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GENERALIZED BETA-CONVEX FUNCTIONS AND INTEGRAL INEQUALITIES

BANDAR BIN-MOHSIN1, MUHAMMAD UZAIR AWAN2, MUHAMMAD ASLAM NOOR1,3,∗

KHALIDA INAYAT NOOR3, SABAH IFTIKHAR3, AWAIS GUL KHAN2

Abstract. In this paper, we introduce the concept of generalized beta-convex functions. This new

class of convex functions includes several new and previous known classes of convex functions as

special cases. We derive some integral inequalities of Hermite-Hadamard type via generalized beta-
convex functions. Some special cases are also discussed. Results proved in this paper can be viewed

as significant new contributions in this dynamic field.

1. Introduction and Preliminaries

Convexity theory had played a pivotal role in the development of every branch of pure and applied
sciences. Closely related to this theory is inequality theory. In fact, it is known that every function is a
convex function, if and if only, if satisfies an integral inequality. These type of integral inequalities are
known as Hermite-Hadanard, Simpson, Trapeziodal and Newton. The integral inequalities are used to
find the lower and upper bounds of natural phenomena. Due to their important applications in various
branches of pure and applied science, the concept of convexity has been generalized and generalized
using some interesting and novel techniques and ideas, see [1–4, 8–10, 13–15, 17–20, 23–25, 27, 30–32].
These developments played an crucial role to establish integral inequalities via various classes of convex
functions and their variant forms. See [3–7,11–20,23–26,28–30] and the references therein.
Motivated and inspired by the research going on in these fields, we introduced and consider a new
class of convex functions, which is called generalized beta-convex functions. We show that this class
of generalized beta-convex functions includes several other classes of convex functions. We also derive
some new integral inequalities via beta-convex functions. Several special cases are considered which
cab be obtained from our main results. Our results can be viewed as a significant refinement and
improvement of the of the known results. Techniques and ideas of this paper may stimulate further
research.

We now recall some known basic results and concepts, which are needed to obtain the main results.

Definition 1.1 ( [32]). An interval I is said to be a p-convex set if

Mp(x, y; t) = [txp + (1− t)yp]
1
p ∈ I

for all x, y ∈ I, t ∈ [0, 1], where p = 2k + 1 or p = n
m , n = 2r + 1,m = 2t+ 1 and k, r, t ∈ N.

For p = 1, and p = −1, p-convex set reduces to convex set and harmonic convex set, respectively.

Definition 1.2 ( [32]). Let I be a p-convex set. A function f : I → R is said to be p-convex function
or belongs to the class PC(I), if

f(Mp(x, y; t)) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ I, t ∈ [0, 1].

It is very much obvious that for p = 1 Definition 1.2 reduces to the definition for classical convex
functions.
Note that for p = −1, we have the definition of harmonically convex functions.
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Definition 1.3 ( [10]). A function f : I ⊂ R \ {0} → R is said to be harmonically convex function, if

f

(
xy

(1− t)x+ ty

)
≤ tf(x) + (1− t)f(y), ∀x, y ∈ I, t ∈ [0, 1].

Also note that for t = 1
2 in Definition 1.2, we have Jensen p-convex functions or mid p-convex

functions.

f(Mp(x, y; 1/2)) ≤ f(x) + f(y)

2
, ∀x, y ∈ I, t ∈ [0, 1].

We now define the concept of generalized bet-convex functions, which is the main motivation of this
paper.

Definition 1.4. Let I be a p-convex set. A function f : I → R is said to be a generalized beta-convex
function, if

f(Mp(x, y; t)) ≤ tθ1(1− t)θ2f(x) + (1− t)θ1tθ2f(y), ∀x, y ∈ I, t ∈ [0, 1], θ1, θ2 ∈ (0, 1].

For p = 1, we have beta-convex functions.

f(tx+ (1− t)y) ≤ tθ1(1− t)θ2f(x) + (1− t)θ1tθ2f(y), ∀x, y ∈ R, t ∈ [0, 1], θ1, θ2 ∈ (0, 1].

For p = −1, we have harmonic beta-convex functions, which were introduced and studies by Noor et.
al [21, 22].

f

(
xy

(1− t)x+ ty

)
≤ tθ1(1− t)θ2f(x) + (1− t)θ1tθ2f(y), ∀x, y ∈ R, t ∈ [0, 1], θ1, θ2 ∈ (0, 1].

We now consider some results, which are useful in obtaining our results.

Lemma 1.1. Let f : I = [a, b] ⊂ R→ R be a continuous function such that f ∈ L [a, b]. Then

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx = (bp − ap)α+β+1

1∫
0

tα(1− t)βf(Mp(x, y; t))dt.

Proof. The proof follows from simple calculations. �

Lemma 1.2 ( [18]). Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 (the interior of I)
with a < b. If f ′ ∈ L [a, b], then, we have

Rf (a, b; p) =
f(a) + f(b)

2
− p

bp − ap

∫ b

a

f(x)

x1−p
dx

=
bp − ap

2p

∫ 1

0

[tap + (1− t)bp]1−
1
p (1− 2t)f ′([tap + (1− t)bp]

1
p )dt.

2. Main Results

In this section, we derive our main results.

Theorem 2.1. Let f : I = [a, b] ⊂ R→ R be a generalized beta-convex function. If f ∈ L [a, b], then

2f

([
ap + bp

2

] 1
p
)
≤ p

bp − ap

b∫
a

f(x)

x1−p
dx ≤ [f(a) + f(b)]B(θ1 + 1, θ2 + 1).

Proof. Let f be a generalized beta-convex function. Then

f

([
ap + bp

2

] 1
p
)
≤ 1

4

[
f
(
[tap + (1− t)bp]

1
p
)

+ f
(
[(1− t)ap + tbp]

1
p
)]
.
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Integrating both sides of above inequality with respect to t on [0, 1], we have

2f

[ap + bp

2

] 1
p

 ≤ p

bp − ap

b∫
a

f(x)

x1−p
dx. (2.1)

Also

f
(
[tap + (1− t)bp]

1
p
)
≤ tθ1(1− t)θ2f(x) + (1− t)θ1tθ2f(y).

Integrating both sides of above inequality with respect to t on [0, 1], we have

p

bp − ap

b∫
a

f(x)

x1−p
dx ≤ [f(a) + f(b)]B(θ1 + 1, θ2 + 1). (2.2)

On summation of inequalities (2.1) and (2.2) the proof is complete. �

We now discuss a new special case of Theorem 2.1.

If θ1 = θ = θ2 in Theorem 2.1, then we have following new result for Brecker type of generalized
tgs-convex functions.

Corollary 2.1. Let f : I = [a, b] ⊂ R → R be Brecker type of tgs-convex function. If f ∈ L [a, b],
then

2f

([
ap + bp

2

] 1
p
)
≤ p

bp − ap

b∫
a

f(x)

x1−p
dx ≤ [f(a) + f(b)]B(θ + 1, θ + 1).

If θ1 = −θ = θ2 in Theorem 2.1, then we have following new result for Godunova-Levin-Dragomir
type generalized tgs-convex functions.

Corollary 2.2. Let f : I = [a, b] ⊂ R → R be Godunova-Levin-Dragomir generalized tgs-convex
function. If f ∈ L [a, b], then

2f

([
ap + bp

2

] 1
p
)
≤ p

bp − ap

b∫
a

f(x)

x1−p
dx ≤ [f(a) + f(b)]B(1− θ, 1− θ).

If p = −1 in Theorem 2.1, then we have following new result for harmonic beta-convex functions.

Corollary 2.3. Let f : I \ {0} ⊂ R→ R be a harmonic beta-convex function. If f ∈ L [a, b], then, we
have

2f

(
2ab

a+ b

)
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ [f(a) + f(b)]B(θ1 + 1, θ2 + 1).

We now derive a lower bound for Hermite-Hadamard’s inequality via product of two generalized
beta-convex functions.

Theorem 2.2. Let f, g : I = [a, b] ⊂ R→ R be two generalized beta-convex functions. If fg ∈ L [a, b],
then

8f

([
ap + bp

2

] 1
p
)
g

([
ap + bp

2

] 1
p
)

− B(θ1 + θ2 + 1, θ1 + θ2 + 1)M(a, b) + B(2θ1 + 1, 2θ2 + 1)N(a, b)

≤ p

bp − ap

1∫
0

f(x)g(x)

x1−p
dx

≤ B(2θ1 + 1, 2θ2 + 1)M(a, b) + B(θ1 + θ2 + 1, θ1 + θ2 + 1)N(a, b),
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where

M(a, b) = f(a)g(a) + f(b)g(b), (2.3)

and

N(a, b) = f(a)g(b) + f(b)g(a), (2.4)

respectively.

Proof. Since f and g are generalized beta-convex functions respectively, so

f

([
ap + bp

2

] 1
p
)
g

([
ap + bp

2

] 1
p
)
≤ 1

4

[
f
(
[tap + (1− t)bp]

1
p
)

+ f
(
[(1− t)ap + tbp]

1
p
)]

× 1

4

[
g
(
[tap + (1− t)bp]

1
p
)

+ g
(
[(1− t)ap + tbp]

1
p
)]

=
1

16

[
f
(
[tap + (1− t)bp]

1
p
)
g
(
[tap + (1− t)bp]

1
p
)

+f
(
[(1− t)ap + tbp]

1
p
)
g
(
[(1− t)ap + tbp]

1
p
)

+f
(
[tap + (1− t)bp]

1
p
)
g
(
[(1− t)ap + tbp]

1
p
)

+f
(
[(1− t)ap + tbp]

1
p
)
g
(
[tap + (1− t)bp]

1
p
)]

≤ 1

16

[
f([tap + (1− t)bp]

1
p
)
g([tap + (1− t)bp]

1
p
)

+f([(1− t)ap + tbp]
1
p
)
g([(1− t)ap + tbp]

1
p
)

+[2tθ1+θ2(1− t)θ1+θ2 ][f(a)g(a) + f(b)g(b)]

+[t2θ1(1− t)2θ2 + t2θ2(1− t)2θ1 ][f(a)g(b) + f(b)g(a)]
]
.

Integrating above inequality with respect to t on [0, 1], we have

f

([
ap + bp

2

] 1
p
)
g

([
ap + bp

2

] 1
p
)

≤ 1

8

[
p

bp − ap

1∫
0

f(x)g(x)

x1−p
dx

+ B(θ1 + θ2 + 1, θ1 + θ2 + 1)M(a, b) + B(2θ1 + 1, 2θ2 + 1)N(a, b)

]
. (2.5)

Also since f and g are generalized beta-convex functions, then

f
(
[tap + (1− t)bp]

1
p
)
≤ tθ1(1− t)θ2f(a) + (1− t)θ1tθ2f(b),

and

g
(
[tap + (1− t)bp]

1
p
)
≤ tθ1(1− t)θ2g(a) + (1− t)θ1tθ2g(b).

Multiplying both sides of above inequality and then integrating it with respect to t on [0, 1], we have

1∫
0

f
(
[tap + (1− t)bp]

1
p
)
g
(
[tap + (1− t)bp]

1
p
)
dt

≤ f(a)g(a)

1∫
0

tθ1(1− t)θ2tθ1(1− t)θ2dt+ f(b)g(b)

1∫
0

tθ2+θ2(1− t)θ1+θ1dt

+ [f(a)g(b) + f(b)g(a)]

1∫
0

tθ1(1− t)θ2tθ2(1− t)θ1dt.
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This implies

p

bp − ap

b∫
a

f(x)g(x)

x1−p
dx

≤ B(2θ1, 2θ2 + 1)M(a, b) + B(θ1 + θ2 + 1, θ1 + θ2 + 1)N(a, b). (2.6)

Combining (2.5) and (2.6) completes the proof. �

Next we discuss a new special case of Theorem 2.2.

If θ1 = θ = θ2 in Theorem 2.2, then we have following new result for Brecker generalized tgs-convex
functions.

Corollary 2.4. Let f, g : I = [a, b] ⊂ R → R be two Brecker type of tgs-convex functions. If
fg ∈ L [a, b], then, we have

8f

([
ap + bp

2

] 1
p
)
g

([
ap + bp

2

] 1
p
)
− B(2θ + 1, 2θ + 1)[M(a, b) +N(a, b)]

≤ p

bp − ap

1∫
0

f(x)g(x)

x1−p
dx

≤ B(2θ1 + 1, 2θ2 + 1)M(a, b) + B(θ1 + θ2 + 1, θ1 + θ2 + 1)N(a, b),

where M(a, b) and N(a, b) are given by (2.3) and (2.4) respectively.

If θ1 = −θ = θ2 in Theorem 2.2, then we have following new result for Godunova-Levin-Dragomir
generalized tgs-convex functions.

Corollary 2.5. Let f, g : I = [a, b] ⊂ R→ R be two Godunova-Levin-Dragomir generalized tgs-convex
functions. If fg ∈ L [a, b], then

8f

([
ap + bp

2

] 1
p
)
g

([
ap + bp

2

] 1
p
)
− B(1− 2θ, 1− 2θ)[M(a, b) +N(a, b)]

≤ p

bp − ap

1∫
0

f(x)g(x)

x1−p
dx

≤ B(2θ1 + 1, 2θ2 + 1)M(a, b) + B(θ1 + θ2 + 1, θ1 + θ2 + 1)N(a, b),

where M(a, b) and N(a, b) are given by (2.3) and (2.4) respectively.

If p = −1 in Theorem 2.2, then we have following new result for harmonic beta-convex functions.

Corollary 2.6. Let f, g : I \ {0} ⊂ R → R be two harmonic beta-convex functions. If fg ∈ L [a, b],
then, we have

8f

(
2ab

a+ b

)
g

(
2ab

a+ b

)
− B(θ1 + θ2 + 1, θ1 + θ2 + 1)M(a, b) + B(2θ1 + 1, 2θ2 + 1)N(a, b)

≤ ab

b− a

1∫
0

f(x)g(x)

x2
dx

≤ B(2θ1 + 1, 2θ2 + 1)M(a, b) + B(θ1 + θ2 + 1, θ1 + θ2 + 1)N(a, b),

where M(a, b) and N(a, b) are given in (2.3) and (2.4) respectively.
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Theorem 2.3. Let f : I = [a, b] ⊂ R → R be a continuous function such that f ∈ L [a, b]. If f is
generalized beta-convex function, then

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx ≤ (bp − ap)α+β+1

[
k1(θ)f(a) + k2(θ)f(b)

]
,

where

k1(θ) := B(α+ θ1 + 1, β + θ2 + 1), (2.7)

and

k2(θ) := B(α+ θ2 + 1, β + θ1 + 1), (2.8)

respectively.

Proof. Using Lemma 1.1 and the fact that f is generalized beta-convex function, we have

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx

= (bp − ap)α+β+1

1∫
0

tα(1− t)βf(Mp(x, y; t))dt

≤ (bp − ap)α+β+1

1∫
0

tα(1− t)β [tθ1(1− t)θ2f(a) + (1− t)θ1tθ2f(b)]dt

= (bp − ap)α+β+1
[
k1(θ)f(a) + k2(θ)f(b)

]
.

This completes the proof. �

If θ1 = θ = θ2 in Theorem 2.3, then we have

Corollary 2.7. Let f : I = [a, b] ⊂ R → R be a continuous function such that f ∈ L [a, b]. If f is
Breckner generalized tgs-convex function, then

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx ≤ (bp − ap)α+β+1k(θ)

[
f(a) + f(b)

]
,

where

k(θ) := B(α+ θ + 1, β + θ + 1). (2.9)

If θ1 = −θ = θ2 in Theorem 2.3, then we have

Corollary 2.8. Let f : I = [a, b] ⊂ R → R be a continuous function such that f ∈ L [a, b]. If f is
Godunova-Levin-Dragomir generalized tgs-convex function, then

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx ≤ (bp − ap)α+β+1h(θ)

[
f(a) + f(b)

]
,

where

h(θ) := B(α− θ + 1, β − θ + 1). (2.10)

If p = −1 in Theorem 2.3, then we have

Corollary 2.9. Let f : I = [a, b] ⊂ R → R be a continuous function such that f ∈ L [a, b]. If f is
harmonic beta-convex function, then

b∫
a

(
1

b
− 1

x

)α(
1

x
− 1

a

)β (
f(x)

x1−p

)
dx ≤

(
1

b
− 1

a

)α+β+1 [
k1(θ)f(a) + k2(θ)f(b)

]
,
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where

k1(θ) := B(α+ θ1 + 1, β + θ2 + 1), (2.11)

and

k2(θ) := B(α+ θ2 + 1, β + θ1 + 1), (2.12)

respectively.

Theorem 2.4. Let f : I = [a, b] ⊂ R → R be a continuous function such that f ∈ L [a, b]. If |f |
r

r−1

is generalizedbeta-convex function, then

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx

≤ (bp − ap)α+β+1B(rα+ 1, rβ + 1)
[{
|f(a)|

r
r−1 + |f(b)|

r
r−1
}
B(θ1 + 1, θ2 + 1)

] r−1
r .

Proof. Using Lemma 1.1, Holder’s inequality and the fact that |f |
r

r−1 is generalized beta-convex func-
tion, then

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx

= (bp − ap)α+β+1

1∫
0

tα(1− t)βf(Mp(x, y; t))dt

≤ (bp − ap)α+β+1

 1∫
0

trα(1− t)rβdt


1
r
 1∫

0

|f(Mp(x, y; t))|
r

r−1 dt


r−1
r

≤ (bp − ap)α+β+1B(rα+ 1, rβ + 1)

 1∫
0

{
tθ1(1− t)θ2 |f(a)|

r
r−1 + (1− t)θ2tθ1 |f(b)|

r
r−1
}

dt


r−1
r

≤ (bp − ap)α+β+1B(rα+ 1, rβ + 1)
[{
|f(a)|

r
r−1 + |f(b)|

r
r−1
}
B(θ1 + 1, θ2 + 1)

] r−1
r .

This completes the proof. �

If θ1 = θ = θ2 in Theorem 2.4, then we have

Corollary 2.10. Let f : I = [a, b] ⊂ R→ R be a continuous function such that f ∈ L [a, b]. If |f |
r

r−1

is Breckner generalized tgs-convex function, then

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx

≤ (bp − ap)α+β+1B(rα+ 1, rβ + 1)
[{
|f(a)|

r
r−1 + |f(b)|

r
r−1
}
B(θ + 1, θ + 1)

] r−1
r .

If θ1 = −θ = θ2 in Theorem 2.4, then we have

Corollary 2.11. Let f : I = [a, b] ⊂ R→ R be a continuous function such that f ∈ L [a, b]. If |f |
r

r−1

is Godunova-Levin-Dragomir type of tgs-convex function, then, we have

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx

≤ (bp − ap)α+β+1B(rα+ 1, rβ + 1)
[{
|f(a)|

r
r−1 + |f(b)|

r
r−1
}
B(1− θ, 1− θ)

] r−1
r .

If p = −1 in Theorem 2.4, then we have
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Corollary 2.12. Let f : I \ {0} ⊂ R → R be a continuous function such that f ∈ L [a, b]. If |f |
r

r−1

is harmonic beta-convex function, then, we have

b∫
a

(
1

b
− 1

x

)α(
1

x
− 1

a

)β (
f(x)

x1−p

)
dx

≤
(

1

b
− 1

a

)α+β+1

B(rα+ 1, rβ + 1)
[{
|f(a)|

r
r−1 + |f(b)|

r
r−1
}
B(θ1 + 1, θ2 + 1)

] r−1
r .

Theorem 2.5. Let f : I = [a, b] ⊂ R → R be a continuous function such that f ∈ L [a, b]. If |f |r is
beta-convex function, then, we have

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx

≤ (bp − ap)α+β+1 [B(α+ 1, β + 1)]
r−1
r [k1(θ)|f(a)|r + k2(θ)|f(b)|r]

1
r ,

where k1(θ) and k2(θ) are given by (2.11) and (2.12) respectively.

Proof. Using Lemma 1.1, Holder’s inequality and the fact that |f |r is beta-convex function, then

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx

= (bp − ap)α+β+1

1∫
0

tα(1− t)βf(Mp(x, y; t))dt

≤ (bp − ap)α+β+1

 1∫
0

(1− t)αtβdt


r−1
r
 1∫

0

tα(1− t)β |f(Mp(x, y; t))|r dt


1
r

≤ (bp − ap)α+β+1 [B(α+ 1, β + 1)]
r−1
r

×

 1∫
0

tα(1− t)β
[
tθ1(1− t)θ2 |f(a)|r + (1− t)θ1tθ2 |f(b)|r

]
dt


1
r

= (bp − ap)α+β+1 [B(α+ 1, β + 1)]
r−1
r [k1(θ)|f(a)|r + k2(θ)|f(b)|r]

1
r .

This completes the proof. �

If θ1 = θ = θ2 in Theorem 2.5, then we have

Corollary 2.13. Let f : I = [a, b] ⊂ R→ R be a continuous function such that f ∈ L [a, b]. If |f |r is
Breckner type of tgs-convex function, then we have

b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx

≤ (bp − ap)α+β+1 [B(α+ 1, β + 1)]
r−1
r k

1
r (t) [|f(a)|r + |f(b)|r]

1
r ,

where k(θ) is given by (2.9).

If θ1 = −θ = θ2 in Theorem 2.5, then we have

Corollary 2.14. Let f : I = [a, b] ⊂ R→ R be a continuous function such that f ∈ L [a, b]. If |f |r is
Godunova-Levin-Dragomir generalized tgs-convex function, then
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b∫
a

(bp − xp)α(xp − ap)β
(
f(x)

x1−p

)
dx

≤ (b− a)α+β+1 [B(1− α, 1− β)]
r−1
r h

1
r (t) [|f(a)|r + |f(b)|r]

1
r ,

where h(t) is given by (2.10).

If p = −1 in Theorem 2.5, then we have

Corollary 2.15. Let f : I \ {0} ⊂ R → R be a continuous function such that f ∈ L [a, b]. If |f |r is
harmonic beta-convex function, then, we have

b∫
a

(
1

b
− 1

x

)α(
1

x
− 1

a

)β (
f(x)

x1−p

)
dx

≤
(

1

b
− 1

a

)α+β+1

[B(α+ 1, β + 1)]
r−1
r [k1(θ)|f(a)|r + k2(θ)|f(b)|r]

1
r ,

where k1(θ) and k2(θ) are given by (2.11) and (2.12) respectively.

Now using Lemma 1.2 we derive some Hermite-Hadamard type inequalities.

Theorem 2.6. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 (the interior of I) with
a < b and f ′ ∈ L [a, b]. If |f ′| is beta-convex function, then

|Rf (a, b; p)| ≤ bp − ap

2p
[h1(θ1, θ2)|f ′(a)|+ h2(θ1, θ2)|f ′(b)|] ,

where

h1(θ1, θ2) := bp−1B(θ1 + 1, θ2 + 1) 2F1

(1

p
− 1, θ1 + 1; θ1 + θ2 + 2; 1− ap

bp

)
− 2bp−1B(θ1 + 2, θ2 + 1) 2F1

(1

p
− 1, θ1 + 2; θ1 + θ2 + 3; 1− ap

bp

)
, (2.13)

and

h2(θ1, θ2) := bp−1B(θ2 + 1, θ1 + 1) 2F1

(1

p
− 1, θ2 + 1; θ1 + θ2 + 2; 1− ap

bp

)
− 2bp−1B(θ2 + 2, θ1 + 1) 2F1

(1

p
− 1, θ2 + 2; θ1 + θ2 + 3; 1− ap

bp

)
, (2.14)

respectively.
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Proof. Using Lemma 1.2, property of the modulus and the fact that |f ′| is beta-convex function, we
have

|Rf (a, b; p)|

=

∣∣∣∣bp − ap2p

∫ 1

0

[tap + (1− t)bp]1−
1
p (1− 2t)f ′([tap + (1− t)bp]

1
p )dt

∣∣∣∣
≤ bp − ap

2p

∫ 1

0

[tap + (1− t)bp]1−
1
p (1− 2t)

[
tθ1(1− t)θ2 |f ′(a)|+ (1− t)θ1tθ2 |f ′(b)|

]
dt

=
bp − ap

2p

[∫ 1

0

tθ1(1− t)θ2(1− 2t)[tap + (1− t)bp]1−
1
p |f ′(a)|dt

+

∫ 1

0

(1− t)θ1tθ2(1− 2t)[tap + (1− t)bp]1−
1
p |f ′(b)|dt

]
=
bp − ap

2p

[{
bp−1B(θ1 + 1, θ2 + 1) 2F1

(1

p
− 1, θ1 + 1; θ1 + θ2 + 2; 1− ap

bp

)
−2bp−1B(θ1 + 2, θ2 + 1) 2F1

(1

p
− 1, θ1 + 2; θ1 + θ2 + 3; 1− ap

bp

)}
|f ′(a)|

+

{
bp−1B(θ2 + 1, θ1 + 1) 2F1

(1

p
− 1, θ2 + 1; θ1 + θ2 + 2; 1− ap

bp

)
−2bp−1B(θ2 + 2, θ1 + 1) 2F1

(1

p
− 1, θ2 + 2; θ1 + θ2 + 3; 1− ap

bp

)}
|f ′(b)|

]
=
bp − ap

2p
[h1(θ1, θ2)|f ′(a)|+ h2(θ1, θ2)|f ′(b)|] .

This completes the proof. �

We now discuss some special cases of Theorem 2.6.

If θ1 = θ = θ2 in Theorem 2.6, then we have a following new result.

Corollary 2.16. Let f : I = [a, b] ⊂ R→ R be a differentiable function on I0 (the interior of I) with
a < b and f ′ ∈ L [a, b]. If |f ′| is Breckner type of tgs-convex function, then

|Rf (a, b; p)| ≤ bp − ap

2p
h(θ) [|f ′(a)|+ |f ′(b)|] ,

where

h(θ) := bp−1B(θ + 1, θ + 1) 2F1

(1

p
− 1, θ + 1; 2θ + 2; 1− ap

bp

)
− 2bp−1B(θ + 2, θ + 1) 2F1

(1

p
− 1, θ + 2; 2θ + 3; 1− ap

bp

)
. (2.15)

If θ1 = −θ = θ2 in Theorem 2.6, then we have following new result.

Corollary 2.17. Let f : I = [a, b] ⊂ R→ R be a differentiable function on I0 (the interior of I) with
a < b and f ′ ∈ L [a, b]. If |f ′| is Godunova-Levin-Dragomir generalized tgs-convex function, then

|Rf (a, b; p)| ≤ bp − ap

2p
l(θ) [|f ′(a)|+ |f ′(b)|] ,

where

l(θ) := bp−1B(1− θ1, 1− θ2) 2F1

(1

p
− 1, 1− θ; 2− 2θ; 1− ap

bp

)
− 2bp−1B(2− θ1, 1− θ2) 2F1

(1

p
− 1, 2− θ; 3− 2θ; 1− ap

bp

)
. (2.16)

If p = 1 in Theorem 2.6, then we have following new result.
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Corollary 2.18. Let f : I = [a, b] ⊂ R→ R be a differentiable function on I0 (the interior of I) with
a < b and f ′ ∈ L [a, b]. If |f ′| is beta-convex function, then∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

1∫
0

f(x)dx

∣∣∣∣∣∣ ≤ b− a
2

[h1(θ1, θ2)|f ′(a)|+ h2(θ1, θ2)|f ′(b)|] ,

where h1(θ1, θ2) and h2(θ1, θ2) are given by (2.13) and (2.14) respectively.

If p = −1 in Theorem 2.6, then we have following new result.

Corollary 2.19. Let f : I = [a, b] ⊂ R→ R be a differentiable function on I0 (the interior of I) with
a < b and f ′ ∈ L [a, b]. If |f ′| is harmonic beta-convex function, then∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

1∫
0

f(x)

x2
dx

∣∣∣∣∣∣ ≤ ab(b− a)

2
[h1(θ1, θ2)|f ′(a)|+ h2(θ1, θ2)|f ′(b)|] ,

where h1(θ1, θ2) and h2(θ1, θ2) are given by (2.13) and (2.14) respectively.

Theorem 2.7. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 (the interior of I) with
a < b and f ′ ∈ L [a, b]. If |f ′|r is beta-convex function, then

|Rf (a, b; p)|

≤ bp − ap

2p

(
b1−p 2F1

(1

p
− 1, 1; 2; 1− ap

bp

)
− 4b1−p 2F1

(1

p
− 1, 2; 3; 1− ap

bp

))1− 1
r

× [h1(θ1, θ2)|f ′(a)|rdt+ h2(θ1, θ2)|f ′(b)|rdt]
1
r ,

where h1(θ1, θ2) and h2(θ1, θ2) are given by (2.13) and (2.14) respectively.

Proof. Using Lemma 1.2, property of the modulus, power mean’s inequality and the fact that |f ′|r is
beta-convex function, we have

|Rf (a, b; p)|

=

∣∣∣∣bp − ap2p

∫ 1

0

[tap + (1− t)bp]1−
1
p (1− 2t)f ′([tap + (1− t)bp]

1
p )dt

∣∣∣∣
≤ bp − ap

2p

(∫ 1

0

(1− 2t)[tap + (1− t)bp]1−
1
p dt

)1− 1
r

×

 1∫
0

(1− 2t)[tap + (1− t)bp]1−
1
p
[
tθ1(1− t)θ2 |f ′(a)|r + (1− t)θ1tθ2 |f ′(b)|r

]
dt


1
r

=
bp − ap

2p

(∫ 1

0

(1− 2t)[tap + (1− t)bp]1−
1
p dt

)1− 1
r

×
[∫ 1

0

tθ1(1− t)θ2(1− 2t)[tap + (1− t)bp]1−
1
p |f ′(a)|rdt

+

∫ 1

0

(1− t)θ1tθ2(1− 2t)[tap + (1− t)bp]1−
1
p |f ′(b)|rdt

] 1
r

=
bp − ap

2p

(
b1−p 2F1

(1

p
− 1, 1; 2; 1− ap

bp

)
− 4b1−p 2F1

(1

p
− 1, 2; 3; 1− ap

bp

))1− 1
r

× [h1(θ1, θ2)|f ′(a)|rdt+ h2(θ1, θ2)|f ′(b)|rdt]
1
r .

This completes the proof. �
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