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SOLVABILITY OF EXTENDED GENERAL STRONGLY MIXED

VARIATIONAL INEQUALITIES

BALWANT SINGH THAKUR

Abstract. In this paper, a new class of extended general strongly mixed vari-

ational inequalities is introduced and studied in Hilbert spaces. An existence

theorem of solution is established and using resolvent operator technique, a
new iterative algorithm for solving the extended general strongly mixed varia-

tional inequality is suggested. A convergence result for the iterative sequence

generated by the new algorithm is also established.

1. Introduction and Preliminaries

Variational inequality theory, which was introduced by Stampacchia [24] in 1964,
has had a great impact and influence in the development of several branches on
pure and applied sciences. A useful and important generalization of variational
inequality is the general mixed variational inequality containing a nonlinear term
ϕ. Finding fixed points of a nonlinear mapping is an equally important problem
in the functional analysis. Equivalent fixed point formulation of a variational in-
equality problem, has given a new dimension to the study of solution of variational
inequality problems.

In many problems of analysis, one encounters operators who may be split in the
form S = A ± T , where A and T satisfies some conditions, and S itself has nei-
ther of these properties. An early theorem of this type was given by Krasnoselskii
[12], where a complicated operator is split into the sum of two simpler operators.
There is another setting arises from perturbation theory. Here the operator equa-
tion Tx ± Ax = x is considered as a perturbation of Tx = x (or Ax = x), and
one would like to assert that the original unperturbed equation has a solution. In
such a situation, there is, in general, no continuous dependence of solutions on the
perturbations. For various results in this direction, please see [4, 7, 8, 11, 22, 26].
Another argument is concerned with the approximate solution of the problem: For
f ∈ H, find x ∈ H such that Tx±Ax = f . Here T,A : H → H are given operators.
Many boundary value problems for quasi linear partial differential equations aris-
ing in physics, fluid mechanics and other areas of applications can be formulated
as the equation Tx ± Ax = f , see, e.g. Zeidler [28]. Combettes and Hirstoaga [5]
showed that the finding of zeros of sum of two operators can be solved via the
variational inequality involving sum of two operators. Several authors study this
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type of situations, see, e.g. [6, 21] and references therein. Motivated by these facts,
in this paper we study a variational inequality problem involving operator of the
form T −A.

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖·‖, respectively. Let ϕ : H → R ∪ {+∞} be a proper convex lower semi-
continuous function. Let T : H → H be a nonlinear operator and g, h : H → H
are any mappings. We consider the problem of finding x∗ ∈ H such that

(1) 〈T (x∗)−A(x∗), h(y∗)− g(x∗)〉+ ϕ(h(y∗))− ϕ(g(x∗)) ≥ 0 , ∀ y∗ ∈ H ,

where A is a nonlinear continuous mapping on H and ∂ϕ denotes the subdifferential
of ϕ. We call inequality (1) as extended general strongly mixed variational inequality.
We now consider some special cases of the problem (1) :

(1) If A ≡ 0, then the problem (1) reduces to the extended general mixed
variational inequality problem considered in [20]

(2) If h is an identity mapping on H, then the problem (1) reduces to the
problem studied by [10].

(3) If A ≡ 0 and h ≡ g, then the problem (1) reduces to the general mixed
variational inequality problem considered in [2, 17, 18, 19].

(4) If h, g be identity mappings on H, then the problem (1) reduces to a class
of variational inequality studied by [25].

(5) If A ≡ 0 and h, g be identity mappings on H, then the problem (1) reduces
to the mixed variational inequality or variational inequality of second kind
see [1, 9, 15, 16].

For a multivalued operator T : H → H, we denote by

D(T ) = {u ∈ H : T (u) 6= ∅} ,

the domain of T ,

R(T ) =
⋃
u∈H

T (u) ,

the range of T ,

Graph(T ) = {(u, u∗) ∈ H ×H : u ∈ D(T ) and u∗ ∈ T (u)} ,

the graph of T .

Definition 1.1. T is called monotone if and only if for each u ∈ D(T ), v ∈ D(T )
and u∗ ∈ T (u), v∗ ∈ T (v), we have

〈v∗ − u∗, v − u〉 ≥ 0 .

T is maximal monotone if it is monotone and its graph is not properly contained
in the graph of any other monotone operator.

T−1 is the operator defined by

v ∈ T−1(u)⇔ u ∈ T (v) .

Definition 1.2 (See [3]). For a maximal monotone operator T , the resolvent op-
erator associated with T , for any σ > 0, is defined as

JT (u) = (I + σT )−1(u) , ∀u ∈ H .
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It is known that a monotone operator is maximal if and only if its resolvent
operator is defined everywhere. Furthermore, the resolvent operator is single-valued
and nonexpansive i.e. ‖JT (x)− JT (y)‖ ≤ ‖x− y‖ , ∀x, y ∈ H. In particular, it is
well known that the subdifferential ∂ϕ of ϕ is a maximal monotone operator; see
[13].

Lemma 1.3. [3] For a given z ∈ H , u ∈ H satisfies the inequality

〈u− z, x− u〉+ λϕ(x)− λϕ(u) ≥ 0 , ∀x ∈ H

if and only if u = Jϕ(z), where Jϕ = (I + λ∂ϕ)
−1

is the resolvent operator and
λ > 0 is a constant.

Inequality (1), can be written in an equivalent form as follows:

Find x∗ ∈ H such that
(2)
〈ρ(T (x∗)−A(x∗)) + g(x∗)− h(x∗), h(y∗)− g(x∗)〉+ ρϕ(h(y∗))− ρϕ(g(x∗)) ≥ 0 ,

for all y∗ ∈ H .

This equivalent formulation plays an important role in the development of iter-
ative methods for solving the mixed variational inequality problem (1).

Using Lemma 1.3, we will establish following important relation:

Lemma 1.4. x∗ ∈ H is a solution of (2) if and only if x∗ satisfies the following
relation

(3) g(x∗) = Jϕ (h(x∗)− ρ(T (x∗)−A(x∗))) ,

where ρ > 0 is a constant and Jϕ = (I + ρ∂ϕ)−1 is the proximal mapping, I stands
for the indentity operator on H.

Proof. Let x∗ ∈ H be a solution of problem (2), then
(4)
〈g(x∗)− (h(x∗)− ρ (T (x∗)−A(x∗))) , h(y∗)− g(x∗)〉+ ρϕ(h(y∗))− ρϕ(g(x∗)) ≥ 0 ,

for all y∗ ∈ H. Applying Lemma 1.3 for λ = ρ, inequality (4) is equivalent to

g(x∗) = Jϕ (h(x∗)− ρ (T (x∗)−A(x∗))) ,

the required result. �

Lemma 1.4 implies that the problem (2) is equivalent to the fixed point problem
(3). This alternative equivalent formulation provides a natural connection between
variatonal inequality problem (2) and the fixed point theory which will be used to
prove existence result. The following lemma is in this sense :

Lemma 1.5. x∗ ∈ H is a solution of (2) if and only if x∗ is a fixed point of the
mapping F given by

(5) F (u) = u− g(u) + Jϕ (h(u)− ρ(T (u)−A(u))) , u ∈ H .

Proof. Let x∗ ∈ H be a fixed point of the mapping F . Then

g(x∗) = Jϕ (h(x∗)− ρ(T (x∗)−A(x∗))) .

From Lemma 1.4, x∗ is a solution of (2). �
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We now recall some some definitions:

Definition 1.6. An operator T : H → H is said to be :

(i) strongly monotone, if for each x ∈ H, there exists a constant ν > 0 such
that

〈T (x)− T (y), x− y〉 ≥ ν ‖x− y‖2

holds, for all y ∈ H;
(ii) φ−cocoercive, if for each x ∈ H, there exists a constant φ > 0 such that

〈T (x)− T (y), x− y〉 ≥ −φ ‖T (x)− T (y)‖2

holds, for all y ∈ H;
(iii) relaxed (φ, γ)−cocoercive or relaxed cocoercive with respect to constant

(φ, γ), if for each x ∈ H, there exists constants γ > 0 and φ > 0 such that

〈T (x)− T (y), x− y〉 ≥ −φ ‖T (x)− T (y)‖2 + γ ‖x− y‖2

holds, for all y ∈ H;
(iv) µ−Lipschitz continuous or Lipschitz with respect to constant µ, if for each

x, y ∈ H, there exists a constant µ > 0 such that

‖T (x)− T (y)‖ ≤ µ ‖x− y‖ .

2. Main results

Lemma 1.5, is the main motivation for our next result:

Theorem 2.1. Let H be a real Hilbert space and T,A, g, h : H → H are operators.
Suppose that the following assumptions are satisfied :

(i) T, g, h are relaxed cocoercive with constants (φT , γT ), (φg, γg), (φh, γh) re-
spectively,

(ii) T,A, g, h are Lipschitz mappings with constants µT , µA, µg, µh respectively.

If

1 + µ2
g(1 + 2φg) > 2γg , 1 + µ2

h(1 + 2φh) > 2γh ,

and

(6) ρ ∈

((
γT − φTµ2

T

)
−
√
d

µ2
T + µ2

A

,

(
γT − φTµ2

T

)
+
√
d

µ2
T + µ2

A

)
,

where

d := (φTµ
2
T − γT )2 − 1

2
(µ2

T + µ2
A)(1 + κ(2− κ)) > 0

κ =
√

1− 2γg + µ2
g(1 + 2φg) +

√
1− 2γh + µ2

h(1 + 2φh) ,

then the problem (2) has a unique solution.

Proof. It is enough to show that the mapping F defined by (5) has a fixed point.
For u ∈ H, set p(u) = T (u)−A(u).
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For all x 6= y ∈ H, we have

‖F (x)− F (y)‖ ≤ ‖x− y − (g(x)− g(y))‖
+ ‖Jϕ (h(x)− ρ(p(x)))− Jϕ (h(y)− ρ(p(y)))‖

≤ ‖x− y − (g(x)− g(y))‖+ ‖h(x)− h(y)− ρ (p(x)− p(y))‖
≤ ‖x− y − (g(x)− g(y))‖+ ‖x− y − (h(x)− h(y))‖

+ ‖x− y − ρ (p(x)− p(y))‖ .(7)

Since g is relaxed (φg, γg)−cocoercive and µg-Lipschitz mapping, we can compute
the following:

‖x− y − (g(x)− g(y))‖2 = ‖x− y‖2 − 2 〈g(x)− g(y), x− y〉+ ‖g(x)− g(y)‖2

≤ (1 + µ2
g) ‖x− y‖2 + 2φg ‖g(x)− g(y)‖2 − 2γg ‖x− y‖2

≤
(
1− 2γg + µ2

g(1 + 2φg)
)
‖x− y‖2 .(8)

Similarly,

(9) ‖x− y − (h(x)− h(y))‖2 ≤
(
1− 2γh + µ2

h(1 + 2φh)
)
‖x− y‖2 .

Also,

‖x− y − ρ(p(x)− p(y))‖2 = ‖x− y − ρ(T (x)− T (y)) + ρ(A(x)−A(y))‖2

≤ 2 ‖x− y − ρ(T (x)− T (y))‖2 + 2ρ2 ‖A(x)−A(y)‖2

≤ 2 ‖x− y − ρ(T (x)− T (y))‖2 + 2ρ2µ2
A ‖x− y‖

2
.(10)

Now, we estimate

‖x− y − ρ(T (x)− T (y))‖2 ≤ ‖x− y‖2 − 2ρ 〈T (x)− T (y), x− y〉

+ ρ2 ‖T (x)− T (y)‖2

≤
(
1− 2ργT + 2ρµ2

TφT + ρ2µ2
T

)
‖x− y‖2 .(11)

Substituting (11) into (10), gives
(12)

‖x− y − ρ(p(x)− p(y))‖ ≤
√

2 (1− 2ργT + 2ρµ2
TφT + ρ2(µ2

T + µ2
A)) ‖x− y‖ .

Substituting (8), (9), (12) into (7), we have

‖F (x)− F (y)‖ ≤ (κ+ f(ρ)) ‖x− y‖ ,

where

κ =
√

1− 2γg + µ2
g(1 + 2φg +

√
1− 2γh + µ2

h(1 + 2φh) ,

and

f(ρ) =
√

2 (1− 2ργT + 2ρµ2
TφT + ρ2(µ2

T + µ2
A)) .

From (6), we get that (κ+ f(ρ)) < 1, thus F is a contraction mapping and therefore
has a unique fixed point in H, which is a solution of variational inequality (2). �

Remark 2.2. Theorem 2.1, extend and improve Theorem 3.1 of [20].
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If K is closed convex set in H and ϕ(x) = δK(x), for all x ∈ K, where δK is the
indicator function of K defined by

δK(x) =

{
0, if x ∈ K ;

+∞, otherwise ,

then the problem (2) reduces to the following variational inequality problem: Con-
sider the problem of finding x∗ ∈ K
(13) 〈ρ(T (x∗)−A(x∗)) + g(x∗)− h(x∗), h(y∗)− g(x∗)〉 ≥ 0 , ∀ y∗ ∈ K .

We immediately obtain following result from Theorem 2.1 :

Corollary 2.3. Let H be a real Hilbert space, K be a nonempty closed convex
subset of H and T,A : H → H and g, h : K → K are operators. Suppose that
following assumptions are satisfied :

(i) T, g, h are relaxed cocoercive with constants (φT , γT ), (φg, γg), (φh, γh) re-
spectively,

(ii) T,A, g, h are Lipschitz mappings with constants µT , µA, µg, µh respectively.

If (6) holds, then the problem (13) has a unique solution.

If we take h as identity mapping in (13), we get an inequality, equivalent to the
general strongly nonlinear variational inequality studied by Siddiqi and Ansari [23].
Corollary 2.3 partially extends and improves the result of [14, 23].

3. Iterative algorithm and convergence

We rewrite the relation (3) in the following form

(14) x∗ = x∗ − g(x∗) + Jϕ (h(x∗)− ρ(T (x∗)−A(x∗))) .

Using the fixed point formulation (14), we now suggest and analyze the following
iterative methods for solving the variational inequality problem (2).

Algorithm 1. For a given x0 ∈ H, find the approximate solution xn+1 by the
iterative scheme

xn+1 = xn − g(xn) + Jϕ (h(xn)− ρ (T (xn)−A(xn))) , n = 0, 1, 2, . . .

which is called explicit iterative method.

Algorithm 2. For a given x0 ∈ H, find the approximate solution xn+1 by the
iterative scheme

xn+1 = xn − g(xn) + Jϕ (h(xn+1)− ρ (T (xn+1)−A(xn+1))) , n = 0, 1, 2, . . .

which is an implicit iterative method.

Now, we use Algorithm 1 as predictor and Algorithm 2 as a corrector to obtain
the following predictor-corrector method for solving variational inequality problem
(1).

Algorithm 3. For a given x0 ∈ H, find the approximate solution xn+1 by the
iterative scheme

yn = xn − g(xn) + Jϕ (h(xn)− ρ(Txn −Axn))

xn+1 = xn − g(xn) + Jϕ (h(yn)− ρ(Tyn −Ayn)) , n = 0, 1, 2, . . . .
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Using Algorithm 3, we can suggest following :

Algorithm 4. For a given x0 ∈ H, find the approximate solution xn+1 by the
iterative scheme

yn = xn − g(xn) + Jϕ (h(xn)− ρ(Txn −Axn))

xn+1 = (1− αn)xn + αn (xn − g(xn) + Jϕ (h(yn)− ρ(Tyn −Ayn))) ,

where n = 0, 1, 2, . . . , {αn} is sequences in [0, 1], satisfying certain conditions.

Now, we define a more general predictor-corrector iterative method for approxi-
mate solvability of variational inequality problem (1).

Algorithm 5. For a given x0 ∈ H, find the approximate solution xn+1 by the
iterative scheme

(15)
yn = (1− βn)xn + βn (xn − g(xn) + Jϕ (h(xn)− ρ(Txn −Axn)))

xn+1 = (1− αn)xn + αn (xn − g(xn) + Jϕ (h(yn)− ρ(Tyn −Ayn))) ,

where n = 0, 1, 2, . . . , {αn}, {βn} are sequences in [0, 1], satisfying certain condi-
tions.

We need following result to prove the next result :
Lemma 3.1. [27] Let {an} be a non negative sequence satisfying

an+1 ≤ (1− cn)an + bn ,

with cn ∈ [0, 1],
∑∞

n=0 cn =∞, bn = o(cn). Then limn→∞ an = 0.

Theorem 3.2. Let T,A, g, h satisfy all the assumptions of Theorem 2.1, also con-
dition (6) holds and {αn}, {βn} are sequences in [0, 1] for all n ≥ 0 such that∑∞

n=0 αn =∞. Then the approximate sequence {xn} constructed by the Algorithm
5 converges strongly to a solution x∗ of (2).

Proof. For u ∈ H, set pu = Tu − Au. Since x∗ ∈ H is a solution of (1), by (14),
we have

x∗ = x∗ − g(x∗) + Jϕ (h(x∗)− ρ(T (x∗)−A(x∗))) .

Using (15), we have

‖xn+1 − x∗‖ ≤ (1− αn) ‖xn − x∗‖+ αn ‖xn − x∗ − (g(xn)− g(x∗))‖
+ αn ‖Jϕ (h(yn)− ρp(yn))− Jϕ (h(x∗)− ρp(x∗))‖

≤ (1− αn) ‖xn − x∗‖+ αn

√
1− 2γg + µ2

g(1 + 2φg) ‖xn − x∗‖

+ αn ‖h(yn)− h(x∗)− ρ (p(yn)− p(x∗))‖

≤ (1− αn) ‖xn − x∗‖+ αn

√
1− 2γg + µ2

g(1 + 2φg) ‖xn − x∗‖

+ αn ‖yn − x∗ − (h(yn)− h(x∗))‖
+ αn ‖yn − x∗ − ρ (p(yn)− p(x∗))‖

≤ (1− αn) ‖xn − x∗‖+ αn

√
1− 2γg + µ2

g(1 + 2φg) ‖xn − x∗‖

+ αn

√
1− 2γh + µ2

h(1 + 2φh) ‖yn − x∗‖

+ αn

√
2 (1− 2ργT + 2ρµ2

TφT + ρ2(µ2
T + µ2

A)) ‖yn − x∗‖
= (1− αn) ‖xn − x∗‖+ αnθg ‖xn − x∗‖+ αn (θh + f(ρ)) ‖yn − x∗‖ ,(16)
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where θg =
√

1− 2γg + µ2
g(1 + 2φg) , θh =

√
1− 2γh + µ2

h(1 + 2φh)

and f(ρ) =
√

2 (1− 2ργT + 2ρµ2
TφT + ρ2(µ2

T + µ2
A)).

Similarly, we have

‖yn − x∗‖ ≤ (1− βn) ‖xn − x∗‖+ βn ‖xn − x∗ − (g(xn)− g(x∗))‖
+ βn ‖Jϕ (h(xn)− ρp(xn))− Jϕ (h(x∗)− ρp(x∗))‖

≤ (1− βn) ‖xn − x∗‖+ βnθg ‖xn − x∗‖
+ βn ‖h(xn)− h(x∗)− ρ (p(xn)− p(x∗))‖

≤ (1− βn) ‖xn − x∗‖+ βnθg ‖xn − x∗‖
+ βn ‖xn − x∗ − (h(xn)− h(x∗))‖
+ βn ‖xn − x∗ − ρ (p(xn)− p(x∗))‖

≤ (1− βn) ‖xn − x∗‖+ βnθg ‖xn − x∗‖
+ βnθh ‖xn − x∗‖+ βnf(ρ) ‖xn − x∗‖

= (1− βn) ‖xn − x∗‖+ βn(κ+ f(ρ)) ‖xn − x∗‖
≤ (1− βn) ‖xn − x∗‖+ βn ‖xn − x∗‖
= ‖xn − x∗‖ .(17)

Substituting (17) into (16), yields that

‖xn+1 − x∗‖ ≤ (1− αn) ‖xn − x∗‖+ αn(θg + θh + f(ρ)) ‖xn − x∗‖
= (1− αn (1− (κ+ f(ρ)))) ‖xn − x∗‖ .(18)

By virtue of Lemma 3.1, we get from (18) that, limn→∞ ‖xn+1 − x∗‖ = 0, i.e.
xn → x∗, as n→∞. This completes the proof. �

Remark 3.3. Theorem 3.2, extend and improve Theorem 2.1 of [10] and Theorem
3.2 of [20].

It is well known that, if ϕ(·) is the indicator function of K in H, then Jϕ = PK ,
the projection operator of H onto the closed convex set K, and consequently, the
following result can be obtain from Theorem 3.2.

Corollary 3.4. Let T,A, g, h satisfy all the assumptions of Corollary 2.3. Let
x0 ∈ K, construct a sequence {xn} in K by

yn = xn − g(xn) + PK (h(xn)− ρ(Txn −Axn))

xn+1 = (1− αn)xn + αn (xn − g(xn) + PK (h(yn)− ρ(Tyn −Ayn))) , n = 0, 1, 2, . . . ,

where {αn}, {βn} are sequences in [0, 1] for all n ≥ 0 such that
∑∞

n=0 αn = ∞.
Then the sequence {xn} converges strongly to a solution x∗ of (13).
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[3] Brezis,H.: Opérateurs maximaux monotone et semi-groupes de contractions dans les espaces

de Hilbert. In: North-Holland Mathematics Studies. 5, Notas de matematics, vol. 50, North-
Holland, Amsterdam (1973).



86 THAKUR

[4] Browder,F.E.: Fixed point theorems for nonlinear semicontractive mappings in Banach s-
paces. Arch. Rat. Mech. Anal. 21, 259–269 (1966).

[5] Combettes,P.L., Hirstoaga,S.A.: Visco-penalization of the sum of two monotone operators.

Nonlinear Anal. 69, 579–591 (2008).
[6] Dhage,B.C.: Remarks on two fixed-point theorems involving the sum and the product of two

operators. Comput. Math. Appl. 46, 1779–1785 (2003).

[7] Fucik,S.: Fixed point theorems for a sum of nonlinear mapping. Comment. Math. Univ.
Carolinae 9, 133-143 (1968).

[8] Fucik,S.: Solving of nonlinear operator equations in Banach space. Comment. Math. Univ.
Carolinae 10, 177–186 (1969).

[9] Glowinski,R., Lions,J.L., Tremolieres,R.: Numerical Analysis of Variational Inequalities.

North-Holland, Amesterdam, Holland (1981).
[10] Hassouni,A., Moudafi,A.: Perturbed algorithm for variational inclusions. J. Math. Anal. Appl.

185, 706-712 (1994).

[11] Kirk,W.A.: On nonlinear mappings of strongly semicontractive type. J. Math. Anal. Appl.
27, 409–412 (1969).

[12] Krasnoselskii,M.A.: Two remarks of the method of successive approximations. Uspeki Mat.

Nauk 10, 123–127 (1955).
[13] Minty,H.J.: On the monotonicity of the gradient of a convex function. Pacific J. Math. 14,

243–247 (1964).

[14] Noor,M.A.: Strongly nonlinear variational inequalities. C.R. Math. Rep. Acad. Sci. Canad.
4, 213–218 (1982).

[15] Noor,M.A.: On a class of variational inequalities. J. Math. Anal. Appl. 128, 135–155 (1987).

[16] Noor,M.A.: A class new iterative methods for general mixed variational inequalities. Math.
Comput. Modell. 31, 11–19 (2000).

[17] Noor,M.A.: Modified resolvent splitting algorithms for general mixed variational inequalities.
J. Comput. Appl. Math. 135, 111–124 (2001).

[18] Noor,M.A.: Operator-splitting methods for general mixed variational inequalities. J. Ineq.

Pure Appl. Math. 3(5), Art.67, 9p. (2002) http://eudml.org/doc/123617.
[19] Noor,M.A.: Psueudomontone general mixed variational inequalities. Appl. Math. Comput.

141, 529–540 (2003).

[20] Noor,M.A., Ullah,S., Noor,K.I., Al-Said,E.: Iterative methods for solving extended general
mixed variational inequalities. Comput. Math. Appl. 62, 804–813 (2011).

[21] O’Regan, D.: Fixed point theory for the sum of two operators. Appl. Math. Lett. 9, 1–8

(1996).
[22] Petryshyn,W.V.: Remarks on fixed point theorems and their extensions. Trans. Amer. Math.

Soc. 126, 43–53 (1967).

[23] Siddiqi,A.H., Ansari,Q.H.: General strongly nonlinear variational inequalities. J. Math. Anal.
Appl. 166, 386–392 (1992).

[24] Stampacchia,G.: Formes bilineares sur les ensemble convexes. C. R. Acad. Sci. Paris 285,
4413–4416 (1964).

[25] Verma,R.U.: Generalized auxiliary problem principle and solvability of a class of nonlinear

variational inequalities involoving cocoercive and co-Lipschitzian mappings. J. Ineq. Pure
Appl. Math. 2(3), Art.27, 9p. (2001) http://eudml.org/doc/122114.

[26] Webb,J.R.L.: Fixed point theorems for nonlinear semicontractive operators in Banach spaces.

J. London Math. Soc. 1, 683–688 (1969).
[27] Weng,X.L.: Fixed point iteration for local stricly pseudo-contractive mappings. Proc. Amer.

Math. Soc. 113, 727–731 (1991).
[28] Zeidler,E.: Nonlinear functional analysis and its applications, II/B : Nonlinear monotone

operators. Springer, New York (1990).

School of Studies in Mathematics, Pt.Ravishankar Shukla University, Raipur, 492010,

India


