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Abstract. Following the concept of L–limited sets in dual Banach spaces introduced by Salimi and Mosh-

taghioun, we introduce the concepts of L–Dunford–Pettis and almost L–Dunford–Pettis sets in dual Banach

lattices and then by a class of operators on Banach lattices, so called disjoint Dunford–Pettis completely

continuous operators, we characterize Banach lattices in which almost L–Dunford–Pettis subsets of their

dual, coincide with L–Dunford–Pettis sets.

1. Introduction

A subset A of a Banach space X is called limited (resp. Dunford–Pettis (DP)), if every weak∗ null (resp.

weak null) sequence (x∗n) in X∗ converges uniformly on A, that is

lim
n→∞

sup
a∈A
|〈a, x∗n〉| = 0.

Also if A ⊆ X∗ and every weak null sequence (xn) in X converges uniformly on A, we say that A is an L–set.

Every relatively compact subset of E is DP. If every DP subset of a Banach space X is relatively compact,

then X has the relatively compact DP property (abb. DPrcP). For example, dual Banach spaces with

the weak Radon-Nikodym property (see [11], in short WRNP ) and Schur spaces (i.e., weak and norm
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convergence of sequences in X coincide) have the DPrcP [6]. Also we recall that a Banach space X has the

DPrcP if and only if every DP and weakly null sequence (xn) in X is norm null.

Recently, the authors in [14], introduced the class of Dunford–Pettis completely continuous (abb. DPcc)

operators on Banach spaces. In fact, a bounded linear operator T : X → Y between two Banach spaces

is DPcc if it carries DP and weakly null sequences in X to norm null ones in Y . The class of all DPcc

operators from X to Y is denoted by DPcc(X,Y ).

In this article, by the definition of L–limited sets in [12] in dual Banach spaces, we introduce the concepts

of L–DP and almost L–DP sets in Banach lattices and then we obtain Banach lattices in which two classes

of sets coincide. Finally by introducing the concept of disjoint DP completely continuous (abb. DP dcc)

operators between Banach lattices and positive DPrcP, we obtain some characterizations of them and then

the relation between the positive DPrcP of E and DP dcc operators on E is treated. The class of all DP dcc

operators from E to Y is denoted by DP dcc(E, Y ).

Here, we remember some definitions and terminologies from Banach lattice theory.

It is evident that if E is a Banach lattice, then its dual E∗, endowed with the dual norm and pointwise order,

is also a Banach lattice. The norm ‖.‖ of a Banach lattice E is order continuous if for each generalized net

(xα) such that xα ↓ 0 in E, (xα) converges to 0 for the norm ‖.‖, where the notation xα ↓ 0 means that

the net (xα) is decreasing, its infimum exists and inf(xα) = 0. A Banach lattice E is said to be σ–Dedekind

complete if every countable subset of E that is bounded above has a supremum. A subset A of E is called

solid if |x| ≤ |y| for some y ∈ A implies that x ∈ A and the solid hull of A is the smallest solid set containing

A and is exactly the set Sol(A) = {y ∈ E : |y| ≤ |x|, for some x ∈ A}.

Throughout this article, X and Y denote the arbitrary Banach spaces and X∗ refers to the dual of the

Banach space X. We use Lw∗(X
∗, Y ) for Banach spaces of all bounded weak∗-weak continuous operators

from X∗ to Y . Also E and F denote arbitrary Banach lattices and E+ = {x ∈ E : x ≥ 0} refers to the

positive cone of the Banach lattice E. BE is the closed unit ball of E.

If x is an element of a Banach lattice E, then absolute value of x is denoted by |x|. If a, b belong to E

and a ≤ b, the interval [a, b] is the set of all x ∈ E such that a ≤ x ≤ b. A subset of a Banach lattice is

called order bounded if it is contained in an order interval. A linear mapping T from E into F is called

order bounded if it carries order bounded subsets of E into order bounded sets. We recall from [10] that, an

element x belonging to a Riesz space E is discrete, if x > 0 and |y| ≤ x implies y = tx for some real number

t. If every order interval [0, y] in E contains a discrete element, then E is said to be a discrete Riesz space.

The lattice operations in the Banach lattice E are weakly sequentially continuous if for every weakly null

sequence (xn) in E, |xn| → 0 for σ(E,E∗). We refer the reader for undefined terminologies, to the classical

references [1], [2], [10].
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2. (L)-Dunford–Pettis sets in Banach lattices

Following the introducing of the concept L–limited sets in [12], we define L–DP sets and we give some

properties of them in Banach spaces and specially in Banach lattices. A norm bounded subset B of a dual

Banach space X∗ is said to be an L–limited set if every weakly null and limited sequence (xn) of X converges

uniformly to zero on the set B, that is supf∈B |f(xn)| → 0.

Definition 2.1. A norm bounded subset B of a dual Banach space X∗ is said to be an L–DP set if every

weakly null and DP sequence (xn) of X converges uniformly to zero on the set B, that is supf∈B |f(xn)| → 0.

It is clear that every L-set set in X∗ is L–DP and every subset of an L–DP set is the same. Also, it is

evident that every L–DP set is weak∗ bounded and so is bounded. Similar to [12, Theorem 2.2], we obtain:

(a) absolutely closed convex hull of an L–DP set is an L–DP set,

(b) relatively weakly compact subsets of dual Banach spaces are L–DP set,

(c) every weak∗ null sequence in dual Banach space is an L–DP set.

Note that the converse of assertion (b) in general, is false. In fact, the following theorem 2.1, shows that

the closed unit ball of `∞ is an L–DP set.

Theorem 2.1. A Banach space X has the DPrcP iff every bounded subset of X∗ is an L–DP set.

Proof. Since the Banach space X has the DPrcP iff every DP and weakly null sequence (xn) in X is norm

null [14], the proof is clear. �

The following Theorem 2.2, gives a necessary and sufficient condition for Banach spaces that L–sets and

L–DP sets in its dual coincide. We recall that an operator T : X → Y between two Banach spaces is

completely continuous, if T carries weakly null sequences in X to norm null ones, and the class of completely

continuous operators is denoted by Cc(X,Y ).

Theorem 2.2. A Banach space X has the DP property iff each L–DP set in X∗ is an L–set.

Proof. Suppose X has the DP property. Since every weakly null sequence in X is DP so every L–DP set in

X∗ is an L-set.

Conversely, it is enough to show that for each Banach space Y , Cc(X,Y ) = DPcc(X,Y ) [14, Theorem 1.5].

If T : X → Y is DPcc, it is clear that T ∗(BY ∗) is an L–DP set. So by hypothesis, it is an L–set and we

know that the operator T : X → Y is completely continuous iff T ∗(BY ∗) is an L–set. �

Corollary 2.1. A Banach space with the DPrcP has the DP property if and only if it has the Schur property.

Proof. It is clear that the Banach space X has the Schur property if and only if every bounded subset of X∗

is L–set. Now, if X has the DP property and DPrcP, then by Theorem 2.1, unit ball X∗ is L–DP and so it

is an L–set. The converse of the assertion is also clear. �
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Theorem 2.3. Let A be an L–DP subset of a dual Banach lattice E∗ and E has the weakly sequentially

continuous lattice operations. Then |A| = {|a| : a ∈ A} is an L– DP set.

Proof. We show that every weakly null and DP sequence (xn) in E converges uniformly on |A|, that is,

limn→∞ supx∗∈A |〈xn, |x∗|〉| = 0.

From [10, Lemma 1.4.4], 〈|xn|, |x∗|〉 = max{〈zn, x∗〉 : |zn| ≤ |xn|} for all n. So, there exists zn ∈ E, such

that |zn| ≤ |xn| and 〈|xn|, |x∗|〉 = 〈zn, x∗〉. Since E has the weakly sequentially continuous lattice operations,

the sequences (|xn|) and so (zn) are weakly null. Since the set A is L–DP, supx∗∈A |〈zn, x∗〉| → 0. From

supx∗∈A|〈xn, |x∗|〉| ≤ supx∗∈A〈|xn|, |x∗|〉, we have supx∗∈A |〈xn, |x∗|〉| → 0 and then the set |A| is L–DP. �

Definition 2.2. A Banach space X has the L–DP property, if every L–DP subset of X∗ is relatively weakly

compact.

Theorem 2.4. For a Banach space X, the following are equivalent:

(a) X has the L–DP property,

(b) For each Banach space Y , DPcc(E, Y ) = W (E, Y ),

(c) DPcc(X, `∞) = W (X, `∞).

Proof. (a) ⇒ (b). Suppose that X has the L-DP property and T : X → Y is DPcc. Thus T ∗(BY ∗) is an

L–DP set. So by hypothesis, it is relatively weakly compact and T is a weakly compact operator.

(b)⇒ (c). It is obvious.

(c)⇒ (a). If X does not have the L–DP property, there exists an L–DP subset A of X∗ that is not relatively

weakly compact. So there is a sequence (xn) ⊂ A with no weakly convergent subsequence. Now we show

that the operator T : X → `∞ by

Tx = (〈x, x∗n〉) , x ∈ X

is DPcc, but it is not weakly compact. As (x∗n) ⊂ A is an L–DP set, for every weakly null and DP sequence

(xm) in X we have

‖Txm‖ = sup
n
|〈xm, x∗n〉| → 0

thus T is a DPcc operator. It is easy to see that

T ∗(e∗n) = x∗n , n ∈ N

Thus T ∗ is not a weakly compact operator and neithe is T . This finishes the proof. �

The classical Banach lattices `p, where 1 ≤ p < ∞ and Schur spaces are discrete KB-space and so they

have the DPrcP [3]. The following corollary shows that the classical Banach lattices `p, where 1 < p < ∞

have the L–DP property.
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Corollary 2.2. A Banach space with the DPrcP has the L–DP property if and only if it is reflexive.

Proof. If a Banach space X has the DPrcP, then by [14], the identity operator on X is DPcc and so is weakly

compact, thanks to the L–DP property of X. Hence X is reflexive. �

Recall that a Banach space X is said to have the reciprocal DP property (abb. RDP) if every completely

continuous operator on X is weakly compact [7].

Theorem 2.5. If a Banach space X has the L–DP property, then it has the RDP.

Proof. For arbitrary Banach space Y , let T : X → Y be a completely continuous operator. Thus it is DPcc

and so by Theorem 2.4, T is weakly compact. Hence X has the RDP property. �

In the following, we show that the L–DP property is carried by every complemented subspace.

Theorem 2.6. If a Banach space X has the L–DP property, then every complemented subspace of X has

the L–DP property.

Proof. Consider a complemented subspace Y of X and a projection map P : X → Y . Suppose P : Y → `∞

is a DPcc operator, so TP : X → `∞ is also DPcc. Since X has the L–DP property, by Theorem 2.4, TP

is weakly compact. Hence T is weakly compact. �

The following evident proposition gives a characterization of the L–DP property property by L–DP setes.

Proposition 2.1. Let X be a Banach space. Then the following are equivalent:

(a) X has the L–DP property,

(b) Every L–DP sequence in X∗ is relatively weakly compact.

Theorem 2.7. Let E be a Banach lattice with the L–DP property. Then for each f ∈ (E∗)+, [−f, f ] is an

L–DP set.

Proof. It is evident that every L-set in E∗ is an L–DP set. If E is a Banach lattice E with the L–DP

property, then every L–set in E∗ is relatively weakly compact and so by [?, Theorem 3.1], E∗ has an order

continuous norm. Hence by [2, Theorem 4.9], for each f ∈ (E∗)+, [−f, f ] is relatively weakly compact and

so it is an L–DP set. �

In the rest of this section by using some techniques to those in [4], we investigate additional properties of

L–DP sets.

Proposition 2.2. Let X be a Banach space and B be a bounded subset of X∗. Then the following are

equivalent:
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(a) B is an L–DP set,

(b) For each sequence (fn) in B, fn(xn)→ 0, for every weakly null and DP sequence (xn) of X.

Proof. (a)⇒ (b). This is from the inequality |fn(xn)| ≤ supf∈B |f(xn)| for each sequence (fn) in B and for

every weakly null and DP sequence (xn) of X.

(b) ⇒ (a). Assume that B is not an (L) DP set in X∗. Then there exsits an ε > 0 and a weakly null and

DP sequence (xn) in X such that supf∈B |f(xn)| > ε for all n. This implies the existence of a sequence fn

in B such that |fn(xn)| > ε, for all n. �

As in the previous proposition 2.2, we can easily conclude that, for a norm bounded sequence (fn) of X∗,

the subset {fn : n ∈ N} is an L–DP set iff fn(xn)→ 0, for every weakly null and DP sequence (xn) of X.

Proposition 2.3. Let T be an operator from a Banach space X into a Banach lattice E and f ∈ (E∗)+.

Then the following are equivalent:

(a) T ∗[−f, f ] is an L–DP set,

(b) For every weakly null and DP sequence (xn) of X, f(|T (xn)|)→ 0.

Proof. It follows immediately from the equality f(|T (xn)|) = supg∈T∗[−f,f ] |g(xn)|. �

By taking T = IdE in Proposition 2.3, for each f ∈ (E∗)+, [−f, f ] is an L–DP set iff for every weakly null

and DP sequence (xn) of E, (|xn|) is weakly null.

The next main result, gives an equivalent condition to T ∗(B) be an L–DP set, where B is a norm bounded

solid subset of E∗ and T is an operator from a Banach space X into a Banach lattice E. Recall that a sequence

(xn) in a Banach lattice E is (pairwise) disjoint, if for each i 6= j, |xi| ∧ |xj | = 0.

Theorem 2.8. Let T be an operator from a Banach space X into a Banach lattice E and B be a norm

bounded solid subset of E∗. Then the following are equivalent:

(a) T ∗(B) is an L–DP set in X∗,

(b) T ∗[−f, f ] and {T ∗fn : n ∈ N} are L–DP sets, for each f ∈ B+ and for each norm bounded disjoint

sequence (fn) ∈ B+.

Proof. The proof is similar to [4, Theorem 2.7]. �

By taking T = IdE in Theorem 2.8, we obtain a norm bounded solid subset B of E∗ is an L–DP set iff

[−f, f ] and {fn : n ∈ N} are L–DP sets, for each f ∈ B+ and for each disjoint sequence (fn) ∈ B+.

The next result characterizes DPcc operators by L–DP sets.

Theorem 2.9. For an operator T from a Banach space X into a Banach lattice E, the following are

equivalent:
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(a) T is DPcc,

(b) T ∗(BE∗) is an L– DP set, where BE∗ is the closed unit ball of E∗,

(c) T ∗[−f, f ] and {T ∗fn : n ∈ N} are L–DP sets, for each f ∈ (BE∗)
+ and for each norm bounded

disjoint sequence (fn) ∈ (BE∗)
+,

(d) |T (xn)| → 0 for σ(E,E∗) and fn(Txn)→ 0, for every weakly null and DP sequence (xn) in X and

for each disjoint sequence (fn) in (BE∗)
+.

Proof. (a) ⇔ (b). By the equality supf∈T∗(BE
∗) |f(xn)| = ‖Txn‖E , T ∗(BE∗) is an L–DP set in X∗, if and

only if, T is a DPcc operator.

By Theorem 2.8, the statements (b) and (c) are equivalent and the equivalence (c) ⇔ (d) is a direct

consequence of Proposition 2.3.

�

3. Almost L-DP sets in Banach lattices

In this section we introduce a new class of sets and operators.

Definition 3.1. Let E be a Banach lattice and X be a Banach space. Then

(a) A norm bounded subset B of a dual Banach lattice E∗ is said to be an almost L–DP set if every

disjoint weakly null and DP sequence (xn) of E converges uniformly to zero on the set B, that is

supf∈B |f(xn)| → 0.

(b) An operator T from a Banach lattice E into a Banach space X is a disjoint DP completely continuous

(abb. DP dcc) operator if the sequence (‖Txn‖) converges to zero for every disjoint weakly null and

DP sequence in E.

Note that every L–DP set of a dual Banach lattice, is an almost L–DP set, but the converse is false, in

general. In fact for many Banach lattices E with the positive DPrcP and without the DPrcP, the closed unit

ball of the dual Banach lattice E∗ is an almost L–DP set, but it is not L–DP set. As an example, the closed

unit ball B`∞ of `∞ is an almost L–DP set in `∞, but the closed unit ball B(`∞)∗ is not an almost L–DP

set in (`∞)∗. In the following, we give a useful chracterization of almost L-DP sets, that is proved by the

method of Proposition 2.2.

As we mentioned at the end of the previous section, we use some techniques to those in [4].

Proposition 3.1. Let E be a Banach lattice and B be a norm bounded set in E∗. Then the following are

equivalent:

(a) B is an almost L–DP set,

(b) For each sequence (fn) in B, fn(xn)→ 0, for every disjoint weakly null and DP sequence (xn) of E.
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In particular, we obtain:

Proposition 3.2. Let E be a Banach lattice and (fn) be a norm bounded sequence in E∗. Then the following

are equivalent:

(a) The subset {fn : n ∈ N} is an almost L–DP set,

(b) fn(xn)→ 0, for every disjoint weakly null and DP sequence (xn) of E.

Similar to [4], [−f, f ] is an almost L–DP set in E∗, for each f ∈ (E∗)+. Also for an order bounded

operator from a Banach lattice E into a Banach lattice F , T ∗([−f, f ]) is an almost L–DP set, for each

f ∈ (F ∗)+.

Theorem 3.1. Let T be an order bounded operator from a Banach lattice E into a Banach lattice F and B

be a norm bounded solid subset of F ∗. Then the following are equivalent:

(a) T ∗(B) is an almost L–DP set in E∗,

(b) {T ∗fn : n ∈ N} is an almost L–DP set, for each f ∈ B+ and for each disjoint sequence (fn) in B+.

(c) fn(Txn) → 0, for every disjoint weakly null and DP sequence (xn) of E+ and for each disjoint

sequence (fn) in B+.

Proof. The proof is the same as the proof of Theorem 2.9. �

By taking T = IdE in Theorem 3.1, we obtain a norm bounded solid subset B of E∗ is an almost L–DP

set iff {fn : n ∈ N} is an almost L–DP set for each disjoint sequence (fn) in B+.

The next result characterizes the class of DP dcc operators by almost L– DP sets.

Theorem 3.2. For an order bounded operator T from a Banach lattice E into another Banach lattice F ,

the following are equivalent:

(a) T is DP dcc,

(b) T ∗(BF∗) is an almost L– DP set, where BF∗ is the closed unit ball of F ∗,

(c) {T ∗(fn) : n ∈ N} is an almost L–DP set for each disjoint sequence (fn) in (BF∗)
+,

(d) fn(T (xn)) → 0, for every disjoint weakly null and DP sequence (xn) of E+ and for each disjoint

sequence (fn) in (BF∗)
+.

Proof. (a)⇔ (b). By the equality, supf∈T∗(BF∗ )
|f(xn)| = ‖Txn‖F , for every sequence (xn) in E, it follows

easily that, T ∗(BF∗) is an almost L-limited set in E∗ if and only if T is DP dcc.

By Theorem 3.1, the statements (b) and (c) are equivalent and the equivalence (c) ⇔ (d) is a direct

consequence of Proposition 3.2.

�
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Now the concept of positive DPrcP in Banach lattices is introduced and Banach lattices with the positive

DPrcP is characterized. Next we give some properties of DP dcc operators from an arbitrary Banach lattice

E to another F , related to the positive DPrcP of the Banach lattice E.

Definition 3.2. A Banach lattice E has the positive DPrcP if each weakly null and DP sequence with the

positive terms in E is norm null.

It is clear that the DPrcP implies the positive DPrcP, but the converse is false, in general. For example,

L1[0, 1] has the positive DPrcP without the DPrcP.

Theorem 3.3. For a Banach lattice E, the following are equivalent:

(a) E has the positive DPrcP,

(b) Every weakly null and disjoint DP sequence in E converges to zero in norm.

Proof. (a)⇒ (b). Let (xn) be a weakly null and disjoint DP sequence in E. From [15, Proposition 1.3], the

sequence (|xn|) is weakly null and by [8, Lemma 3.7], it is DP in E. From (a), the sequence (|xn|) and so

(xn) converges to zero in norm.

(b) ⇒ (a). Suppose that infn ‖xn‖ = c > 0 for some weakly null and DP sequence (xn) ⊂ E+. Putting

yn = c−1xn and using [9, Corollary 5] we find a subsequence (ynk
), a constant d > 0, and a disjoint sequence

(zk) of E+ such that 0 < zk ≤ ynk
and ‖zk‖ ≥ d. It is clear that disjoint DP sequence (zk) tends weakly to

zero, but ‖zk‖ ≥ d. This fact contradicts the assumption. �

Theorem 3.4. A Banach lattice E has the positive DPrcP iff every bounded set in E∗ is an almost L–DP

set.

Proof. From Theorem 3.3, a Banach lattice E has the positive DPrcP iff every disjoint weakly null and DP

sequence in E is norm null. �

Theorem 3.5. Let E be a Banach lattice. Then the following are equivalent:

(a) E has the positive DPrcP,

(b) For each Banach space Y , DP dcc(E, Y ) = L(E, Y ),

(c) DP dcc(E, `∞) = L(E, `∞).

Proof. (a) ⇒ (b). If E has the positive DPrcP and (xn) is a weakly null and disjoint DP sequence in

E, then by Theorem 3.3, (xn) is norm null and for each bounded operator T on E, ‖Txn‖ → 0; that is,

DP dcc(E,F ) = L(E,F ).

(b)⇒ (c). It is obvious.

(c) ⇒ (a). If E does not have the positive DPrcP, then by Theorem 3.3, there exists a weakly null and
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disjoint DP sequence (xn) in E such that ‖xn‖ = 1, for all n. Choose a normalized sequence (x∗n) in E∗ such

that |〈xn, x∗n〉| = 1, for all n, and define the operator T : E → `∞ by

Tx = (〈x, x∗n〉) , x ∈ E.

But T is not DP dcc, since the sequence (xn) is weakly null and disjoint DP and ‖Txn‖ ≥ 1, for all n. �

In the following Theorem 3.6, we show that the positive DPrcP and the DPrcP, coincide in the class of

discrete Banach lattices. Let us start with the following lemma.

Lemma 3.1. c0 dose not have the positive DPrcP.

Proof. It is enough to remember that c0 dose not have the positive Schur property and use the fact that

every weakly null sequence in c0 is DP. By [13], a Banach lattice has the positive Schur property, whenever

0 ≤ xn → 0 weakly implies ‖xn‖ → 0 �

Now we are able to formulate the following equivalence condition.

Theorem 3.6. Let E be a discrete Banach lattice. Then E has the positive DPrcP, if and only if, it has

the DPrcP.

Proof. Since the positive DPrcP is inherited by closed Riesz subspaces and c0 does not have the positive

DPrcP, then E does not contain any order copy of c0. According to [10, Corollary 2.4.12], E is KB space,

and so it possesses the DPrcP by [?]. �

Corollary 3.1. The dual Banach lattice C(K)∗ has the positive DPrcP, where K is a compact Hausdorff

space.

Proof. For each positive and weakly null sequence (fn) in C(K)∗, ‖fn‖ = fn(1K) → 0, where 1K denotes

the constant function 1 on K. That is C(K)∗ has the positive DPrcP. On the other hands from [2], the

Banach lattice C(K)∗ is discrete and by Theorem 3.6, it has the DPrcP. �

Theorem 3.7. Let T : E → X from a Banach lattice E be an operator. Then the following are equivalent:

(a) T is DP dcc,

(b) the sequence (‖Txn‖) converges to zero for every weakly null and DP sequence in E+,

(c) the sequence (‖Txn‖) converges to zero for every disjoint weakly null and DP sequence in E+.

Proof. The proof is similar to [5, Theorem 2.2]. �

Let M ⊂ L(X,Y ) be a Banach lattice. If M has the positive DPrcP, then by Theorem 3.5 all of the

evaluation operators φx and ψy∗ are DP dcc operators, where φx(T ) = Tx and ψy∗(T ) = T ∗y∗ for x ∈ X,
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y∗ ∈ Y ∗ and T ∈M. Now, we show that the DP accness of evaluation operators is a sufficient condition for

the positive DPrcP of their domain.

Theorem 3.8. Let Y has the Schur property and M⊂ L(X,Y ) be a Banach lattice. If for every y∗ ∈ Y ∗,

the evaluation operator ψy∗ on M is DP dcc, then M has the positive DPrcP.

Proof. If M does not have the positive DPrcP, by Theorem 3.3, there exists a weakly null and disjoint DP

sequence (Tn) in M and some ε > 0 such that ‖Tn‖ > ε, for all n. So there exists a sequence (xn) in BX

such that ‖Tn(xn)‖ > ε, for all n. On the other hand, the evaluation operator ψy∗ on M is DP dcc for all

y∗ ∈ Y ∗ and so ‖T ∗n(y∗)‖ = ‖ψy∗(Tn)‖ → 0. Hence |〈Tnxn, y∗〉| ≤ ‖T ∗n(y∗)‖ → 0. So the sequence (Tnxn) is

weakly null and it is norm null by the Schur property, a fact that is impossible. �

Theorem 3.9. Let X has the Schur property and M ⊂ Lw∗(X
∗, Y ) be a Banach lattice. If for every

x∗ ∈ X∗, the evaluation operator φx∗ on M is DP dcc, then M has the positive DPrcP.

Proof. If M does not have the positive DPrcP, by Theorem 3.3, there exists a weakly null and disjoint DP

sequence (Tn) in M and some ε > 0 such that ‖Tn‖ > ε, for all n. On the other hand, the evaluation

operator φx∗ on M is DP dcc for all x∗ ∈ X∗ and so ‖Tn(x∗)‖ = ‖φx∗(Tn)‖ → 0. Since ‖T ∗n‖ > ε, there

exists a sequence (y∗n) in BY ∗ such that ‖T ∗ny∗n‖ > ε, for all n. But the Schur property of X shows that the

weakly null sequence (T ∗ny
∗
n) is norm null, which is a contradiction. �

Two final theorems of this section, are a relationship between order weakly compact and M -weakly

compact operators with a DP dcc operator.

Recall that a continuous operator T : E → X from a Banach lattice E to a Banach space X is order weakly

compact if and only if ‖Txn‖ → 0 for every disjoint order bounded sequence (xn) in E [2, Theorem 5.57].

Theorem 3.10. Evere DP dcc operator on a Banach lattice E is order weakly compact.

Proof. Let (xn) be an order bounded disjoint sequence of E. It follows from [2] and [?] that (xn) is a weakly

null and DP sequence. Since T is DP dcc then, ‖Txn‖ → 0. Hence T is order weakly compact. �

An operator T : E → X from a Banach lattice to a Banach space is said to be M -weakly compact if

‖Txn‖ → 0 holds for every norm bounded disjoint sequence (xn) in E [10]. In [14], the authors proved that

each DPcc operator from a Banach lattice E to a Banach space X is M -weakly compact when E∗ has an

order continuous norm and E has the DP ∗ property (that is, every relatively weakly compact set in E is

limited). In fact, we have a similar conclusion about DP dcc operators.

Theorem 3.11. Let E be a Banach lattice and X be a Banach space. If E∗ has an order continuous norm

and E has the DP property, then each DP dcc operator T : E → X is M -weakly compact.
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Proof. Let T : M → X be a DP dcc operator and let (xn) be a bounded disjoint sequence in E. It follows

from [10, Corollary 2.9] that (xn) is weakly null and so it is DP by the DP property of E. By our hypothesis

on T , we have ‖Txn‖ → 0 and then T is M -weakly compact. �

4. Almost L–DP sets which are L–DP sets

As we noted in the beginning of section 3, every L–DP set in the dual Banach lattice E∗, is an almost

L–DP set, but the converse is false in general. In this section we characterize Banach lattices in which the

class of almost L–DP sets and that of L–DP sets coincide in their dual.

Theorem 4.1. For a Banach lattice E, the following are equivalent:

(a) Each almost L–DP set in E∗ is an L–DP set,

(b) For each Banach space Y , DP dcc(E, Y ) = DPcc(E, Y ),

(c) DP dcc(E, `∞) = DPcc(E, `∞).

Proof. (a)⇒ (b). Let T : E → Y be an operator. By the equality

sup
f∈T∗(BY ∗ )

|f(xn)| = ‖Txn‖Y ,

for every sequence (xn) in E, it follows easily that, T ∗(BY ∗) is an almost L–DP (respectively, L–DP) set

in E∗, if and only if, T is a DP dcc (respectively, DPcc) operator. Now, let T be a DP dcc operator. Then

T ∗(BY ∗) is an almost L–DP set in E∗ and from the hypothesis (a), it is an L–DP set in E∗. Hence T is a

DPcc operator.

(b)⇒ (c). It is clear.

(c) ⇒ (a). Let B be an almost L–DP set in E∗. To prove that B is an L–DP set, it sufficies to show

that fn(xn) → 0 for each sequence (fn) in B and for every weakly null and DP sequence (xn) in E (see

Proposition 2.2). Consider the operator S : E → `∞ defined by S(x) = (fn(x))∞n=1, for each x ∈ E. As B is

almost L–DP, S is a DP dcc operator. In fact, for every weakly null and disjoint DP sequence (zi) in E, we

have

‖Szi‖∞ = ‖fn(zi)
∞
n=0‖∞ ≤ sup

f∈B
|f(zi)| → 0,

as i → ∞. It follows that S is a DP dcc operator and so from our hypothesis, S is DPcc. So ‖Sxn‖∞ → 0

and the desired conclusion follows from the inequality |fn(xn)| ≤ ‖Sxn‖∞ for each n. �

We recall that, an operator T from a Banach space X into a Banach lattice E is said to be semicompact

if for each ε > 0 there exists some u ∈ E+ satisfying T (BX) ⊂ [−u, u] + εBE . According to [4, Theorem 4.3],

each operator T : E → X is DP dcc, whenever its adjoint T ∗ : X∗ → E∗ is semicompact.
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At the end of this section, it should be noted that the adjoint of a DP dcc operator is not necessary DP dcc

and vice versa. For example, the identity operator on the Banach lattice `1 is DP dcc (because `1 has the

DPrcP, [14]) but its adjoint, Id`∞ : `∞ → `∞, is not DP dcc. In fact, if en = (0, 0, ..., 1, 0, ...) with n’th entry

equals to 1 and all others zero, then (en) is an order bounded disjoint sequence of `∞. Hence (en) is weakly

null and by [?], it is DP, but ‖Id`∞(en)‖ = ‖en‖∞ = 1 for all n. Also the identity operator on `∞ is not

DP dcc but its adjoint is DP dcc, because (`∞)∗ has DPrcP. Also by Theorem 3.2, B(`∞)∗ is not an almost

L–DP set in (`∞)∗, as noted that in the begining of section 3.
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