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Abstract. In this paper, we establish sufficient conditions for the existence, uniqueness and numerical

solution for a parabolic integrodifferential equation with the second kind integral condition. The existence,

uniqueness of a strong solution for the linear problem based on a priori estimate ”energy inequality” and

transformation of the linear problem to linear first-order ordinary differential equation with second member.

Then by using a priori estimate and applying an iterative process based on results obtained for the linear

problem, we prove the existence, uniqueness of the weak generalized solution of the integrodifferential prob-

lem. Also we have developed an efficient numerical scheme, which uses temporary problems with standard

boundary conditions. A suitable combination of the auxiliary solutions defines an approximate solution to

the original nonlocal problem, the algebraic matrices obtained after the full discretization are tridiagonal,

then the solution is obtained by using the Thomas algorithm. Some numerical results are reported to show

the efficiency and accuracy of the scheme.

1. Introduction

The topic of integro-differential equations which are combination of differential and integral has attracted

many scientists and researchers due to their applications in many areas; see, for example, [16, 17] . Many

mathematical formulation of physical phenomena contain integro-differential equations, and these equa-

tions may arise in fluid dynamics, biological models, and chemical kinetics; for more details, see [20, 40] .
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Integro-differential equations are usually difficult to solve analytically, so it is required to obtain an efficient

approximate solution.

Nowadays various nonlocal problems for partial differential equations have been actively studied and one

can find a lot of papers dealing with them (see [13]- [29] , [12]- [21] and references therein). Afterwards, the

nonlocal problems for integro-differential equation with integral conditions was studied by many authors, see

A. Merad and A. Bouziani [23] , [26]. Motivated by this we study a parabolic integrodifferential equation

with nonlocal second kind integral condition.

2. Preliminaries and functional spaces

In the rectangular domain Ω = (0, 1)× (0, T ), with T <∞,we consider the equation:

Lu =
∂u

∂t
− ∂2u

∂x2
=

∫ t

0

a (t− s) g (s, u) ds+ f(x, t), (2.1)

with the initial data

`u = u(x, 0) = ϕ (x) , x ∈ (0, 1) , (2.2)

with the Second Kind Integral Conditions

ux (0, t) =

∫ 1

0

K0 (x, t)u (x, t) dx, (2.3)

ux (1, t) =

∫ 1

0

K1 (x, t)u (x, t) dx, (2.4)

where f, ϕ, K0, K1 ansd g are known functions. Note that a is bounded function where

|a (t− s)| < a0, a0 is a positive constant.

And the function g verify the following inequality

‖g (s, u)‖L2(Ω) 6 C1 ‖u‖L2(Ω) + C2, C1, C2 are positive constants.

We shall assume that the function ϕ satisfies a compatibility conditions with (2.3) and (2.4) , i.e.,

ϕx (0) =

∫ 1

0

K0 (x, 0)ϕ (x) dx,

ϕx (1) =

∫ 1

0

K1 (x, 0)ϕ (x) dx.

Some problems of modern physics and technology can be described in terms of partial differential equations

with nonlocal conditions. The integral term of our problem (that is,
∫ t

0
a (t− s) g (s, u) ds appears,because

in some fields such as the heat transfer, nuclear reactor dynamics and thermoelasticity, we need to reflect

the effects of the memory of the system in model, but describing such a system as a function at a given

space and time ignores the effect of past history. Therefore, the way of remedy this difficulty is including an

integral term in the basic partial differential equation that leads to a Partial integro-differential equations(
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PIDE) [39]. The study of the problem (2.1)-(2.2)with some special types of boundary conditions of the form

ux(0, t) = α(t) and
∫ 1

0
u (x, t) dx = E(t) motivated by the works of Dabas and Bahuguna [15],and Guezane-

Lakoud et al. [18].

Bouziani and Mechri [8], studied , problem (2.1)-(2.2) with purely nonlocal (integral) conditions
∫ 1

0
u(x, t) =

E(t) and
∫ 1

0
xu(x, t) = G(t) . For other models, we refer the reader, for instance, to [6]- [38], and references

therein. Most of the previous studies, the authors used the Rothe method (see [10], [8], [15]), the Laplace

transform of the problem and then used numerical technique for the inverse Laplace transform to obtain the

numerical solution (see [1]).

It is well known that the classical methods used widely to prove solvability of initial-boundary problems

break down when applied to nonlocal problems. Nowadays some methods have been advanced for overcoming

difficulties arising from nonlocal conditions. These methods are different and the choice of a concrete one

depends on a form of a nonlocal condition. In this article, we focus on spatial nonlocal integral conditions

like [30], of which we give three examples:∫ 1

0

K (x, t)u (x, t) dx = 0, (2.5)

ux (0, t) =

∫ 1

0

K (x, t)u (x, t) dx, (2.6)

a (t)u (0, t) =

∫ 1

0

K (x, t)u (x, t) dx, (2.7)

Condition (2.5) is a nonlocal first kind condition, (2.6) and (2.7) are second kind nonlocal conditions. The

kind of a nonlocal integral condition depends on the presence or lack of a term containing a trace of the

required solution or its derivative outside the integral [30] . Problems with nonlocal conditions of the forms

(2.5) and (2.7) are investigated in [30], [11],and [36]. We pay attention on the second one, (2.6) which has

not been studied so far with this class of integro-differential problems.

This paper is organized as follows. In Section 3, we establish the uniquness of solution by using a priori

estimate method or the energy-integral method. In Sect 4, we first establish the existence of solutions of the

linear problem by using the density of the range of the operator generated by the abstract formulation of the

stated linear problem; secondly reformulating the integro-differential problem to a semi-linear problem, and

after that we prove the slovability of semi-linear problem by using a priori estimate and applying an iterative

process based on results obtained for the linear problem (see [34]), we prove the existence, uniqueness of

the weak generalized solution of the integrodifferential problem.Section 5 is devoted to the construction of

approximate solutions of problem (2.1)-(2.4), we discretize the problem by backward Euler in time and finite

differences in space. The main numerical difficulty become visible after the discretization,the presence of

an integral operator in the boundary conditions gives rise to rows/collumns, which are full. To avoid the

problems with special solvers for algebraic systems, we design a very easy numerical algorithm, based on
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superposition principle, this technique lead to a linear systems have a tridiagonal coefficient matrix, so they

can be solved very efficiently by fast Gauss elimination (which is also known as the Thomas algorithm).

Finally, in section 6 we presents two numerical examples to illustrate the performance and efficiency of the

proposed algorithm.

3. An energy estimate and uniqueness of solution

The method used here is one of the most efficient functional analysis methods and important techniques for

solving partial differential equations with integral conditions, which has been successfully used in investigating

the existence, uniqueness, and continuous dependence of the solutions of PDE’s, the so-called a priori estimate

method or the energy-integral method. This method is essentially based on the construction of multiplicators

for each specific given problem, which provides the a priori estimate from which it is possible to establish the

solvability of the posed problem. More precisely, the proof is based on an energy inequality and the density

of the range of the operator generated by the abstract formulation of the stated problem, so to investigated

the posed problem, we introduce the needed function spaces. In this paper, we prove the existence and the

uniqueness for solution of the problem (2.1)− (2.4) as a solution of the operator equation

Lu = z. (3.1)

Where L = (L,`), with domain of difinition E consisting of functions u ∈ L2 (0, T, L2 (0, 1)) := L2 (Ω) such

that ux ∈ L2 (Ω) and u satisfies condition (2.3) and (2.4) ; the operator L is considered from E to F, where

E is the Banach space consisting of all functions u(x, t) having a finite norm

‖u‖2E = ‖u‖2L2(Ω) + ‖ux‖2L2(Ω) ,

and F is the Hilbert space consisting of all elements z = (f, ϕ) for which the norm

‖z‖2F = ‖f‖2L2(Ω) + ‖ϕ‖2L2(0,1)

is finite.

Theorem 3.1. If ε > 0, where ε << 1
2 . Then for any function u ∈ E and we have the inequality

‖u‖E ≤ c ‖Lu‖F (3.2)

where c is a positive constant independent of u.
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Proof. Assume that a solution of the problem (2.1)− (2.4) exists. We multiply the equation (2.1) by u and

integrating over Ωτ , where Ωτ = (0, 1)× (0, τ), we get∫
Ωτ
u ·Mu dxdt =

∫
Ωτ
ut · u dxdt−

∫
Ωτ
uxx · u dxdt

=

∫
Ωτ

[∫ 1

0

a (t− s) g (s, u)

]
· u dxdt+

∫
Ωτ

f (x, t) · u dxdt (3.3)

integrating by parts each term of the left-hand side of (3.3) over Ωτ , 0 < τ < T , we obtain

1

2

∫ 1

0

u (x, τ)
2
dx+

∫
Ωτ
u2
x dxdt

=

∫ τ

0

ux (1, t)u (1, t) dt−
∫ τ

0

ux (0, t)u (0, t) dt+
1

2

∫ 1

0

ϕ2 dx

+

∫
Ωτ

[∫ 1

0

a (t− s) g (s, u)

]
· u dxdt+

∫
Ωτ

f · u dxdt (3.4)

Our next aim is to derive estimates of the right-hand side part of (3.4) .

By using the Cauchy inequality with ε; we have∫ τ

0

ux (1, t)u (1, t) dt <
ε

2

∫ τ

0

u2 (1, t) dt+
1

2ε

∫ τ

0

u2
x (1, t) dt. (3.5)∫ τ

0

ux (0, t)u (0, t) dt <
ε

2

∫ τ

0

u2 (0, t) dt+
1

2ε

∫ τ

0

u2
x (0, t) dt. (3.6)

To obtain the estimate, we need the inequalities

u2 (ξ, t) 6 2

∫ ξ

x

u2
x dx+ 2u2

which easily follow from the equalities

u (ξ, t) =

∫ ξ

x

ux (x, t) dx+ u (x, t) ξ = 0 or 1.

Also by (2.3) and (2.4), we obtain∫ τ

0

ux (1, t)u (1, t) dt−
∫ τ

0

ux (0, t)u (0, t) dt

6
ε

2

∫ τ

0

u2 (1, t) dt+
1

2ε

∫ τ

0

u2
x (1, t) dt

+
ε

2

∫ τ

0

u2 (0, t) dt+
1

2ε

∫ τ

0

u2
x (0, t) dt

6
ε

2

∫ τ

0

[
2

∫ 0

x

u2
x dx+ 2u2

]
dt+

1

2ε

∫ τ

0

[∫ 1

0

K0 (x, t)u (x, t) dx

]2

dt

+
ε

2

∫ τ

0

[
2

∫ 1

x

u2
x dx+ 2u2

]
dt+

1

2ε

∫ τ

0

[∫ 1

0

K1 (x, t)u (x, t) dx

]2

dt
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So, by using Holder inequality, we have∫ τ

0

ux (1, t)u (1, t) dt−
∫ τ

0

ux (0, t)u (0, t) dt (3.7)

6 2ε

∫
Ωτ
u2
x dxdt+ 2ε

∫ τ

0

u2 dt+
K

ε

∫
Ωτ
u2 dxdt;

where the constant K = maxi=0,1

∫
Ωτ
K2
i (x, t) dxdt.

Now, we estimate
∫

Ωτ

[∫ 1

0
a (t− s) g (s, u)

]
· u dxdt,

first we can find an constant C verify

‖g (s, u)‖L2(Ω) 6 C1 ‖u‖L2(Ω) + C2 < C ‖u‖L2(Ω) , C > 0.

Then, we get ∫
Ωτ

[∫ 1

0

a (t− s) g (s, u)

]
· u dxdt

6
ε

2

∫
Ωτ
u2dxdt+

Ta0

2ε

∫
Ωτ
g2dxdt

6

(
ε

2
+
TCa0

2ε

)∫
Ωτ
u2dxdt. (3.8)

Remains apply the inequality the Cauchy inequality with ε to the end terms of the right-hand side part of

(3.4) and using (3.7) and (3.8) , we get

1

2

∫ 1

0

u (x, τ)
2
dx+

∫
Ωτ
u2
x dxdt (3.9)

= 2ε

∫
Ωτ
u2
x dxdt+ 2ε

∫ τ

0

u2 dt+
K

ε

∫
Ωτ
u2 dxdt+

1

2

∫ 1

0

ϕ2 dx

+

(
ε

2
+
TCa0

2ε

)∫
Ωτ
u2dxdt+

ε

2

∫
Ωτ
u2dxdt+

1

2ε

∫
Ωτ
f2dxdt

Then, we obtain

1

2

∫ 1

0

u (x, τ)
2
dx+

∫
Ωτ
u2
x dxdt

= 2ε

∫
Ωτ
u2
x dxdt+

(
3ε+

TCa0

2ε
+
K

ε

)∫
Ωτ
u2dxdt

+
1

2ε

∫
Ωτ
f2dxdt+

1

2

∫ 1

0

ϕ2 dx

Using Lemma 1 of Gronwall in [32] , we have∫ 1

0

u (x, τ)
2
dx+

∫
Ωτ
u2
x dxdt (3.10)

≤ d

(∫
Ω

f2dxdt+

∫ 1

0

ϕ2dx

)
,

where

d =
1

2
exp

(
3ε+

TCa0

2ε
+
K

ε

)
.
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By integrating the inequality (3.10) over (0, T ) , we obtain the desired inequality, where c = (Td)
1
2 . So, we

get

‖u‖2L2(Ω) + ‖ux‖2L2(Ω)

6 c
(
‖f‖2L2(Ω) + ‖ϕ‖2L2(0,1)

)
. (3.11)

�

4. Existence of solution of the integrodifferential problem

This section is consecrated to the proof of the existence of the solution on the data of the problem

(2.1)− (2.4). we can reformulating the integro-differential problem to a semi-linear problem by putting∫ t

0

a (t− s) g (s, u) ds+ f(x, t) = H(x, t, u)

Where exists a positive constant δ such that

|H(x, t, u1)−H(x, t, u2)| ≤ δ
(
‖u1 − u2‖L2(Q)

)
, (C∗)

∀u1, u2 ∈ L2(Ω), (x, t) ∈ Ω.

Therefore to study the existence of solution of previous problem (2.1)−(2.4), is enough to study the following

semi-linear problem:

Lu =
∂u

∂t
− ∂2u

∂x2
= H(x, t, u), (4.1)

with the initial data

`u = u(x, 0) = ϕ (x) , x ∈ (0, 1) , (4.2)

with the Second Kind Integral Conditions

ux (0, t) =

∫ 1

0

K0 (x, t)u (x, t) dx, (4.3)

ux (1, t) =

∫ 1

0

K1 (x, t)u (x, t) dx, (4.4)

Let us consider the following auxiliary problem with homogeneous equation

Lw =
∂w

∂t
− ∂2w

∂x2
= 0, (4.5)

`w = w(x, 0) = ϕ(x), (4.6)

wx (0, t) =

∫ 1

0

K0 (x, t)w (x, t) dx, (4.7)

wx (1, t) =

∫ 1

0

K1 (x, t)w (x, t) dx, (4.8)
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If u is a solution of problem (4.1)− (4.4) and w is a solution of problem (4.5)− (4.8), then y = u−w satisfies

Ly =
∂y

∂t
− ∂2y

∂x2
= G (x, t, y) , (4.9)

`y = y(x, 0) = 0, (4.10)

yx (0, t) = 0, (4.11)

yx (1, t) = 0. (4.12)

Where G (x, t, y) = H (x, t, y + w) , As the function H, the function G satisfies the condition (C∗) , that is

there exists a positive constant δ such that

|G(x, t, y1)−G(x, t, y2)| ≤ δ
(
‖y1 − y2‖L2(Q)

)
(C∗∗)

∀y1, y2 ∈ L2(Ω), (x, t) ∈ Ω.

To show the existence of solutions of the problem (4.5)− (4.8), it is enough to transform the problem to the

linear first-order ordinary differential equation with second member.

For that we integrate the equation (4.5) over [0, 1] and using (4.7)− (4.8), we get∫ 1

0

∂w

∂t
dx =

∫ 1

0

(K1 (x, t)−K0 (x, t))w (x, t) dx, ∀x ∈ [0, 1] ;

then, we obtain ∫ 1

0

(
∂w

∂t
−K (x, t)w (x, t)

)
dx = 0, where K1 (x, t)−K0 (x, t) = K (x, t) . (4.13)

So, we can prove that there existe a function ψ verify that

∂w

∂t
−K (x, t)w (x, t) = ψ (x, t) , where

∫ 1

0

ψ (x, t) dx = 0. (4.14)

Clearly, that the solution of (4.5) by using (4.6) is given by

w (x, t) =
ϕ (x)

exp 1
exp

(∫ t

0

K (x, θ) dθ

)
+ exp

(∫ t

0

K (x, θ) dθ

)∫ t

0

[
ψ(x, τ) exp

(
−
∫ τ

0

K (x, θ) dθ

)]
dτ.

Therefore, the existence of solution is guaranteed.

According to this results, we deduce that problem (4.5) − (4.8) admits a unique solution. Therefore it

remains to solve and prove that the problem (4.9)− (4.12) has a unique weak solution.

Let us construct an iteration sequence in the following way: Starting with y(0) = 0, the sequence
{
y(n)

}
n∈N

is defined as follows: given the element y(n−1), then for n = 1, 2, ... solve the problem:

∂y(n)

∂t
− ∂2y(n)

∂x2
= G

(
x, t, y(n−1)

)
, (4.15)

y(n)(x, 0) = 0, (4.16)
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y(n)
x (0, t) = 0, (4.17)

y(n)
x (1, t) = 0. (4.18)

Clearly, for fixed n, each problem (4.15) − (4.18) has a unique solution y(n) (x, t). If we set Z(n)(x, t) =

y(n+1)(x, t)− y(n)(x, t), then we have the new problem

∂Z(n)

∂t
− ∂2Z(n)

∂x2
= P (n−1) (x, t) , (4.19)

Z(n)(x, 0) = 0, (4.20)

Z(n)
x (0, t) = 0, (4.21)

Z(n)
x (1, t) = 0. (4.22)

where

P (n−1) (x, t) = G
(
x, t, y(n)

)
−G

(
x, t, y(n−1)

)
.

Lemma 4.1. Assume that condition (C∗∗) holds, then for the linearized problem (4.19) − (4.22), we have

the a priori estimate ∥∥∥Z(n)
∥∥∥
L2(0,T ; H1(0,1))

≤M
∥∥∥Z(n−1)

∥∥∥
L2(0,T ; H1(0,1))

, (4.23)

where M is a positive constant given by

M =

√
T
ε δ

2

min
(

1−εT
2 , T

) .
Proof. Multiplying the equation (4.19) by Z(n) and integrating over Ωτ , where Ωτ = (0, 1)× (0, τ), we get∫

Ωτ

∂Z(n)

∂t
· Z(n)dxdt−

∫
Ωτ

∂2Z(n)

∂x2
· Z(n)dxdt =

∫
Ωτ
P (n−1) · Z(n)dxdt. (4.24)

Integrating by parts the second term of the left-hand side in (4.24) and taking into account conditions

(4.20) , (4.21) and (4.22), we obtain

1

2

∫ 1

0

(
Z(n) (x, τ)

)2

dx+

∫
Ωτ

(
∂Z(n)

∂x

)2

dxdt =

∫
Ωτ
P (n−1) · Z(n)dxdt. (4.25)

Using the Cauchy inequality to the right-hand side of (4.25), we get

1

2

∫ 1

0

(
Z(n) (x, τ)

)2

dx+

∫
Ωτ

(
∂Z(n)

∂x

)2

dxdt

≤ 1

2

∫
Ωτ

(
P (n−1)

)2

dxdt+
1

2

∫
Ωτ

(
Z(n)

)2

dxdt.

Using Lemma of Gronwall, we obtain∫ 1

0

(
Z(n) (x, τ)

)2

dx+

∫
Ωτ

(
∂Z(n)

∂x

)2

dxdt

≤ exp (T )

∫
Ωτ

(
P (n−1)

)2

dxdt. (4.26)
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On the other hand., by virtue of condition (C∗∗) , we have(∫
Ωτ

(
P (n−1)

)2

dxdt

)
(4.27)

≤ δ2

∫
Ωτ

(∣∣∣Z(n−1) (x, t)
∣∣∣+

∣∣∣∣∂Z(n−1) (x, t)

∂x

∣∣∣∣)2

dxdt

≤ 2δ2

∫ τ

0

(∥∥∥Z(n−1) (•, t)
∥∥∥2

L2(0,1)
+

∥∥∥∥∂Z(n−1) (•, t)
∂x

∥∥∥∥2

L2(0,1)

)
dt.

Substituting (4.27) into (4.26), we get∫ 1

0

(
Z(n) (x, τ)

)2

dx+

∫
Ωτ

(
∂Z(n)

∂x

)2

dxdt

≤ 2δ2 exp (T )

∫ T

0

(∥∥∥Z(n−1) (•, t)
∥∥∥2

L2(0,1)
+

∥∥∥∥∂Z(n−1) (•, t)
∂x

∥∥∥∥2

L2(0,1)

)
dt.

The right hand side here is independent of τ ; hence, replacing the left hand side by the upper bound with

respect to τ , we obtain∫ 1

0

(
Z(n) (x, τ)

)2

dx+

∫
ΩT

(
∂Z(n)

∂x

)2

dxdt

≤ 2δ2 exp (T )

∫ T

0

(∥∥∥Z(n−1) (•, t)
∥∥∥2

L2(0,1)
+

∥∥∥∥∂Z(n−1) (•, t)
∂x

∥∥∥∥2

L2(0,1)

)
dt.

Now by integrating over (0, T ), we get∫
ΩT

(
Z(n)

)2

dx+ T

∫
ΩT

(
∂Z(n)

∂x

)2

dxdt

≤ 2Tδ2 exp (T )

∫ T

0

(∥∥∥Z(n−1) (•, t)
∥∥∥2

L2(0,1)
+

∥∥∥∥∂Z(n−1) (•, t)
∂x

∥∥∥∥2

L2(0,1)

)
dt.

So, we obtain ∫ T

0

(∥∥∥Z(n) (•, t)
∥∥∥2

L2(0,1)
+

∥∥∥∥∂Z(n) (•, t)
∂x

∥∥∥∥2

L2(0,1)

)
dt

≤ 2Tδ2 exp (T )

min (1, T )

∫ T

0

(∥∥∥Z(n−1) (•, t)
∥∥∥2

L2(0,1)
+

∥∥∥∥∂Z(n−1) (•, t)
∂x

∥∥∥∥2

L2(0,1)

)
dt

Finally, we find ∥∥∥Z(n)
∥∥∥2

L2(0,T ; H1(0,1))
≤M

∥∥∥Z(n−1)
∥∥∥2

L2(0,T ; H1(0,1))
, (4.28)

where

M =
2Tδ2 exp (T )

min (1, T )
.

From the criteria of convergence of series, we see that the series
∑∞
n=1 Z

(n) converges if M < 1, that is if

δ <

√
min (1, T )

2T exp (T )
.



Int. J. Anal. Appl. 16 (4) (2018) 579

Since Z(n)(x, t) = y(n+1)(x, t)− y(n)(x, t), then it follows that the sequence (y(n))n∈N defined by

y(n)(x, t) =

n−1∑
i=0

Z(i) + y(0)(x, t),

converges to an element y ∈ L2
(
0, T ; H1(0, 1)

)
. �

Remains to precise the concept of the solution we are considering. Let v = v(x, t) be any function from

C1 (Ω) .

We shall compute the integral
∫

Ω
Gvdxdt, for this we assume vx (0, t) = vx (1, t) = 0. By using conditions

on y, we have

−
∫

Ω

∂2y

∂x
vdxdt =

∫
Ω

∂v

∂x

∂y

∂x
dxdt.

Then we put

A (y, v) =

∫
Ω

∂y

∂t
vdxdt+

∫
Ω

∂v

∂x

∂y

∂x
dxdt =

∫
Ω

vGdxdt, (4.29)

Definition 4.1. For every v ∈ C1 (Ω), a function y ∈ L2(0, T ; H1(0, 1)) is called a weak solution of problem

(4.9)− (4.12) if (4.30) holds under the conditions of y.

Now, we must show that the limit function y is a solution of the problem under study. To do this, we will

show that y verifies (4.30) as mentioned in definition 1. So, we consider the weak formulation of problem

(4.9)− (4.12) :

A (y, v) =

∫
Ω

vGdxdt. (4.30)

From (4.30) , we have

A
(
y(n), v

)
= A

(
y(n) − y, v

)
+A (y, v)

=

∫
Ω

v
[
G
(
x, t, y(n−1)

)
−G (x, t, y, )

]
dxdt∫

Ω

vG (x, t, y) dxdt. (4.31)

However, we apply Holder inequality, we get

A
(
y(n) − y, v

)
=

∫
Ω

v
[
G
(
x, t, y(n−1)

)
−G (x, t, y)

]
dxdt

≤ δ

2
‖v‖L2(Ω)

∥∥∥y(n) − y
∥∥∥
L2(Ω)

. (4.32)

so by passing to the limit in (4.33) as n→∞, (4.31) become

A
(
y(n), v

)
=

∫
Ω

vG (x, t, y) dxdt. (4.33)
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Again passing to the limit in (4.31) as n→∞, we obtain

A (y, v) =

∫
Ω

vG (x, t, y) dxdt.

Therefore, we have established the following result:

Theorem 4.1. Assume that condition (H2) holds and

δ <

√
min

(
1−εT

2 , T
)

T
ε

then the problem (4.9)− (4.12) admits a weak solution in L2
(
0, T ; H1(0, 1)

)
.

It remains to prove that problem (4.9)− (4.12) admits a unique solution.

Theorem 4.2. Under the condition (C∗∗) , the solution of the problem (4.9)− (4.12) is unique.

Proof. Suppose that y1 and y2 in L2
(
0, T ; H1(0, 1)

)
are two solution of (4.9) − (4.12), then h = y1 − y2

satisfies h ∈ L2
(
0, T ; H1(0, 1)

)
and

∂h

∂t
− ∂2h

∂x2
= ψ (x, t) (x, t) ∈ Ω, (4.34)

h(x, 0) = 0, (4.35)

hx (0, t) = 0, (4.36)

hx (1, t) = 0, (4.37)

ψ (x, t) = G (x, t, y1)−G (x, t, y2) .

Following the same procedure done in establishing the proof of Lemma 1, then for the problem (4.35)−(4.38),

we get

‖h‖L2(0,T ; H1(0,1)) ≤M ‖h‖L2(0,T ; H1(0,1)) . (4.38)

Since M < 1, then from (4.39) that

(1−M) ‖h‖L2(0,T ; H1(0,1) ≤ 0,

from which we conclude that y1 = y2 in L2
(
0, T ; H1(0, 1)

)
. �
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5. Construction of approximate solutions

In order to solve the problem (2.1)− (2.4) , first we divide the time interval [0, T ] into N ∈ N equidistant

subintervals (tj−1, tj) for tj = jτ , where τ = T
NWe introduce the following notation

uj = uj(x) = u(x, tj),

after replacing the derivative
∂u

∂t
by backward finite difference approximations

uj − uj−1

τ
and the integral by

rectangular rule. Then problem (2.1)− (2.4) reduced to the solutions of recurrent system of ODE problems

at each successive time point tj for j = 1, ..., N find, successively for j = 1, ..., N ; functions uj : (0, 1)→ R

such that:

uj − uj−1

τ
− d2uj

d2x
= τ

j−1∑
k=0

a(tj − tk)g(tk, uk) + f(x, tj) x ∈ (0, 1) (5.1)

duj
dx

(0) =

∫ 1

0

K0(x, tj)u(x, tj)dx (5.2)

duj
dx

(1) =

∫ 1

0

K1(x, tj)u(x, tj)dx (5.3)

u0(x) = ϕ(x) x ∈ (0, 1) (5.4)

The main numerical difficulty become visible after the full discretization of these nonlocal problem , the

presence of an integral BC in the problem gives rise to rows, which are full(see Algorithm 1).

5.1. Algorithm 1 :(A1). For The space discretization we use the finite differences scheme .

we divide the space interval [0, 1] into M ∈ N equidistant subintervals of equal lengths h = 1
M

second-order difference is used to approximate the second order spatial derivative :

∂2ui,j
∂x2

=
ui−1,j − 2ui,j + ui+1,j

h2
+O(h2),

where ui,j = u(xi, tj), and employing central-differences to approximat the first order spatial derivative in

the boundary condition :

∂ui,j
∂x

=
ui+1,j − ui−1,j

2h
+O(h2),

we construct a difference scheme for the problem (5.1)-(5.4):

ui,j − τ
ui−1,j − 2ui,j + ui+1,j

h2
=ui,j−1 + τ2

j−1∑
k=0

a(tj − tk)g(tk, ui,k) (5.5)

+ τfi,j ,i = 0, ...,M
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u1,j − u−1,j

2h
=

∫ 1

0

K0(x, tj)u(x, tj)dx (5.6)

uM+1,j − uM−1,j

2h
=

∫ 1

0

K1(x, tj)u(x, tj)dx (5.7)

ui,0 = ϕi i = 0, ...,M

after some rearrangement, the Equation (5.5) becomes :

−rui−1,j + (1 + 2r)ui,j − rui+1,j =ui,j−1 + τ2

j−1∑
k=0

a(tj − tk)g(tk, ui,k) (5.8)

+ τfi,j , i = 0, ...,M

where r =
τ

h2
. we approximate the integral in (5.6)-(5.7) numerically by the trapezoidal numerical integration

rule:

u1,j − u−1,j

2h
=

∫ 1

0

K0(x, tj)u(x, tj)dx (5.9)

=
h

2
(K0(x0, tj)u0,j + 2

M−1∑
k=1

K0(xk, tj)uk,j +K0(xM , tj)uM,j)

uM+1,j − uM−1,j

2h
=

∫ 1

0

K1(x, tj)u(x, tj)dx (5.10)

=
h

2
(K1(x0, tj)u0,j + 2

M−1∑
k=1

K1(xk, tj)uk,j +K1(xM , tj)uM,j)

which is the same second-order of accuracy in space as the methods used for spatial derivative . Equation

(5.9) presents M + 1 linear equations in M + 3 unknowns u−1, u0, ..., uM+1. Eliminating of the ”fictitious”

value u−1,j beteween (5.8)i=0 and (5.9) gives :

(1 + 2r + τK0(x0, tj))u0,j + (−2r + 2τK0(x1, tj))u1,j

+2τK0(x2, tj)u2,j + ...+ 2τK0(xM−1, tj)uM−1,j + τK0(xM , tj)uM,j

=u0,j−1 + τ2

j−1∑
k=0

a(tj − tk)g(tk, u0,k) + τf0,j

(5.11)

Similarly, eliminating uM+1,j beteween (5.8)i=M and (5.10) gives :

− τK1(x0, tj)u0,j − 2τK1(x1, tj))u1,j − ...− 2τK1(xM−2, tj)uM−2,j (5.12)

+ (−2r − 2τK1(xM−1, tj))uM−1,j + (1 + 2r − τK1(xM , tj))uM,j

= uM,j−1 + τ2

j−1∑
k=0

a(tj − tk)g(tk, uM,k) + τfM,j
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Combining (5.11), (5.9), with (5.12) yields an (M + 1)× (M + 1) linear system of equations whose coefficient

matrix Aj has the form:

Aj =



a00 a01 a02 ...... a0M

−r 1 + 2r −r ...... 0

. . . ...... .

0 ...... −2r 1 + 2r −2r

aM0 aM1 aM2 ...... aMM


where a00, a01, ..., a0M and aM0, aM1, ..., aMM are the coefficients in (5.11) and (5.12), respectively. We will

denote the right-side of the system by bj = (b0, b1, ..bM )T ,

with bi = ui,j−1 + τ2
∑j−1
k=0 a(tj − tk)g(tk, ui,k) + τfi,j , i = 0, ...,M . We write the system in the matrix form

:

AjU j = bj (5.13)

which have to be solved successively with increasing time step j = 1, .., N . The main numerical problem is

the special character of the algebraic matrix obtained, tridiagonal except that their first and last rows are

full,this needs a special solver to get a result. But there exist a simple way how to avoid this complication,

we explain it in algorithm 2.

5.2. Algorithm 2:(A2). To get rid of the nonlocal BC,we make use of a slightly modified idea of [37], for

any given j we introduce three auxiliary problems. The first one with an unknown function vi is given as:

vj − τ
d2vj
d2x

= uj−1 + τ2
∑j−1
k=0 a(tj − tk)g(tk, uk)

+ τf(x, tj) x ∈ (0, 1)

dvj
dx

(0) = 0

dvj
dx

(1) = 0

(5.14)

and the initial condition v0(x) = ϕ(x) , x ∈ [0, 1] .

The second one with the unknown z reads as:


z − τ d

2z

d2x
= 0 x ∈ (0, 1)

dz

dx
(0) = 1

dz

dx
(1) = 0

(5.15)

The third one with the unknown w reads as
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
w − τ d

2w

d2x
= 0 x ∈ (0, 1)

dw

dx
(0) = 0

dw

dx
(1) = 1

(5.16)

Let us note that the temporary problems are standard problems.

Let αj and βj be any real number, the principle of linear superposition gives that ωj := vj + αjz + βjw

is the solution to the following BVP

ωj − τ
∂2ωj
∂2x

= uj−1 + τ2
∑j−1
k=0 a(tj − tk)g(tk, uk)

+τf(x, tj) x ∈ (0, 1)

dωj
dx

(0) = αj
dωj
dx

(1) = βj

(5.17)

and the initial condition ω0(x) = ϕ(x) , x ∈ [0, 1] .

We have to pick up the appropriate value of the free parameter αj and βj for which the function ωj be a

solution to problem (5.1)-(5.4). We are looking for an αj and βj such that

αj =

∫ 1

0

K0(x, tj)u(x, tj)dx =

∫ 1

0

K0(x, tj)
(
vj + αjz(x) + βjw(x)

)
dx

βj =

∫ 1

0

K1(x, tj)u(x, tj)dx =

∫ 1

0

K1(x, tj)
(
vj + αjz(x) + βjw(x)

)
dx

then ωj will be a solution to problem (5.1)−(5.3) if and only if the pair (αj , βj) is a solution of the following

system of equations

 αj(1−
∫ 1

0
K0(x, tj)zdx)− βj

∫ 1

0
K0(x, tj)wdx =

∫ 1

0
K0(x, tj)vjdx

−αj
∫ 1

0
K1(x, tj)zdx+ βj(1−

∫ 1

0
K1(x, tj)wdx) =

∫ 1

0
K1(x, tj)vjdx

(5.18)

we have to check if the determinant

D = (1−
∫ 1

0

K0(x, tj)zdx)(1−
∫ 1

0

K1(x, tj)wdx)−
∫ 1

0

K0(x, tj)wdx

∫ 1

0

K1(x, tj)zdx (5.19)

of system (5.18) is different from zero.

if D 6= 0 then we easily deduce :


αj =

(1−
∫ 1

0
K1(x, tj)wdx)

∫ 1

0
K0(x, tj)vjdx+

∫ 1

0
K1(x, tj)vjdx

∫ 1

0
K0(x, tj)wdx

D

βj =
αj(1−

∫ 1

0
K0(x, tj)zdx)−

∫ 1

0
K0(x, tj)vjdx∫ 1

0
K0(x, tj)wdx

(5.20)
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Lemma 5.1. Let D = (1−
∫ 1

0
K0(x, tj)zdx)(1−

∫ 1

0
K1(x, tj)widx)−

∫ 1

0
K0(x, tj)wdx

∫ 1

0
K1(x, tj)zdx there

exists τ0 > 0 such that D > 1
2

Proof. One can see that the solution of the second auxiliary problem is :

z(x) =
−
√
τch(x−1√

τ
)

sh( 1√
τ

)

we have

lim
τ→0

z(x) = lim
τ→0

−
√
τch(x−1√

τ
)

sh( 1√
τ

)
= lim
τ→0

−
√
τ(e

x−2√
τ + e

−x√
τ )

e
2√
τ − 1

= 0

and the solution of the third auxiliary problem is :

w(x) =

√
τch( x√

τ
)

sh( 1√
τ

)

and also

lim
τ→0

w(x) = lim
τ→0

√
τch( x√

τ
)

sh( 1√
τ

)
= lim
τ→0

√
τ(e

x−1√
τ + e

−x−1√
τ )

e
2√
τ − 1

= 0

The variational formulations of temporary problems are:

(z,Φ) + τ(
dz

dx
,
dΦ

dx
) = −τΦ(0), for any Φ ∈ H1(0, 1) (5.21)

we set Φ = z into (5.21) and we get

‖z‖2 + τ‖dz
dx
‖2 = −τΦ(0) = τ

√
τcoth(

1√
τ

) ≤ C

analogously for w

(w,Φ) + τ(
dw

dx
,
dΦ

dx
) = τΦ(1), for any Φ ∈ H1(0, 1) (5.22)

we set Φ = w into (5.22) and we get

‖w‖2 + τ‖dw
dx
‖2 = τΦ(1) = τ

√
τcoth(

1√
τ

) ≤ C

Lebegue domineted theorem says :

lim
τ→0
‖z‖2 = lim

τ→0

∫ 1

0

z2 =

∫ 1

0

lim
τ→0

z2 = 0

analogously for w

lim
τ→0
‖w‖2 = 0

cauchy inequality says

|
∫ 1

0

K0z| ≤ ‖K0‖‖z‖ → 0 when τ → 0

|
∫ 1

0

K1w| ≤ ‖K1‖‖w‖ → 0 when τ → 0

therefor

lim
τ→0

D = 1
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from the definition of a limit we easily arrive at for ε = 1/2 there exists a τ0 such that: for any 0 < τ < τ0

we haveD > 1/2 . �

For the space discretization we use the same scheme in algorithm 1 for a better comparison. We construct

a difference scheme for the first auxiliary problem (5.14) :

vi,j − τ
vi−1,j − 2vi,j + vi+1,j

h2
=ui,j−1 + τ2

j−1∑
k=0

a(tj − tk)g(tk, ui,k) (5.23)

+ τfi,j ,i = 0, ...,M

v1,j − v−1,j

2h
= 0 (5.24)

vM+1,j − vM−1,j

2h
= 0 (5.25)

vi,0 = ϕi i = 0, ...,M

after some rearrangement, the Equation (5.23) becomes :

− rvi−1,j + (1 + 2r)vi,j − rvi+1,j = ui,j−1 + τ2

j−1∑
k=0

a(tj − tk)g(tk, ui,k) + τfi,j , i = 0,M (5.26)

where r = τ
h2 .There are M + 1 linear equations in M + 3 unknowns v−1,j , v0,j , ..., vM+1;j Eliminating of the

”fictitious” value v−1,j beteween (5.23)i=0 and (5.24) gives :

(1 + 2r)v0,j − 2rv1,j = u0,j−1 + τ2

j−1∑
k=0

a(tj − tk)g(tk, u0,k) + τf0,j , (5.27)

Eliminating vM+1,j beteween (5.23)i=M and (5.25) gives :

− 2rvM−1,j − (1 + 2r)vM,j = uM,j−1 + τ2

j−1∑
k=0

a(tj − tk)g(tk, uM,k) + τfM,j , (5.28)

Combining (5.27), (5.26), with (5.27) yields an (M + 1)× (M + 1) linear system of equations, we write the

system in the matrix form :

AjV j = Bj j = 1, n (5.29)

where

Aj =


1 + 2r −2r 0 ...... 0

−r 1 + 2r −r ...... 0

. . . ...... .

0 0 ..... −2r 1 + 2r


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Bj =


u0,j−1 + τ2

∑j−1
k=0 a(tj − tk)g(tk, u0,k) + τf0,j

u1,j−1 + τ2
∑j−1
k=0 a(tj − tk)g(tk, u1,k) + τf1,j

.

uM,j−1 + τ2
∑j−1
k=0 a(tj − tk)g(tk, uM,k) + τfM,j


and

V j =


v0,j

v1,j

.

vM,j


Then at each time level, the difference scheme can be written as systems of M+1 tridiagonal linear algebraic

equations, which is solved by Thomas’ algorithm. After that computing the value of αj and βj from equation

(5.20) . The integrals are approximated by the composite trapezoidal rule:

∫ xM

x0

f(x)dx =
h

2
[f(x0) + f(xM ) + 2

M−1∑
i=1

f(xi)] +O(h2)

then the approximative solution of (2.1)-(2.4) is obtained by:

ui,j = vi,j + αjzi + βjwi, i = 0...,M, j = 1, ..., N.

6. Numerical experiment

To test the above algorithms , we use two examples as follows:

Example 1. Consider (2.1)− (2.4) in Ω = (0, 1)× (0, 1) , with

a(t− s) = (t− s)2

g(t, u(x, t)) = 2u(x, t)

f(x, t) = −(x(x− 1)− 2)(−3e−t − 4t+ 2t2 + 4)− 2e−t

K0(x, t) =
6

13

K1(x, t) = − 6

13

ϕ(x) = x(x− 1)− 2

It is easy to check that the exact solution of this test problem is

u∗(x, t) = (x(x− 1)− 2)e−t
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Algorithm A1 A2 A1 A2 A1 A2
H
HHH

HHHH
M

(x, t)
(0.2,0.5) (0.2,0.5) (0.6,0.5) (0.6,0.5) (1,0.5) (1,0.5)

20 -1.3206835 -1.3206835 -1.3695993 -1.3695993 -1.2228648 -1.2228648

40 -1.3153454 -1.3153454 -1.3640651 -1.3640651 -1.2179125 -1.2179125

80 -1.3127135 -1.3127135 -1.3613348 -1.3613348 -1.2154743 -1.2154743

160 -1.3114068 -1.3114068 -1.3599787 -1.3599787 -1.2142647 -1.2142647

320 -1.3107557 -1.3107557 -1.3593029 -1.3593029 -1.2136622 -1.2136622

640 -1.3104308 -1.3104308 -1.3589656 -1.3589656 -1.2133615 -1.2133615

1280 -1.3102684 -1.3102684 -1.3587971 -1.3587971 -1.2132114 -1.2132114

u∗(x, 0.05) -1.3101060 -1.3101060 -1.3586290 -1.3586290 -1.2130610 -1.2130610

Table 1. Some numerical results at t = 0.5 with τ =
h

2
for Example 1.

Algorithm A1 and A2 A1 and A2 A1 and A2 A1 A2
HHH

HHH
HH

M

(x, t)
(0.2,0.5) (0.6,0.5) (1.0,0.5) CPU time (s) CPU time (s)

20 0.0105773 0.0109706 0.0098035 0.265 0.218

40 0.0052392 0.0054364 0.0048512 0.733 0.53

80 0.0026073 0.0027061 0.0024130 1.982 1.7

160 0.0013006 0.00135003 0.0012034 6.896 6.631

320 0.0006495 0.0006742 0.0006009 30.152 25.787

640 0.0003245 0.0003369 0.0003002 183.41 114.48

1280 0.0001500 0.0001684 0.0001622 1309.21 438.62

Table 2. The absolute errors of some numerical solutions at t = 0.5 with τ =
h

2
and

CPU-times for Example 1.

M 10 20 40 80 160

N 40 160 640 2560 10240

‖u− uhτ‖∞ 2.7724e-2 6.8285e-3 1.7008e-3 4.2479e-04 1.0617e-04

Table 3. The maximum errors of the numerical solutions for Example 1.
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(a) (b)

Figure 1. The errors of the numerical solutions at t=0.5 for example1.

Example 2. Now, consider problem (2.1)− (2.4) inΩ = (0, 1)× (0, 1) with

a(t− s) = e(t−s)

g(t, u(x, t)) = u(x, t) + 3

f(x, t) = et(π2cos(πx) + (cos(πx) + x)(1− t)− 3) + 3

K0(x, t) =
1 + π2

π2 − e
ex

K1(x, t) =
1− π2

−sin(1)π2 + (1− π2)(cos(1)− 1)
cos(x)

ϕ(x) = cos(πx) + x

It is easy to check that the exact solution of this test problem is

u∗(x, t) = (cos(πx) + x)et

(a) (b)

Figure 2. The errors of the numerical solutions at t=0.5 for example2.



Int. J. Anal. Appl. 16 (4) (2018) 590

Algorithm A1 A2 A1 A2 A1 A2
H
HHH

HHHH
M

(x, t)
(0.2,0.5) (0.2,0.5) (0.6,0.5) (0.6,0.5) (1,0.5) (1,0.5)

20 1.6716326 1.6716326 0.4887113 0.4887113 0.0112091 0.0112091

40 1.6668822 1.6668822 0.4843230 0.4843230 0.0061441 0.0061441

80 1.6650529 1.6650529 0.4820596 0.4820596 0.0032070 0.0032070

160 1.6642748 1.6642748 0.4809105 0.4809105 0.0016372 0.0016372

320 1.6639199 1.6639199 0.4803316 0.4803316 0.0008270 0.0008270

640 1.6637510 1.6637510 0.4800411 0.4800411 0.0004156 0.0004156

1280 1.6636686 1.6636686 0.4798955 0.4798955 0.0002083 0.0002083

u∗(x, 0.05) 1.6635880 1.6635880 0.4797498 0.4797498 0.0000000 0.0000000

Table 4. Some numerical results at t = 0.5 with τ =
h

2
a for Example 2.

Algorithm A1 and A2 A1 and A2 A1 and A2 A1 A2
HHH

HHH
HH

M

(x, t)
(0.2,0.5) (0.6,0.5) (1.0,0.5) CPU time (s) CPU time (s)

20 0.0080448 0.0089614 0.0112091 0.22 0.19

40 0.0032945 0.0045731 0.0061441 0.54 0.49

80 0.0026073 0.0027061 0.0024130 1.63 1.57

160 0.0013006 0.0013500 0.0012034 6.80 6.15

320 0.0006495 0.0006742 0.0006009 29.53 24.87

640 0.0001632 0.0002912 0.0004156 169.47 109.80

1280 0.0000808 0.0001457 0.0002083 1271.96 464.24

Table 5. The absolute errors of some numerical solutions at t = 0.5 with τ =
h

2
and

CPU-times for Example 2.

M 10 20 40 80 160

N 40 160 640 2560 10240

‖u− uhτ‖∞ 3.8541e-2 9.5205e-3 2.3728e-3 5.9274e-04 1.4815e-04

Table 6. The maximum errors of the numerical solutions for Example 2.
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Our numerical experiment are performed using Matlab and we used an Intel Core i3 with 2.1 GHz . Table

1 and table 4 gives some numerical results and exact values at some points at the time t = 0.5. Table 2 and

table 5 gives the absolute errors of the numerical solutions at some points at the time t = 0.5, and this is

also shown in figure 1 and figure 2. Table 3 and table 6 gives the maximum errors of the numerical solutions.

The maximum error is defined as follows:

e(h, τ) = ‖u− uhτ‖∞ = max
0≤i≤M

{ max
0≤j≤N

u(xi, tj)− uij}

The results obtained using algorithm 1 and algorithm 2 have the same accuracy . It is also noted that the

algorithm 2 will require less CPU time than algorithm 1 (see table 2 and table 5). From table 3 and table

6,we may see the errors decrease about by a factor of 4 as the spatial mesh size is reduced by a factor of 2

and the time mesh size is reduced by a factor of 4.

Conclusion

It is important to note that, for non-local problems, there is not yet a general theory analogous to that of

classical problems. This is due to the relative novelty of this topic on the one hand and to the complexity of

the questions it raises on the other hand. Each problem then requires a specific treatment, which highlights

the topicality of the subject tackled in this article. Especially, when combined a parabolic integrodifferential

equation with the second kind integral condition. So in this paper, we establish sufficient conditions for

the existence, uniqueness and numerical solution for a parabolic integrodifferential equation with the second

kind integral condition. For the theoretical studies we use the energy inequality and fixed point theorem

methods. Also we construct a new numerical scheme to solve parabolic integrodifferential equation with the

second kind integral condition, which has the following advantage: The coefficient matrices of the scheme is

tridiagonal,to solve the linear system of equations by Thomas algorithm the cost is about 8M − 7 (M the

order of The coefficient matrices ) , will save remarkable CPU time.

References

[1] W.T. Ang, A Method of Solution for the One-Dimentional Heat Equation Subject to Nonlocal Conditions, Southeast Asian

Bull. Math. 26 (2002), 185-191.

[2] K. Balachandran and J.Y. Park, Existence of mild solution of a functional integrodifferential equation with nonlocal

condition, Bull. Korean Math. Soc. 38 (2001), 175-182.

[3] K. Balachandran and K. Uchiyama, Existence of solutions of quasilinear integrodifferential equations with nonlocal condi-

tion, Tokyo J. Math. 23 (2000), 203-210.

[4] K. Balachandran and D.G. Park, Existence of solutions of quasilinear integrodifferential evolution equations in Banach

spaces. Bull. Korean Math. Soc. 46 (2009), 691-700.

[5] K. Balachandran and F.P. Samuel, Existence of solutions for quasilinear delay integrodifferential equations with nonlocal

condition, Electron. J. Differ. Equ. 6 (2009), 1-7.



Int. J. Anal. Appl. 16 (4) (2018) 592

[6] S.A. Beilin, Existence of solutions for one-dimentional wave nonlocal conditions, Electron. J. Differ. Equ. 6(2001), 1-8.

[7] A. Bouziani and T-E. Oussaeif and L. Ben Aoua, A Mixed Problem with an Integral Two-Space-Variables Condition for

Parabolic Equation with The Bessel Operator, J. Math. 2013 (2013), Art. ID 457631.

[8] A. Bouziani and R. Mechri, Rothe’s Method to Semilinear Parabolic Integrodifferential Equation with a Nonclassical

Boundary Conditions, Int. J. Stoch. Anal. (2010), 519-684.

[9] A. Bouziani, Mixed problem with boundary integral conditions for a certain parabolic equation, J. Appl. Math. Stochastic

Anal. 9(1996), 323-330.

[10] A. Bouziani R. Mechri, The Rothe Method to a Parabolic Integro-differential Equation with a Nonclassical Boundary

Conditions,Int. J. Stoch. Anal. (2010), Art. ID 519684.

[11] A. Bouziani, Solution forte d’un problème mixte avec une condition non locale pour une classe d’équations hyperboliques

,Bull. Cl. Sci., VI. Sr., Acad. R. Belg.8 (1997), 53-70.

[12] A. Bouziani, On the solvability of parabolic and hyperbolic problems with a boundary integral condition, Int. J. Math.

Math. Sci. 31(2002), 201-213.

[13] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem,

J. Math. Anal. Appl. 162 (1991), 494-505.

[14] L. Byszewski and H. Acka, Existence of solutions of semilinear functional differential evolution nonlocal problems, Nonlinear

Anal. 34 (1998), 65-72

[15] J. Dabas and D. Bahuguna, An integro-differential parabolic problem with an integral boundary condition, Math. Comput.

Modelling 50 (2009), 123-131.

[16] A.A. Elbeleze and A. Kilicman and B.M. Taib, Application of homotopy perturbation and variational iteration method for

Fredholm integro-differential equation of fractional order, Abstr. Appl. Anal. 2012(2012), Art. ID 763139.

[17] A.A. Elbeleze and A. Kilicman and B.M. Taib, Homotopy Perturbation Method for Fractional Black-Scholes European

Option Pricing Equations Using Sumudu Transform,Math. Probl. Eng. 2013 (2013).

[18] A. Guezane-Lakoud and M.S. Jasmati and A. Chaoui, Rothe’s method for an integrodifferential equation with integral

conditions, Nonlinear Anal. 72 (2010), 1522-1530.

[19] A.I. Kozhanov, On Solvability of Certain Spatially Nonlocal Boundary Problems for Linear Parabolic Equations, Vestnik

of Samara State University 3(2008), 165-174.

[20] P.K. Kythe and P. Puri, Computational methods for linear integral equation, Birkhauser, Boston, 2002.

[21] A.I. Kozhanov, On the solvability of certain spatially nonlocal boundary-value problems for linear hyperbolic equations of

second order, Math. Notes 90 (2011), 238-249.

[22] J. Liu and Z. Sun, Finite Difference Method for Reaction-Diffusion Equation with Nonlocal Boundary Conditions, Numer.

Math., J. Chin. Univ. 16 (2007), 1491-1496.

[23] A. Merad and A. Bouziani and O. Cenap and A. Kilicman, On solvability of the integrodifferential hyperbolic equation

with purely nonlocal conditions, Acta Math. Sci. 35 (2015), 601-609.

[24] A. Merad and A. Bouziani, A Method of Solution for Integro-Differential Parabolic Equation with Purely Integral Condi-

tions, Springer Proc. Math. Stat. 41 (2013), 317-327.

[25] A.Merad, and J. Mart́ın-Vaquero, A Galerkin method for two-dimensional hyperbolic integro-differential equation with

purely integral conditions,Appl. Math. Comput. 291 (2016), 386-394.

[26] A. Merad and A. Bouziani and C. Ozel, Inversion Laplace transform for integrodifferential parabolic equation with purely

nonlocal conditions; Hacet. J. Math. Stat.44 (2015), 1087-1097.



Int. J. Anal. Appl. 16 (4) (2018) 593

[27] N.Merazga and A. Bouziani, Rothe time-discretization method for a nonlocal problem arising in thermoelasticity, J. Appl.

Math. Stochastic Anal. 1 (2005), 13-28.

[28] S. Mesloub and A. Bouziani, Mixed problem with integral conditions for a certain class of hyperbolic equations, J. Appl.

Math. 1(2001), 107-116.
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