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Abstract. In this paper, we show that a lower characteristic linear operator T acting on a Banach space, can be character-

ized by closed subspace. Some results concerning the essential spectra of the sum of the two bounded linear operators

and the essential spectra of each of these operators, where their products are compacts operators on a Banach space X,

are given.

1. Introduction

Let X and Y be two Banach spaces. By L(X, Y) the Banach space of all bounded linear operators

from X into Y and by K(X, Y) the subspace of all compact operators of L(X, Y). If T ∈ L(X, Y)
then α(T) denotes the dimension of the kernel N(T) and β(T) the codimension of R(T) in Y. The

classes of upper semi-Fredholm from X into Y are defined respectively by

Φ+(X, Y) := {T ∈ L(X, Y) such that α(T) < ∞ and R(T) closed in Y},

and

Φ−(X, Y) := {T ∈ L(X, Y) such that β(T) < ∞ and R(T) closed in Y}.

Φ(X, Y) := Φ+(X, Y)
⋂

Φ−(X, Y) is the set of Fredholm operators from X into Y. If X = Y, the sets

L(X, Y), K(X, Y), Φ(X, Y), Φ+(X, Y), and Φ−(X, Y) are replaced by L(X), K(X), Φ(X), Φ+(X),

and Φ−(X), respectively. The index of an operator T ∈ Φ(X) is i(T) := α(T) − β(T) (see [10–13]).

Proposition 1.1. [18] Let X be a Banach space. Then the following hold true

(i) The sets Φ+(X), Φ−(X) and Φ(X) are open.
(ii) The index is constant on every component of each of the sets Φ+(X), Φ−(X) and Φ(X).
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If A ∈ L(X), we define the ascent of A, asc(A), and the descent of A, desc(A), by

asc(A) := min
{
n ∈N such that N(An) = N(An+1)

}
,

and

desc(A) := min
{
n ∈N such that R(An) = R(An+1)

}
.

Definition 1.1. An operator A ∈ L(X) is called a Riesz operator, if it satisfies the following conditions
(i) for all λ ∈ C∗, [λ−A]a > 0 and [λ−A∗]a > 0,
(ii) for all λ ∈ C∗, λ−A has a finite ascent and a finite descent, and
(iii) all λ ∈ σ(A)\{0} are eigenvalues of a finite multiplicity, and have no accumulation points, except
possibly zero.

Let R(X) be denote the class of all Riesz operators.

Lemma 1.1. Let A ∈ L(X) and let E ∈ R(X). If [A]a > 0 and AE− EA ∈ K(X), then [A + E]a > 0 and
i(A + E) = i(A).

Theorem 1.1. ( [16, Theorem 6, p. 157]) Let X, Y, and Z be three Banach spaces, A ∈ L(X, Y) and
B ∈ L(Y, Z). If BA ∈ Φb

+(X, Z), then A ∈ Φb
+(X, Y).

Theorem 1.2. Let X, Y, and Z be three Banach spaces, A ∈ L(X, Y) and B ∈ L(Y, Z). If [BA]a >

0, then [A]a > 0.

We recall that T is quasi-Fredholm if there exists d ≥ 0 such that R(Td+1) is closed and

R(T) + N(T) = R(T) + N∞(T). (1.1)

Equivalently, N(T)
⋂

R(Td) = N(T)
⋂

R∞(T), where N∞(T) =
⋃
∞

n=0 N(Tn) and R∞(T) =⋂
∞

n=0(R(T
n)). The degree of stable iteration dis(T) of T is defined as the smallest integer d

such that the equality (1.1) is satisfied (with dis(T) = ∞ if no such integer exists). For more details,

the reader can refer back to [1, 3–5].

For T ∈ L(X), we define the resolvent set of T by ρ(T) := {λ ∈ C such that λ −

T has a bounded inverse}, and the spectrum of T by σ(T) = C\ρ(T).

Definition 1.2. [14] Let D be a bounded subset of X. We define γ(D), the Kuratowski measure of
noncompactness of D, to be inf{d > 0 such that D can be covered by a finite number of sets of diameter less
than or equal to d}.

The following proposition gives somes properties of the Kuratowski measure of noncompactness

which are frequently used.

Proposition 1.2. Let D and D′ be two bounded subsets of X, then we have the following properties. Then,

(i) γ(D) = 0 if and only if D is relatively compact.
(ii) If D ⊆ D′, then γ(D) ≤ γ(D′).
(iii) γ(D + D′) ≤ γ(D) + γ(D′).
(iv) For every α ∈ C, γ(αD) = |α|γ(D).
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Definition 1.3. [2, 7] Let T ∈ L(X, Y), γ(.) is the Kuratowski measure of noncompactness in X. Let
k ≥ 0, T is said to be k-set-contraction if, for any bounded subset B of X, T(B) is a bounded subset of X and
γ(T(B)) ≤ kγ(B). T is said to be condensing if, for any bounded subset B of X such that γ(B) > 0, T(B) is
a bounded subset of X and γ(T(B)) < γ(B).

Definition 1.4. [6, 15] Let X be a Banach space and let T : X −→ X be a bounded linear operator. The
operator T is said to be demicompact (or relative demicompact), if for every bounded sequence (xn)n ∈ X
such that xn − Txn → x ∈ X, then there exists a convergent subsequence of (xn)n.

Remark 1.1. It is well known that

(i) Every k-set-contraction operator such that k < 1 is condensing.
(ii) Every condensing operator is 1-set-contraction.
(iii) Every condensing operator is demicompact.

Definition 1.5. Let T ∈ L(X). We define γ̄(T) by

γ̄(T) := inf{k such that T is k-set-contraction}.

In the following proposition, we give some properties of γ̄(.) that we will need in the sequel.

Proposition 1.3. [8, 9] Let X be a Banach space and T ∈ L(X), then we have the following properties

(i) γ̄(T) = 0 if and only if T is compact.
(ii) If T, S ∈ L(X), then γ̄(ST) ≤ γ̄(S)γ̄(T).
(iii) If K ∈ K(X), then γ̄(T + K) = γ̄(T).
(iv) If B is a bounded subset of X, then γ(T(B)) ≤ γ̄(T)γ(B).

The paper is organized in the following way. In Section 2, we present the main results of this paper.

We prove some results concerning the lower characteristic. In Section 3, we shows the relation

between the essential spectra of the sum of the two bounded linear operators and the essential

spectra of each of these operators, where their products are compacts operators on a Banach space

X.

2. Lower characteristic operators under restrictions

Definition 2.1. For T ∈ L(X, Y), we define the "lower" characteristic

[T]a = sup{k : k > 0, γ(T(M)) ≥ kγ(M) for all bounded M ⊂ X} (2.1)

as elements of [0,∞].

Note that in finite dimensional spaces we have [T]a = ∞. In infinite dimensional spaces, where

this characteristic is of more use, we get

[T]a = inf
0<γ(M)<∞

γ(T(M))

γ(M)
.
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Sets with γ(M) = 0 can be left out here, since the continuity of T assures that also γ(T(M)) = 0.

This can be seen by considering γ(T(M)) ≤ γ(T(M)).

Theorem 2.1. Let X be a Banach space and let T ∈ L(X). Then, T is demicompact if, and only if,

[I − T]a > 0.

Proof. We first show that N(I − T) is finite dimensional. Let S := {x ∈ X such that (I − T)x = 0 and

‖x‖ = 1} and (xn)n be a bounded sequence of S. Since T is demicompact, there exists a subsequence

(xni)i of (xn)n which converges to x ∈ X. Thus it follows from the continuity of the norm and the

boundness of T that x ∈ X, x − Tx = 0 and ‖x‖ = 1. Hence α(I − T) is finite. Now, we claim that

R(I − T) is closed. We can write X = N(I − T) ⊕X0, where X0 is a closed subspace of X, then it is

a Banach space. In view of Theorem 3.12 in [18], it suffices to prove that there is a constant λ > 0

such that for every x ∈ X0, ‖Tx‖ ≥ λ‖x‖. If not, there exists a sequence (xn)n of X0 such that ‖xn‖ = 1

and ‖(I − T)xn‖ → 0. Since T is demicompact, there exists a subsequence (xni)i of (xn)n which

converges to x ∈ X. Moreover, I − T is closed thus (I − T)x = 0, hence x = 0 which contradicts

the continuity of the norm. Since dim N(I − T) < ∞, we may find a closed subspace X0 of X with

X = X0 ⊕N(I − T). The projection P : X −→ X0 satisfies [P]a = 1, since I − P is compact. Consider

the canonical isomorphism L̃ : X0 −→ R(I − T). Since I − T = L̃P and [̃L]a > 0, we conclude that

also

[I − T]a ≥ [̃L]a[P]a > 0.

Inversely, suppose that [I − T]a > 0 and fix k ∈ (0, [I − T]a). Since the set M = N(I − L)
⋂

BX is

mapped into (I − T)(M) = {0}, we get

γ(M) ≤
1
k
γ((I − T)(M)) = 0,

which show that M is compact, and hence N(I − T) is finite dimensional. We prove now that the

range R(I − T) of I − T is closed. Since dim N(I − T) < ∞, there exists a closed subspace X0 ⊂ X
such that X = X0 ⊕N(I − T). Let (yn)n be a sequence in R(I − T) converging to some y ∈ Y, and

choose (xn)n in X with (I − T)xn = yn. Now, we distinguish two cases. First, suppose that (xn)n is

bounded. With k > 0 as before we get then

γ({x1, x2, · · · , xn, · · · }) ≤
1
k
γ({y1, y2, · · · , yn, · · · }) = 0,

and hence xnk → x for some subsequence (xnk)k of (xn)n and suitable x ∈ X. By continuity we see

that (I − T)x = y, and so y ∈ R(I − T). On the other hand, suppose that ‖xn‖ → ∞. Set en = xn
‖xn‖

and E = {e1, e2, · · · , en, · · · }. Then, clearly E ⊂ {x ∈ X : ‖x‖ = 1} and

(I − T)en =
(I − T)xn

‖xn‖
=

yn

‖xn‖
→ 0 as n→∞.

Hence, γ((I − T)(E)) = 0. On the other hand, γ((I − T)(E)) ≥ kγ(E), by (2.1), and thus γ(E) = 0.

Whithout loss of generality we may assume that the sequence (en)n converge to some element
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e ∈ {x ∈ X0 : ‖x‖ = 1}. So, (I − T)e = 0, contradicting the fact that X0
⋂

N(I − T) = {0}. Thus,

I − T ∈ Φ+(X). By α(I − T) < ∞, we deduce that there exists a closed subspace C of X such that

N(I − T) ⊕C = X.

We deduce that

(I − T)|C : (C, ‖ · ‖) −→ (R(I − T), ‖ · ‖)

is invertible with bounded inverse on R(I − T). Now, take a bounded sequence (xn)n of X such

that ((I − T)xn)n converges to y. Obviously, y ∈ R(I − T). Using the boundedness of ((I − T)|C)
−1

on R(I − T), we deduce that (xn)n converges to ((I − T)|C)
−1(y) = z. Hence, (xn)n converges to z.

So, T is demicompact and the proof is achieved. �

Corollary 2.1. Let X be a Banach space and T ∈ L(X). Then, T is demicompact if, and only if, I − T ∈
Φ+(X).

Corollary 2.2. [1, 19] Let X and Y be two Banach spaces and T ∈ L(X, Y). Then,

(i) T ∈ Φ+(X, Y) if, and only if, [T]a > 0.
(i) T ∈ Φ−(X, Y) if, and only if, [T∗]a > 0.

Theorem 2.2. ( [16]) Let A ∈ L(X) and B ∈ L(X). If AB ∈ Φb(X) and BA ∈ Φb(X), then A ∈ Φb(X)

and B ∈ Φb(X).

A consequence of Corollary 2.2, we have the following:

Theorem 2.3. Let A ∈ L(X) and B ∈ L(X). If [AB]a > 0, [BA]a > 0, [(AB)∗]a > 0, and [(BA)∗]a > 0,
then [A]a > 0, [A∗]a > 0, [B]a > 0, and [B∗]a > 0.

Proposition 2.1. [19] Let X, Y, Z be three Banach spaces, T, S ∈ L(X, Y) and R ∈ L(Y, Z). Then,

(i) [R]a[T]a ≤ [RT]a.
(ii) [T + S]a = [T]a if S is compact.

Theorem 2.4. ( [18, Theorem 7.3, p. 157]) Let X and Y be Banach spaces. If A ∈ Φ(X, Y) and B ∈ Φ(Y, Z),
then BA ∈ Φ(X, Z) and i(BA) = i(B) + i(A).

Lemma 2.1. Let A ∈ L(X, Y) and let J : X −→ Y be a linear operator. Assume that J ∈ K(X, Y). Then,
if A ∈ Φ(X, Y), then A + J ∈ Φ(X, Y) and i(A + J) = i(A).

Theorem 2.5. Let X be a Banach space and T ∈ L(X). If lim
n→∞

[γ(Tn)]
1
n < 1, then [I − µT]a > 0 for every

µ ∈ [0, 1[.

Proof. Let (xk)k be a bounded sequence of X such that yk = xk − µTxk → y. Since lim
n→∞

[γ(Tn)]
1
n < 1,

then there exists a positive integer n0 such that γ(Tn0) < 1. Obviously, there exists a bounded

linear operator S such that

I − (µT)n0 = S(I − µT).
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Hence,

zk := xk − (µT)n0xk → Sy.

Since

{xk, k ∈N} ⊂ {zk, k ∈N}+ {(µT)n0xk, k ∈N},

it follows that

γ({xk, k ∈N}) ≤ γ({zk, k ∈N}) + µn0γ(Tn0)γ({xk, k ∈N})

< γ(Tn0)γ({xk, k ∈N}).

Thus,

(1− γ(Tn0))γ({xk, k ∈N}) < 0.

Since γ(Tn0) < 1, then γ({xk, k ∈N}) = 0. Therefore, {xk, k ∈N} is relatively compact. Thus, there

exists a convergent subsequence (xki)i of (xk)k. By applying Theorem 2.1, we infer that [I−µT]a > 0

for every µ ∈ [0, 1[. �

In this section, we focus on the lower characteristic of the restriction Tn of an operator T to R(Tn)

viewed as an operator from R(Tn) into R(Tn).

Theorem 2.6. Let X be a Banach space and T ∈ L(X) be two commuting operators, T , 0, n ∈ N an
integer such that I − T and Tn are relatively prime. Then, the following conditions are equivalent

(i) R(Tn) is closed and [I − Tn]a > 0,
(ii) R((Tn

− Tn+1) is closed and α(I − T) < ∞.

Proof. (i) =⇒ (ii) Assume [I−Tn]a > 0. Then, by using Corollary 2.2, we infer that I−Tn ∈ Φ+(X).

As R((I − T)Tn) = R(I − Tn), then R((I − T)Tn) is closed. Moreover, as I − T and Tn are relatively

prime, there exists U, V ∈ L(X), commuting with T, such that

U(I − T) + VTn = I.

Then, if x ∈ N(I − T), we have x = Tn(V(x)). Thus, N(I − T) ⊂ R(Tn) and therefore α(I − T) =

dim N(I − Tn). Hence, α(I − T) < ∞.

(ii) =⇒ (i) Assume that there exists n ∈ N, such that R((I − T)Tn) is closed and α(I − T) < ∞.

Since Tn and I − T are relatively prime, it follows that R(I − T) and R(Tn) are closed. Since Tn and

I − T are relatively prime, then N(I − Tn) = N(I − T). As α(I − T) < ∞, then α(I − Tn) < ∞. Since

R((I − T)Tn) is closed, then Tn is an demicompact operator. So, by using Theorem 2.1, we deduce

that [I − Tn]a > 0. This completes the proof. �

Theorem 2.7. Let X be a Banach space, T ∈ L(X) and T , 0. Let m, n be two integers such that m > n
and the operator I − T is prime with Tn and Tm. Assume also that R(Tm) and R(Tn) are closed. Then, the
following conditions are equivalent

(i) [I − Tn]a > 0.
(ii) [I − Tm]a > 0.
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Proof. (i) =⇒ (ii) Assume that [I − Tn]a > 0. As N(I − T) ⊂ R(Tn) and N(I − T) ⊂ R(Tm), then

N(I − Tn) = N(I − T) = N(I − Tm) and α(I − Tm) < ∞. Since [I − Tn]a > 0, then by using Theorem

2.6, we infer that R((I − T)Tn) = R(I − Tn) is closed. As I − T and Tn are relatively prime, then

R(I−T) is closed. Again, as I−T and Tm are relatively prime, R(Tm) and R((I−T) are closed, then

R((I − T)Tm) = R(I − Tm) is closed. Thus, I − Tm is upper semi-Fredholm. By using Corollary 2.2,

we deduce that [I − Tm]a > 0.

(ii) =⇒ (i) Exactly in the same way as the proof of (i) =⇒ (ii), by interchanging m and n. �

Corollary 2.3. Let X be a Banach space and let T be a quasi-Fredholm operator such that dis(T) = d. Let
m, n be two integers such that m > n ≥ d. Then, the following conditions are equivalent

(i) [I − Tn]a > 0.
(ii) [I − Tm]a > 0.

Theorem 2.8. Let X be a Banach space, T ∈ L(X) and n ∈ N∗. If [I − T]a > 0 and R(Tn) is closed, then
[I − Tn]a > 0 .

Proof. From the closedness of R(Tn) and T, it follows that Tn is a closed operator from R(Tn)

into itself. As [I − T]a > 0, then based on Corollary 2.2 it follows that α(I − Tn) ≤ α(I − T) < ∞.

Now, let y ∈ R(Tn) be such that y ∈ R(I − Tn), the closure of R(I − Tn) in R(Tn). So, there

exists a sequence (yp)p ∈ R(Tn) such that (I − T)(yp) converges to y. As R(I − T) is closed in X,

then y = (I − T)(v). Hence v = y + T(v). Since there exists u ∈ X such that y = Tn(u), then

v = y + T(v) = Tn(u) + T(v) = T(Tn−1(u) + v). Thus, v ∈ R(T) and by induction, we infer that

v ∈ R(Tn) and then y ∈ R(I − Tn). Hence, the range of R(I − Tn) is closed in R(Tn) and I − Tn is an

upper semi-Fredholm. Thus, by using Corollary 2.2, we infer that [I − Tn]a > 0. �

Theorem 2.9. Let X be a Banach space, T ∈ L(X), T , I and q ∈ N. Assume that Ω , ∅ is a connected
open subset of C such that σ(T) ⊂ Ω and let f : Ω −→ Ω be an analyticf unction such that f (0) = 0. If
R(Tq) is closed and [ f (I − Tq)]a > 0, then [I − T]a > 0.

Proof. If [ f (I−Tq)]a > 0, then by using Corollary 2.2, we have f (I−Tq) is an upper semi-Fredholm.

As f is analytic in the compact σ(Tq), then they are in finite number {µ1, · · · ,µn}. As a matter of

fact, we can state

f (z) =
n∏

i=1

(z− µi)
mi g(z),

where mi stands for the multiplicity ofµi and g corresponds to an analytic function on neighborhood

of σ(Tn) such that g(z) has no zero in σ(Tq). Let h(z) = 1
g(z) , with h being an analytic function on

neighborhood of σ(Tq). Note
n∏

i=1

(z− µi)
mi = f (z)h(z).
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Thus, by [18, Lemma 6.15], we have
n∏

i=1

(I − Tq − µi)
mi = f (Tq)h(Tq).

As f (0) = 0, then there exists a complex polynomial Q such that

Q(Tq)(I − Tq) = f (Tq)h(Tq).

Since [h(Tq)]a > 0 (because g(Tq) is invertible) and [ f (Tq)]a > 0, and using Proposition 2.1 (i), we

conclude that [Q(Tq)(I − Tq)]a > 0. As a matter of fact, according to Theorem 1.2, the operator

[I − Tq]a > 0. Then, R((I − T)Tq) = R(I − T)|R(Tq) is closed. Again, as I − T and Tq are prime, then

R(I − T) is closed. Since N(I − T) ⊂ R(Tq), then α(I − T) < ∞. Thus, by using Corollary 2.2, we

infer that [I − T]a > 0. �

The authors asserted in [17] that if T is a bounded linear operator acting on a Banach space X for

which there exists a nonzero complex polynomial P(z) =
∑p

r=0 arzr satisfying P(1) , 0, P(1)− a0 , 0

and P(T) ∈ K(X), then [I − T]a > 0. In order to draw our results, we introduce the following set,

denoted by PDCn(X), n ∈N and which is defined by

PDCn(X) :=
⋃

p∈C(z)\{0}, P(1),0

HP,

where

HP =

{
T ∈ L(X) such that R(Tn) is closed and

[
I −

1
P(1)

P(Tn)

]
a
> 0

}
.

Theorem 2.10. Let T ∈ L(X) and n ∈N. The following statements are equivalent

(i) T ∈ PDCn(X).
(ii) R(Tn

− Tn+1) is closed and [I − Tn]a > 0.

Proof. (i) =⇒ (ii) Suppose that T ∈ PDCn(X), then there exists a nonzero complex polynomial

P(z) =
∑p

j=0 a jz j such that R(Tn) is closed and
[
I − 1

P(1)P(Tn)
]

a
> 0. As I − T commutes with I,

Newton’s binomial formula allows us to write the following relation

T j
n = I +

j∑
i=1

(−1)iCi
j(I − Tn)

i, for all j ≥ 1.

Performing a simple calculation, we find

P(Tn) = P(1)I +
p∑

j=1

a j


j∑

i=1

(−1)iCi
j(I − Tn)

i

 .

Since P(1 , 0, we get

I −
1

P(1)
P(Tn) = −

1
P(1)

p∑
j=1

a j


j∑

i=1

(−1)iCi
j(I − Tn)

i

 . (2.2)
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Now take (xk)k a bounded sequence in R(Tn) such that (I − Tn)xk converges in X. Using the

boundedness of T together with the relation (2.2), we deduce that there exists x ∈ R(Tn) such that(
I −

1
P(1)

P(Tn)

)
xk → x.

Now, owing to the demicompactness of 1
P(1)P(Tn), we conclude that (xk)k admits a convergent

subsequence in R(Tn). Thus [I − Tn]a > 0 and R(Tn
− Tn+1) = R(I − Tn) is then closed.

(ii) =⇒ (i) Since R(Tn
− Tn+1) = R((I − T)Tn) is closed, Tn and I − T are prime, it follows that

R(Tn) are closed. Now, take P(z) = z, then
[
I − 1

P(1)P(Tn)
]

a
> 0. Therefore, T ∈ PDCn(X). �

3. The Jeribi essential spectra

We define the Jeribi essential spectra by

σe1(T) := {λ ∈ C : [λ− T]a = 0} = C\{λ ∈ C : [λ− T]a > 0}

σe4(T) := {λ ∈ C : [λ− T]a = 0 or [λ− T∗]a = 0} = C\{λ ∈ C : [λ− T]a > 0 and [λ− T∗]a > 0}

and the Schechter essential spectrum by

σe5(T) :=
⋂

K∈K(X)

σ(A + K).

Remark 3.1. Let A ∈ L(X). If C\σe4(A) is connected, then σe4(A) = σe5(A).

Theorem 3.1. Let X be a Banach space and T ∈ L(X). Then, λ < σe5(T) if and only if [λ − T]a > 0,
[λ− T∗]a > 0, and i(λ− T) = 0.

Proof. If λ < σe5(T), then there is K ∈ K(X) such that λ ∈ ρ(T + K). In particular, λ ∈ ΦT+K and

i(T +K−λ) = 0. Since K ∈ K(X), then λ ∈ ΦT and i(T−λ) = 0. Hence, by using Corollary 2.2, we

have [λ− T]a > 0, [λ− T∗]a > 0, and i(λ− T) = 0. To prove the converse, suppose that [λ− T]a > 0,

[λ − T∗]a > 0, and i(λ − T) = 0. By using Corollary 2.2, we have λ ∈ ΦT and i(T − λ) = 0. Now

the rest of the proof may be sketched in a similar way to that in [18, Theorem 7.27]. The details are

therefore omitted. �

Corollary 3.1. Let X be a Banach space and T ∈ L(X). Then,

σe5(T) := C\{λ ∈ C : [λ− T]a > 0 and [λ− T∗]a > 0 with i(λ− T) = 0}.

The following theorem shows the relation between the essential spectra of the sum of the two

bounded linear operators and the essential spectra of each of these operators, where their products

are compacts operators on a Banach space X.

Theorem 3.2. Let A and B be two bounded linear operators on a Banach space X such that AB is a Riesz
operator. If AB− BA ∈ K(X), then

σe1(A + B)\{0} =
[
σe1(A)

⋃
σe1(B)

]
\{0} (3.1)
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Proof. Let λ ∈ C. Using Eqs (3.6) and (3.7), we have

AB (A + B− λ) − (A + B− λ)AB = A (BA−AB) + (AB− BA)B (3.2)

and

BA (A + B− λ) − (A + B− λ)BA = (BA−AB)A + B (AB− BA) . (3.3)

Let λ < σe1(A)
⋃
σe1(B)

⋃
{0}, then [A − λ]a > 0 and [B − λ]a > 0. Using Proposition 2.1 (i),

we have [(A− λ) (B− λ)]a > 0. Since AB − BA ∈ K(X), we can apply Eq. (3.2), we infer that

λAB (A + B− λ) − λ (A + B− λ)AB ∈ K(X). Also, since AB ∈ R(X), then by Lemma 1.1 and Eq.

(3.6), [A + B− λ]a > 0. So, λ < σe1(A + B). Therefore

σe1(A + B)\{0} ⊂
[
σe1(A)

⋃
σe1(B)

]
\{0}. (3.4)

Suppose λ < σe1(A + B)
⋃
{0} then [A + B − λ]a > 0. Since AB − BA ∈ K(X), then by Eqs

(3.2) and (3.3), we have λAB (A + B− λ) − λ (A + B− λ)AB ∈ K(X) and λBA (A + B− λ) −
λ (A + B− λ)BA ∈ K(X). Also, since AB ∈ R(X) and BA ∈ R(X), then by Eqs (3.6), (3.7)

and Lemma 1.1 (i), we have [(A− λ) (B− λ)]a > 0 and [(B− λ) (A− λ)]a > 0. Again, using

Theorem 1.2, we have [A − λ]a > 0 and [B − λ]a > 0. Hence λ < σe1(A)
⋃
σe1(B). Therefore

[σe1(A)
⋃
σe1(B)] \{0} ⊂ σe1(A + B)\{0}. This proves that Eq. (3.1). �

Theorem 3.3. Let A and B be two bounded linear operators on a Banach space X.

(i) If AB ∈ K(X), then σei(A + B)\{0} ⊂ [σei(A)
⋃
σei(B)] \{0}, i = 4, 5. Furthermore, if BA ∈ K(X),

then σe4(A + B)\{0} = [σe4(A)
⋃
σe4(B)] \{0}. Moreover, if C\σe4(A) is connected, then

σe5(A + B)\{0} =
[
σe5(A)

⋃
σe5(B)

]
\{0}. (3.5)

Proof. For λ ∈ C, we can write

(A− λ)(B− λ) = AB− λ(A + B− λ), (3.6)

and

(B− λ)(A− λ) = BA− λ(A + B− λ). (3.7)

(i) Let λ < σe4(A)
⋃
σe4(B)

⋃
{0}. Then, [A − λ]a > 0 and [B − λ]a > 0. Proposition 2.1 (i) ensures

that [(A − λ)(B − λ)]a > 0. Since AB ∈ K(X), and applying Eq. (3.6), we have [A + B − λ]a > 0.

Hence, λ < σe4(A + B), and we obtain

σe4(A + B)\{0} ⊂
[
σe4(A)

⋃
σe4(B)

]
\{0}. (3.8)

Let λ < σe5(A)
⋃
σe5(B)

⋃
{0}. Then, by using Theorem 3.1, we get [A − λ]a > 0, [A∗ − λ]a >

0, i(A − λ) = 0, [B − λ]a > 0, [B∗ − λ]a > 0 and i(B − λ) = 0 and therefore, Proposition 2.1

(i) gives [(A − λ)(B − λ)]a > 0, [(A∗ − λ)(B∗ − λ)]a > 0 and i((A − λ)(B − λ)) = 0. Moreover,

since AB ∈ K(X), we can apply both Eq. (3.6) and Proposition 2.1 (ii), hence ensuring that
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[A+ B−λ]a > 0, [A∗+ B∗ −λ]a > 0 and i(A+ B−λ) = 0. Again, by applying Theorem 3.1, we infer

that λ < σe5(A + B) and, then

σe5(A + B)\{0} ⊂
[
σe5(A)

⋃
σe5(B)

]
\{0}. (3.9)

In order to prove the inverse inclusions of Eqs (3.8) and (3.9), let us suppose thatλ < σe4(A+B)
⋃
{0}.

Then, [A + B − λ]a > 0 and [A∗ + B∗ − λ]a > 0. Since AB ∈ K(X) and BA ∈ K(X), then by using

Eqs (3.6) and (3.7), we have

[(A− λ)(B− λ)]a > 0, [(A∗ − λ)(B∗ − λ)]a > 0, [(B− λ)(A− λ)]a > 0 and [(B∗ − λ)(A∗ − λ)]a > 0.

(3.10)

Eq. (3.10) and Theorem 2.3 show clearly that [A−λ]a > 0, [A∗−λ]a > 0, [B−λ]a > 0, and [B∗−λ]a > 0.

Therefore, λ < σe4(A)
⋃
σe4(B). This proves that [σe4(A)

⋃
σe4(B)] \{0} ⊂ σe4(A + B)\{0}. Hence,

σe4(A + B)\{0} = [σe4(A)
⋃
σe4(B)] \{0}. It remains to prove the following [σe5(A)

⋃
σe5(B)] \{0} ⊂

σe5(A + B)\{0}. Let λ < σe5(A + B)
⋃
{0}. Then, by using Theorem 3.1, we have [A + B − λ]a > 0,

[A∗ + B∗ − λ]a > 0, and i(A + B − λ) = 0. Since AB ∈ K(X) and BA ∈ K(X), it is easy to deduce

that [A − λ]a > 0, [A∗ − λ]a > 0, [B − λ]a > 0, and [B∗ − λ]a > 0. Again, the use of Eqs (3.6),

(3.10), Theorem 2.4 and Lemma 2.1 (i) allows us to have

i[(A− λ)(B− λ)] = i(A− λ) + i(B− λ) = i(A + B− λ) = 0. (3.11)

Since A is a bounded linear operator, we get ρ(A) , ∅. As C\σe4(A) is a connected set, and from

Remark 3.1, we deduce that σe4(A) = σe5(A). Using the last equality and the fact that [A− λ]a > 0

and [A∗ − λ]a > 0, we deduce that i(A − λ) = 0. It follows, from Eq. (3.11), that i(B − λ) = 0. We

conclude that λ < σe5(A)
⋃
σe5(B) and hence, we have [σe5(A)

⋃
σe5(B)] \{0} ⊂ σe5(A + B)\{0}. So,

we prove Eq. (3.5). �
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