this sequence (™) is a basis for the space bv and for E,, = (Az)n, for all m € N, where

the matriz A is defined by T = [ynm], every sequence & € bu have unique representation as

€= Bn(™
Corollary 2.2. The spaces bv(Ca, M, ||.||) and bv(C2, M, ||.||) are separable.

3. a—DUALS OF THE C5-SEQUENCE SPACES

In this section, we determine the a—duals of the spaces Ky and K.

Let & = {&,} and n = {n,} be sequences, and A and B be two subsets of wy. Now let M = (a,1) be an
infinite matrix of bicomplex numbers. Define &n = (£,1,),

E1xB={C€ws: (€ B} NAB)=Neeal ' xB={( €Ewy: (&€ B,for £ € A}. In particular, for
B = {1,cs or bs, We have £€* = ¢ 1 x4y, €% = €' v cs and €7 = €71 xbs. The a— dual of A are given by
A* = M(A,£4y).

Suppose that M,, = (amkr)3>, denotes the m-th row of the matrix M. Let M,,(§) = Z?}:O Ak,

Vn=0,1,2,..., and M (&) = [M,,(€)]2_,, where M, € £°

Lemma 3.1. [?] Let Ay, Ay be to BK-spaces, and M = [n,,,] be a triangular matriz where &y, € Co/Qo,

then for matriz S = [€m] defined with v = {vy,} € A1 as
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i=1
Then AsA1(M) C Ai1(M) holds if and only if the matriz Si\([l = MD,M~' € (A : Ay), where D, is a

diagonal matrixz such that [Dy)nn = vy, Yn € N.

Lemma 3.2. [?] Let {yx} be a sequence in wy and M = [n,m,] be an invertible triangular matriz. Define a

matriz S = [€um] as
n
gnm = Z i Him
i=m
Then

A?(M) ={Nm Ewyg: S(M) € (A1 : ¢)}
and

AT(M) ={nm €ws : S(M) € (A1 : l)}

Lemma 3.3. Let M = [£,m] be an infinite matriz of bicomplex numbers. Then

(1) M€ (fy:61) <= sup> sy &nmll < oo
(2) Me (l:ly) = SUPg neN ”fnmll < oo

(3) M € (t1,¢) <= supy nen |&nmll < 00 and for some sequence {kn} such that Um &, = K
’ n—00
Theorem 3.1. For the space bu(Cqy, M, ||.||), we have
bo(Co, M, LN = oy

where

al{g{sn}em >

k

[A(Em/m)||

Z M(K)ﬁkH < o0, () € bu(Coy M, ||.|) for some K > 0}

m=1

Proof. {£,} be any sequence in wy. Assume the following relation

- ||A(€n/n)||)
nin = Yy M| ———— =(FE
&nl 321 < e M = (En)k
where E = {e,i} is defined by

M(IA(EKMII) J1<m<n

enm -

(3.1)

0 ,m<m
Therefore, from the equation (3.1) and the Lemma (3.3) we have
{M (lA(E;}M)”)Cn} € /¢, if and only if En € {1, whenever 7 € ;.
So, & = {¢&,8} € bu(Ca, M, ||.|)* if and only if E € (bu(Ca, M, ||.|) : £1).
Hence proved. U
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Analogously, we can prove the following theorems.

Theorem 3.2. For the space bu(Co, M, |.||)
bo(Co, M, [N = ay

where

o= =t e 30| 30 a1l

Theorem 3.3. For the space {1(Ca, M, ||.||)

< 00, (k) € bu(Ca, M, ||||) for some K >0

G(Co, M, 1) =3l

where

_ e . (Nl
o =1&={&ews Z Z./\/l 7 Me|| < 00, (M) € bu(Co, M, ||||) for some K >0
k m=1

Theorem 3.4. For the space ¢1(Ca, M, ||.||)
L(Co, M LD* = 2

where

ap=¢={&}ew Y

k

> (LA < oo, ) € b€ ML) for some >0

m=1
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