Title: Univalent Biharmonic Mappings and Linearly Connected Domains
Author(s): Zayid Abdulhadi, L. El Hajj
Pages: 1-8
Cite as:
Zayid Abdulhadi, L. El Hajj, Univalent Biharmonic Mappings and Linearly Connected Domains, Int. J. Anal. Appl., 9 (1) (2015), 1-8.


A four times continuously differentiable complex valued function F = u + iv in a simply connected domain Ω is biharmonic if the laplacian of F is harmonic. Every biharmonic mapping F in Ω has the representation F = |z|^2 G + K, where G and K are harmonic in Ω. This paper investigates the relationship between the univalence of F and of K using the concept of linearly connected domains.

Full Text: PDF



  1. Z. Abdulhadi and Y.Abumuhanna , “ Landau’s theorem for biharmonic mappings,” Journal of Mathematical Analysis and Applications, 338(2008), 705-709. Google Scholar

  2. Z. Abdulhadi, Y.Abumuhanna and S. Khoury, “ On Univalent Solutions of the Biharmonic Equations,” Journal of Inequalities and Applications, 2005(2005), 469-478. Google Scholar

  3. Z. Abdulhadi, Y.Abumuhanna and S. Khoury, “On the univalence of the log-biharmonic mappings” Journal of Mathematical Analysis and Applications, 289(2004), 629-638. Google Scholar

  4. Z. Abdulhadi, Y.Abumuhanna and S. Khoury, “ On some properties of solutions of the biharmonic Equations,” Appl. Math. Comput. 177(2006), 346-351. Google Scholar

  5. Y.Abu-Muhanna and R. M. Ali“ Biharmonic Maps and Laguerre Minimal Surfaces,” Journal of Abstract and Applied Analysis, 2013(2013), Article ID 843156, 9 pages. Google Scholar

  6. Y.Abu-Muhanna and G. Schober, Harmonic mappings onto convex mapping domains, Can. J. Math, 39(1987), 1489-1530. Google Scholar

  7. A. Bobenko and U. Pinkall, “Discrete isothermic surfaces,”Journal fur die Reine und Angewandte Mathematik, 475(1996), 187-208. Google Scholar

  8. W. Blaschke, “Uber die Geometrie von Laguerre III: Beitra ge ¨zur Fl achentheorie,” Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg ¨ , 4(1925), 1-12. Google Scholar

  9. W. Blaschke, “Uber die Geometrie von Laguerre II: Fla chen- ¨theorie in Ebenenkoordinaten,” Abhandlungen aus dem MathematischenSeminar der Universitat Hamburg ¨, 3(1924), 195- 212. Google Scholar

  10. S. Chen, S. Ponnusamy, and X. wang, “ Landau’s theorem for certain biharmonic mappings,” Applied Mathematics and Computation, 208(2009), 427-433. Google Scholar

  11. G. Choquet, Sur un type de transformation analytique g´en´eralisant la repr´esentation conforme et d´efinie au moyen de fonctions harmoniques, Bull. Sci. Math. 69(1945), 156–165. Google Scholar

  12. M.Chuaqui, R.Hermandez,Univalent Harmonic mappings and linearly connected domains, J. Math.Anal.Appl., 332(2007), 1189-1197. Google Scholar

  13. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Annales Acad. Sci. Fenn. Series A. Mathematica, 9(1984), 3-25. Google Scholar

  14. P. Duren, Harmonic mappings in the plane, Cambridge University Press, 2004. Google Scholar

  15. J. Happel and H. Brenner, Low reynolds Number Hydrodynamics, Pretice-Hall, 1965. Google Scholar

  16. W.E. Langlois, Slow Viscous Flow, Macmillan Company, 1964. Google Scholar

  17. M. Peternell and H. Pottmann, “A Laguerre geometric approachto rational offsets,” Computer Aided Geometric Design, 15(1998), 223-249. Google Scholar

  18. H. Pottmann, P. Grohs, and N. J. Mitra, “Laguerre minimal surfaces, isotropic geometry and linear elasticity,” Advances in Computational Mathematics, 31(2009), 391-419. Google Scholar


Copyright © 2020 IJAA, unless otherwise stated.