Title: Reverse of the Triangle Inequality in Hilbert C*-Modules
Author(s): Nordine Bounader, Abdellatif Abdellatif Chahbi, Samir Kabbaj
Pages: 29-38
Cite as:
Nordine Bounader, Abdellatif Abdellatif Chahbi, Samir Kabbaj, Reverse of the Triangle Inequality in Hilbert C*-Modules, Int. J. Anal. Appl., 9 (1) (2015), 29-38.

Abstract


In this paper we prove the reverse of triangle inequality via Selberg's  inequalities in the framework of Hilbert  C*-modules.

Full Text: PDF

 

References


  1. A.H. Ansari and M.S.Moslehian, Refinement of reverse triangle inequality in inner product spaces.J. Inequalities in Pure and Applied Math., 6(2005). Article ID 64. Google Scholar

  2. A.H. Ansari and M.S.Moslehian, More on reverse triangle inequality in inner product spaces. Inter J. Math. Math Sci, 18(2005), 2883-2893. Google Scholar

  3. N.Bounader and A.Chahbi, Selberg type inequalities in Hilbert C*-modules. Int. Journal of Math. Analysis, 7 (2013), 385-391 Google Scholar

  4. J.B. Diaz and F.T. Metcalf,A complementary triangle inequality in Hilbert and Banach spaces. Proc. Amer. Math. Soc., 17(1966), 88-97. Google Scholar

  5. S. Dragomir, Reverse of the triangle inequality via Selberg’s and Boas-Bellman’s inequalities.Facta universitatis (NIS), Ser. Math. Inform. 21(2006), 29C39 Google Scholar

  6. S. S. Dragomir, M. Khosravi and M. S. Moslehian, Bessel type inequality in Hilbert C∗- modules. Linear and Multilinear Algebra, 8(2010), 967-975. Google Scholar

  7. A. M. Fink, D.S. Mitrinovic and J. E.Pecaric Classical and new inequalities in analysis. Kluwer Academic, Dordrecht, 1993. Google Scholar

  8. M. Fujii, Selberg inequalty.(1991), 70-76. Google Scholar

  9. M. Fujii and R. Nakamoto, Simultaneous extensions of Selberg inequality and Heinz-KatoFuruta inequality. Nihonkai Math. J. 9(1998), 219-225. Google Scholar

  10. I. Kaplansky, Modules over operateur algebras. Amer. J. Math, (1953), 839-858. Google Scholar

  11. M.Kato, K.S. Saito and T. Tamura, Sharp triangle inequality and its reverse in Banach spaces. Math. Inegal. Appl. 10(2007), 451-460. Google Scholar

  12. M.Khosravi, H.Mahyar, M.S. Moslehyan,Reverse triangle inequality Hilbert C∗-modules. J. Inequal. Pure Appl. Math, 10(2009), Article 110, 11 pages. Google Scholar

  13. E. C. Lance, Hilbert C∗-modules. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 210(1995). Google Scholar

  14. C.-S. Lin, Heinz’s inequality and Bernstein’s inequality. Proceedings of the American Mathematical society, 125(1997), 2319-2325. Google Scholar

  15. J.G. Murphy, C∗-Algebras and operator theory. Academic Press, Boston, 1990. Google Scholar

  16. M. Nakai and T. Tada, The reverse triangle inequality in normed spaces. New Zealand J.math., 25(1996), 181-193. Google Scholar


COPYRIGHT INFORMATION

Copyright © 2020 IJAA, unless otherwise stated.